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Abstract. Siegel modular forms can be thought of as modular forms in more than one
variable. Introduced in the 1930’s by Siegel in his analytic study of quadratic forms, they
nowadays occur naturally in many unexpected places. We develop the basic theory from
scratch, assuming only that the listener/reader has seen some rudiments of modular forms
in one variable. We list some of the many applications and indicate some fundamental
questions that are still open.

1. Definitions

1.1. Classical modular forms. Recall the major ingredients in the classical definition of
modular forms: the group Γ1 := SL2(Z) acts on the upper half-plane

H 1 := {τ ∈ C : Im(τ) > 0}

via fractional linear transformations(
a b
c d

)
τ :=

aτ + b

cτ + d
.

We define a modular form of weight k ∈ Z and level Γ1 to be a holomorphic function
f : H 1 → C satisfying

f(γτ) = (cτ + d)kf(τ) for all γ =

(
a b
c d

)
∈ Γ1,

as well as the following growth condition (called holomorphicity at infinity): there exists
A > 0 such that have

|f(x + iy)| � yA for y ≥ 1.

Suppose now that we want to generalize this to functions of more than one complex
variable. We need to generalize Γ1, H 1, the action, the modular condition and (a priori) the
growth condition.
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1.2. Several variables. In order to motivate the following definitions, one needs to discuss
the relation between quadratic forms and modular forms. Since that is done most naturally
after introducing Fourier expansions, we postpone this motivational discussion until §2.2.

Let g ≥ 1 be an integer.
Set

J :=

(
0 Ig

−Ig 0

)
.

We define the symplectic group

Γg := Sp2g(Z) = {γ ∈ GL2g(Z) : tγJγ = J}

=

{(
A B
C D

)
∈ GL2g(Z) : tAC = tCA, tBD = tDB, tAD − tCB = Ig

}
.

Next we define the Siegel upper half space

H g := {symmetric g × g complex matrices with positive definite imaginary part}
= {τ ∈ Matg×g(C) : tτ = τ, Im(τ) > 0}.

The natural way to attempt defining an action of Γg on H g is then(
A B
C D

)
τ := (Aτ + B)(Cτ + D)−1.

Of course, one must first show that Cτ + D is invertible (this was not much of an issue in
the classical case g = 1). The proof can be found for instance in Proposition 1, Section 1
of (Kli90).

In the g = 1 case, some mileage can be obtained from working explicitly with a fundamen-
tal domain for the action of Γ1 on H 1. In the general case, such an approach would be very
cumbersome. Although fundamental domains were constructed by Siegel for all g, already
for g = 2 their boundary is made of 28 algebraic surfaces!

It remains to generalize the modularity condition. This requires an extra step: instead of
being a mere integer, the weight will now be a rational representation

ρ : GL(g, C) → GL(V ),

where V is a finite-dimensional complex vector space. We will talk more about this notion
of weight at the end of this section.

1.3. Siegel modular forms. To simplify the notation, we introduce the slash operator : for
any γ ∈ Γg, set

(f |γ)(τ) := (ρ(Cτ + D))−1 f(γτ).

We say that a holomorphic function f : H g → V is a Siegel modular form of degree g, weight
ρ and level Γg if1

f |γ = f for all γ ∈ Γg.

We denote the vector space of Siegel modular forms of weight ρ by Mρ(Γg), and we feel free
to drop the level when it is understood. Note that a Siegel modular form of degree g is a

holomorphic function in g(g+1)
2

complex variables.

1If g = 1, we must also impose the condition of holomorphicity at infinity given in §1.1. This is not
necessary when g > 1, thanks to the Köcher principle (see §2.3).
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In arithmetic applications one often works with other levels, such as

Γg(N) := {γ ∈ Γg : γ ≡ I2g (mod N)}.
One advantage is that if N ≥ 3, Γg(N) acts freely on H g (Serre’s Lemma, see (Ser61)).

1.4. Weights. We close this section with some remarks on weights for Siegel modular forms.
If a weight ρ decomposes as a direct sum of representations

ρ = ρ1 ⊕ ρ2,

then it is easily seen that

Mρ = Mρ1 ⊕Mρ2 .

Therefore we may assume without loss of generality that weights are irreducible representa-
tions.

In the case g = 1, we are looking at irreducible representations of C×; these representations
must be one-dimensional (because C× is abelian), and since they are by assumption rational
the only possibilities are

z 7→ zk

for some integer k. Hence we recover precisely the notion of weight of a classical modular
form.

Suppose now g = 2. Let std denote the standard representation of GL2(C), i.e. std is the
identity map from GL2(C) to GL(C2). Then to any pair of integers (j, k) we can associate
the following representation of GL2(C):

ρj,k := Symj(std)⊗ det(std)k.

These are actually all the irreducible representations of GL2(C).
In general, irreducible representations of GLg(C) are classified by g-tuples of integers,

called highest weight vectors (this correspondence is more complicated to describe – see
(FH91)). If we only consider weights of the form

ρ = det(std)k,

then we get the notion of scalar-valued Siegel modular forms.
This gives us two graded rings:

M scalar(Γg) :=
⊕
k∈Z

Mk(Γg)

M(Γg) :=
⊕

ρ irrep

Mρ(Γg).

2. Some fundamental results and open questions

2.1. Fourier expansion. When g = 1, a classical modular form satisfies in particular the
equality

f(τ + 1) = f(τ) for all τ ∈ H 1.

In other words, f is periodic of period 1, and as such has a Fourier expansion

f(τ) =
∑
n∈Z

a(n)e2πinτ ,
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where

a(n) =

∫
x mod 1

f(τ)e−2πinτdx, τ = x + iy.

One sets traditionally q = e2πiτ and calls the result the q-expansion of f :

f(q) =
∑
n∈Z

a(n)qn.

The condition that f be holomorphic at infinity implies that a(n) = 0 for negative n.
For general g, we can consider the following 2g × 2g matrix:

γ =

(
I S
0 I

)
,

where S is a symmetric g × g matrix with integer entries. It is easily seen that γ ∈ Γg.
If f is a Siegel modular form, it satisfies

(f |γ)(τ) = f(τ) for all τ ∈ H g, γ ∈ Γg.

But for our cleverly chosen γ, this relation becomes

f(τ + S) = f(τ) for all τ ∈ H g.

This means in particular that f is a periodic function in its g(g + 1)/2 variables τij, where
τ = (τij).

Setting qij = e2πiτij , we get a multivariate q-expansion of the form

(1) f(q11, . . . , qgg) =
∑

n11,...,ngg∈Z

a(n11, . . . , ngg)q
n11
11 . . . qngg

gg .

This notation obscures some of the features of the Fourier expansion, so people prefer to use
a different notation, which we explain now.

Let N be a symmetric g × g matrix; we say N is half-integral if 2N has integral entries
with even integers on the diagonal. Given a half-integral matrix N , and τ ∈ H g, one easily
checks that

Tr(Nτ) =

g∑
i=1

Niiτii + 2
∑

1≤i<j≤g

Nijτij.

Running over all half-integral matrices N will yield all possible linear combinations of the
τij’s with integer coefficients, which is exactly what our expansions are made of! Therefore
we can write the Fourier expansion as

f(τ) =
∑

N h.-i.

a(N)e2πi Tr(Nτ),

which is equivalent to but more compact than (1), and looks very much like the 1-variable
case.

Once again, we can recover the Fourier coefficients using the formula

a(N) =

∫
x mod 1

f(τ)e−2πi Tr(Nτ)dx, τ = x + iy,

where dx is the standard measure on Rg.
If u ∈ GLg(Z), then

a(tuNu) = ρ(tu)a(N).
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This can be used to show that Mk = 0 if kg ≡ 1 (mod 2).

2.2. Quadratic forms and theta series. As a motivation for the definitions given in
§1.2, we take a quick detour and discuss the relation between quadratic forms and modular
forms. Since entire books can (and have) been written on the subject, we will focus on some
examples.

Consider the quadratic form Q(a, b, c, d) = a2 + b2 + c2 + d2. Set

θQ(τ) :=
∑

a,b,c,d∈Z

qa2+b2+c2+d2

.

It can be shown that θ is a modular form of weight 2 (and level Γ0(4)), and it is easy to see
that its n-th Fourier coefficient is precisely the number of ways of writing n as a sum of 4
squares, where the order and the sign matter. In other words, if we write

θQ(τ) =
∑
n≥0

a(n)qn = 1 + 8q + 24q2 + . . . ,

then a(n) is the number of representations of n by the quadratic form Q(a, b, c, d). For
instance:

a(0) = 1 : 0 = 02 + 02 + 02 + 02

a(1) = 8 : 1 = 12 + 02 + 02 + 02 = 02 + 12 + 02 + 02

= 02 + 02 + 12 + 02 = 02 + 02 + 02 + 12

= (−1)2 + 02 + 02 + 02 = 02 + (−1)2 + 02 + 02

= 02 + 02 + (−1)2 + 02 = 02 + 02 + 02 + (−1)2.

The moral of the story is that a positive-definite integer-valued quadratic form Q gives rise to
a modular form whose q-expansion is the generating series for the number of representations
by Q.

Similarly, if we define

θ
(2)
Q (τ) =

∑
s∈Mat2×4(Z)

e2πi Tr(Q tsτs),

then this turns out to be a Siegel modular form of degree 2 and weight 2 (of a certain level).
Its Fourier expansion is

θ
(2)
Q (τ) =

∑
N≥0,h.-i.

α(N, Q)e2πi Tr(Nτ),

where
α(N, Q) = #{r ∈ Mat4×2(Z) : N = trQr}

is the number of representations of the quadratic form N by the quadratic form Q.
In general, given a integers g and ` and a positive-definite integer-valued quadratic form

Q in ` variables,

θ
(g)
Q (τ) =

∑
s∈Matg×`(Z)

e2πi Tr(Q tsτs)

is a Siegel modular form of degree g and weight `/2, and its Fourier expansion is the gen-
erating series for the number of representations of positive-definite integer-valued quadratic
forms N by the fixed form Q. For details, see Section 8 in (Kli90).
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2.3. The Köcher principle. This is a general property satisfied by several kinds of auto-
morphic functions in more than one variable (not just Siegel modular forms). In our case, it
can be stated as follows:

Theorem (Köcher principle). Let f be a Siegel modular form of weight ρ and level Γg, with
g > 1. Then f is bounded on any subset of H g of the form

{τ ∈ H g : Im(τ) > c · Ig}, where c > 0.

For the proof, see Theorem 1, Section 4 of (Kli90).
A consequence of the Köcher principle is that if g > 1, a Siegel modular form has Fourier

expansion

f(τ) =
∑

N≥0, h.-i.

a(N)e2πi Tr(Nτ).

With some more work, this can be used to bound the dimension of the space Mk(Γg):
there is a constant cg (depending only on g) such that

dim Mk(Γg) ≤ cgk
g(g+1)/2 for k > 0.

2.4. The Siegel Φ-operator. An important feature of the theory of Siegel modular forms
is the Φ-operator, which maps forms of degree g into forms of degree g − 1. It is possible
to define it in full generality, but for simplicity of the exposition we restrict ourselves to
scalar-valued forms.

We define the linear map
Φ : Mk(Γg) → Mk(Γg−1)

by the rule

Φf(τ ′) := lim
t→∞

f

(
τ ′ 0
0 it

)
for τ ′ ∈ H g−1.

For a proof that this is a well-defined map, see Proposition 1, Section 5 of (Kli90).
In terms of the Fourier expansion, if f can be written as

f(τ) =
∑

N≥0, h.-i.

a(N)e2πi Tr(Nτ),

then we have

Φf(τ ′) =
∑

N ′≥0, h.-i.

a

(
N ′ 0
0 0

)
e2πi Tr(N ′τ ′).

2.5. Siegel cusp forms. An element f ∈ Mρ(Γg) is called a Siegel cusp form if it belongs
to the kernel of Φ. Equivalently, f is a cusp form if its Fourier coefficients satisfy: a(N) = 0
for all half-integral matrices N which are not positive definite. We denote the space of Siegel
cusp forms of weight ρ by Sρ(Γg).

In the case g = 1, there is an explicit formula for the dimension of the space of cusp forms,
namely

dim Sk(Γ1) =

{
0 if k < 0 or k odd and > 0,[

k
4

]
+

[
k
3

]
− k

2
if k ≥ 0 even.

It is usually obtained by using the formula

dim M2k(Γ1) = dim S2k(Γ1) + 1 for k > 1,
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together with the Riemann-Roch theorem for computing dim M2k(Γ1); see for instance The-
orem 4.9 and Example 4.14 in (Mil97).

The problem of computing the dimensions of the spaces Sk(Γg) for general g is much more
difficult and far from being settled. The state of the art in this area is contained in (PY02),
(PY01), and (PY00); for example, they prove that

dim S10(Γ4) = 1 and dim S2k+1(Γ4) = 0 for k = 0, 1, . . . , 6.

The cases g = 2 and g = 3 are completely solved thanks to (Igu64) (see also (Has83)),
resp. (Tsu86). There is an explicit yet rather complicated conjectural expression for the
dimension in the general case; see (IS92).

A related (and even more difficult) problem is finding a basis for the space Mk(Γg), or a
set of generators for the graded ring M(Γg). Once again this is known for g = 1:

M(Γ1) = C[E4, E6],

where E2k ∈ M2k(Γ1) denotes the Eisenstein series of weight 2k.
For g = 2, (Igu62) proved that

M(Γ2) = C[E4, E6, χ10, χ12, χ35]/
(
χ2

35 = P (E4, E6, χ10, χ12)
)
,

where E2k is the Siegel-Eisenstein series of weight 2k, and χk are Siegel cusp forms of weight
k which can be expressed explicitly in terms of Siegel-Eisenstein series.

The case g = 3 was solved by (Tsu86). He exhibits a set of 34 generators for M(Γ3), some
of which cannot be written in terms of Siegel-Eisenstein series. I think it is still unknown
whether this set of generators is minimal.

3. A panoply of applications

(a) Algebraic number theory
• (FK02): let K := Q(α), where

α := ζ + ζ3 + ζ9, ζ := e2πi/13.

They consider various abelian extensions of K, and show how special values of the
L-functions of these extensions can be computed explicitly using Siegel modular
forms. They can also show that these special values are units.

• (FK03): similar results for K := Q(e2πi/5), get so-called Minkowski units.
• (dSG97), (GL04): similar techniques applied to K any quartic CM field; they

get S-units for a finite set of primes S effectively computable for any given K.
(b) Arithmetic geometry

• (SU02): let f be a cuspidal eigenform of weight 2k − 2 ≥ 2 and level 1, let p be
an ordinary prime and let Vf be the p-adic Galois representation associated to
f . If the L-function of f vanishes to odd order at s = k − 1, then the Selmer
group of the representation Vf is infinite.
This is a small partial result towards the conjectures of Beilinson and Bloch-Kato,
which are generalizations of the Birch and Swinnerton-Dyer conjecture.
The proof uses in a critical way Siegel modular forms and their associated Galois
representations.

• (Dum01): uses Siegel modular forms to construct non-trivial elements in certain
Shafarevich-Tate groups.
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• (JK98): study heights of abelian varieties, find out that the archimedean local
height is “almost” the logarithm of the Petersson norm of a Siegel modular form.

(c) Cohomology of some arithmetic groups
• (HW03): compute explicitly the cohomology of the arithmetic group Γ2(3):

H0(Γ2(3), Z) = Z
H1(Γ2(3), Z) = 0

H2(Γ2(3), Z) = Z21 ⊕ (Z/3)10 ⊕ Z/2

H3(Γ2(3), Z[1/6]) = Z[1/6]139

H4(Γ2(3), Z[1/3]) = Z[1/3]81

Hi(Γ2(3), Z) = 0 for i > 4.

They also explicitly decompose Hi(Γ2(3), Q) into irreducible representations for
the finite group PSp4(F3).

(d) Coding theory
• (Duk93) and (Run96): describe a correspondence between Siegel modular forms

and self-dual codes.
• (Our97): computes the dimension of the ring of code polynomials in genus 4.
• (CK01): give a correspondence between a certain type of codes over Z/2m and

Siegel modular forms.
(e) Elliptic cohomology

• (Gri99): the second quantized elliptic genus of a Calabi-Yau manifold2 is “al-
most” a Siegel modular form; namely

(fudge) ·
∏

m,n,`

(
1

1− qmy`tn

)c(mn,`)

is a Siegel modular form.
• Book by (Tho99): the last chapter describes an idea of Hopkins and Morava for

generalizing elliptic cohomology by using K3 surfaces3 instead of elliptic curves.
Such a theory should be related to Siegel modular forms.

(f) Physics
• (Tui01): expresses the partition function of the genus two conformal field theory

in terms of Siegel modular forms.
• (Cur98): studies N = 2 string-string duality and holomorphic couplings. The

moduli space of a heterotic STUV model is locally given by H 2, so leads naturally
to working with Siegel modular forms with g = 2.

4. What else is there?

The limited scope and length of both the talk and these notes forced us to leave out quite
a few topics that are of great importance in the theory of Siegel modular forms. In this final

2Complex manifold admitting a Kähler metric and having trivial canonical bundle.
3Surfaces with trivial canonical bundle and dim H1(X, OX) = 0.
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section, we try to say a few words about these and provide appropriate references for further
reading.

4.1. Hecke operators. These operators exist, and their theory is similar but more compli-
cated than in the classical case. To give a quick illustration of this, consider the case g = 1:
for each prime ` there is only one Hecke operator T`, namely the one associated with the
double coset

Γ1

(
1

`

)
Γ1.

When g = 2, there are two Hecke operators at `, T` and T`2 , corresponding to the double
cosets

Γ2


1

1
`

`

 Γ2 and Γ2


1

`
`2

`

 Γ2.

The reference for general g is (AZ95).

4.2. Siegel-Eisenstein series. We hinted at the existence of Eisenstein series for higher g
in § 2.5, when we gave Igusa’s description of M(Γ2). They can be defined in a fairly general
way as follows.

Let 0 ≤ r ≤ g, an even positive weight k and a Siegel cusp form f ∈ Sk(Γr). We define
the Siegel-Eisenstein series with these parameters to be

Eg,r,k(f)(τ) :=
∑

γ=(A B
C D )∈Pr\Γg

f((γτ)∗)

(det(Cτ + D))k

where

• for any τ ∈ H g, we write

τ =

(
τ ∗ z
z w

)
with τ ∗ ∈ Γr,

• the subgroup Pr ⊂ Γg is given by

Pr =




a′ 0 b′ ∗
∗ u ∗ ∗
c′ 0 d′ ∗
0 0 0 tu−1

 ∈ Γg :

(
a′ b′

c′ d′

)
∈ Γr, u ∈ GLg−r(Z)

 .

See Section 5 of (Kli90) for a proof of convergence and other properties, including the formula

Φg−r(Eg,r,k(f)) = f.

4.3. L- and zeta-functions. If f is a classical cusp form of weight k which is a Hecke
eigenform for all Hecke operators with eigenvalues a`, one can associate an L-function

L(f, s) =
∏

` prime

1

1− a``−s + `k−1 · `−2s
.

This can still be done for higher g, but there are several types of L- and ζ-functions that
can be considered, and the expressions get rather complicated. As an example, to a Hecke
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eigenform f ∈ Sk(Γ2) with eigenvalues a` (for T`) and a`2 (for T`2), one can associate the
spinor zeta-function

Z(f, s) =
∏

` prime

1

1− a``−s + (a2
` − a`2 + `2k−4)`−2s − a``2k−3 · `−3s + `4k−6 · `−4s

.

4.4. Saito-Kurokawa and Ikeda lifts. There exists a linear map (called the Saito-Kurokawa
lifting)

S2k−2(Γ1) −→ Sk(Γ2)

which sends Hecke eigenforms to Hecke eigenforms and such that if the image of f is F , then

Z(f, s) = ζ(s− k + 1)ζ(s− k + 2)L(f, s),

where ζ is the Riemann zeta-function.
This was generalized by (Ike01) to a map

S2k−g(Γ1) −→ Sk(Γg),

provided that k ≡ g (mod 2).
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