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[Translator’s note: We have attempted, as much as possible, to keep the notation in
the original article. Some items may be confusing to a modern reader:

¢ F is an identity matrix, F, if we want to make the size explicit;

¢ “neighborhood” means “open neighborhood”.]

Let G,, be the Siegel space and I';, the Siegel modular group; we aim to construct a
compactification of the quotient space I',\S,,. Of course, there are several possible
compactifications; but, as we shall see, it is natural to consider a compactification of
the form

(Tn\&y)" =Tp\&, UL, 1\&po1 U+ UT\ &y,

where G; denotes a single point, and T’y is the trivial group. The aim of this talk
is to give the topological construction of this compactification. We then show, in
the following talks, that (Fn\(‘Sn)*, endowed with a canonically defined ringed space
structure, is a normal analytic space that can be realized as a normal algebraic
subvariety of a projective space; we will consider at the same time the corresponding
problems for all the groups commensurable to the group T,.

To describe our method, recall the case n = 1; in this case, it is well-known that the
classical fundamental domain for I'; has a single cusp (point at infinity), so that the
quotient space I';\&; can be compactified by adjoining a single point P, corresponding
to this point, or more precisely to the class of this point; the compactified space
(I‘l\Gl)* is a compact Riemann surface, whose local parameter around the point
P, is given by e?™*, which maps the subset y > ¢ of the upper half plane &; onto a
neighborhood of P, in (F1\61)*. But the orbit of the point at infinity under I'; consists
precisely of the rational points on the real axis, and the images of the set y > c under
I'y are horocycles at these points (i.e. cycles tangential to the real axis). Therefore the
compactification (I‘l\Gl)* is obtained as follows: first let the space &7 be the disjoint
union of the upper half plane &; and all its rational points, then topologize it by taking
the horocycles to be the neighborhoods of the rational points, and finally take the
quotient I';\&7 of & by I';. Our objective is to prove that this method generalizes to
the case of arbitrary n.

*This paper appeared in Séminaire Henri Cartan, pages 12-01 to 12-13 (1957/58).
Translated from the original French by Alexandru Ghitza <aghitza@alum.mit.edu>|
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1 Preliminary considerations

Let G, be the Siegel space; we always denote an element of G,, as
Z=X+iY, X=(z5), Y=_(yj), Y="WDW,

with a diagonal matrix D = (d;8;;) and a strictly upper triangular matrix W = (w;;).
Denote by Q,(u) (u > 0) the set of Z € &,, satisfying

(ii) ]w¢j| <u (1<i1<j<n),
(i) 1 < udl, di < udi+1 1<i<n-1).

We already know ([[1, Section 5]) that the collection of €2,,(u) for sufficiently large u > 0
is a collection of “fundamental open sets” for the modular group I';,. (We deviate here
from the definition given in [1]]; but setting

en O
My = ((; 6n> ,en = (6ins1—j),
it is easy to see that the collection defined in [1]] is equivalent to the collection
{ My, (uv)} in the current notation.)

Let 0 < r < n; we decompose matrices into (r,n — r) blocks:

A Z12 Dy 0 Wi Wia
(7 7) 2= (0 5) w= (0 )
Then Z € Q,(u) implies that Z; € Q,(u), given the relation

(1.1) T DWW — (tW1D1W1 ‘W1 D1 Wi )

0 W19 D1 Wi + tTWo Do Wy

From now on, we fix a number « such that €2, (u) is a fundamental open set of I, for all
r < n and we write (2, instead of Q,(u).
Consider the set

(1.2) O =Q,UQ, 1U---UQ

(disjoint union in the abstract sense), where ), denotes the closure of 2, in &, and
Qo = &y (a one-point set). We introduce the following “natural” topology: let U be
a neighborhood of Z; € Q, in 2, and K a positive number; we denote by V(S)(U7 K)
(r < s < n) the set of Z € Q, such that Z; € U and dr4+1 > K, where 7, is as above the
matrix of degree r in the (r, s — r) block decomposition of Z, and d,; is the (r + 1)-st
diagonal element of D such that Z = X +iY, Y = ‘W DW,; then a neighborhood of Z
in 7 is given by the union
U vPw k),
r<s<n
in other words, a sequence (Z,) contained in Q, converges to Z; in ), if and only
if Z,1 — Zp and d,,+1 — oo. It is clear that these definitions give a Hausdorff
topology on 2 inducing the original topology on each 2,.. It is also clear that any
sequence (Z,) contained in Q, has a subsequence that converges in our sense (for an
appropriately chosen r); hence 2 is a Hausdorff and compact space.
Let 0 < r < n; we decompose

M= @ g) € Sp(n, R)



as follows:
Ay A12> (Bl 312>
A= , B= b
<A21 Ao By Bs
into (r,n — r) blocks. We consider the subgroup &' of Sp(n, R) consisting of matrices
of the form

Ay 0 By B
Ay Ay Bar By
Ci 0 Dy Dy

0 0 0 Dy

(1.3) M =

It is trivial that the set of all matrices of this form is in fact a subgroup; we note that
simplecticity implies that the conditions A5 = 0, C12 = 0, Cj (or the conditions Cy; = 0,
Cy =0, D21 = 0) are equivalent to conclude that an element M of Sp(n,R) belongs to
(1

It also follows that

implies that

and that the map

(1.4) wr: M€ S — M = AL By € Sp(r,R)
Ci1 Dy

is a homomorphism from &' to Sp(r,R). On the other hand, let ¢, be the canonical
embedding of Sp(r,R) to Sp(n,R) defined by

A1 0 By 0
Ay By 0 E 0 0

1. n - M = M:
(1.5) b M <01 D1>H C, 0 Dy 0
O 0 0 FE

We have then w, o, = 1 (the identity), which means that w, is surjective, and letting
M denote the kernel of w,, we can decompose & into a semidirect product as follows:

(1.6) &7 = 1, (Sp(r,R)) x N}

We note that for the modular group I';, we have the relation

(1.7) [N =, (T)) x (T, N).

The significance of the group & is shown by the following lemma:

Lemma 1 (Godement). Let (Z,), (Z!) be sequences in (0.

1° (Z,) converges to Z € ), if and only if

—1
(Z;1) converges to <Z8 8)

in the usual sense.

2° If (Z,) and (Z!,) converge to Zy € Q,, respectively Z, € Q,, and if Z, = MZ,
(v = 1,2,...) for a matrix M € Sp(n,R), then we have r = r/, M € &, and
Zly = wy(M)Zp.



Proof. Suppose (Z,) converges to Zy and set

Zy, =X, + in/u
YV = tWyDywua

D,; 0
D, = ' ,
< 0 DV72>

X, = < X1 Xy,12> ’

tXl/,12 XI/,Q
_ Wl/,l Wl/,12
W= < 0 Wu,2> ’
Zy = Xo + 1Yo,
Wo = "WoDoWo;

then XVJ — X, WVJ — W, DV71 — Dy.

By passing to a subsequence, we can moreover assume that (X, ) and (WW,) (and not
only (X,,1) and (W,,1)) converge, because for Z € (,, all the coefficients of X and of
W are bounded; we have therefore

-1
Zy_l — WV_lDV_l/Q (ZE + Du_l/Q tWV_lXVWV_lD;l/2> DV—1/2 tWV—l

_1 —-1/2 -1 —1/2 trr—1
(Mo V(P 0 (ipyag)  (Po T 0) (o O
0 * 0 0 0 0 * *
where
My — Dal/z 0 tWO—I 0\ (X, * Wo_l D61/2 0 |
0 0 * * * % 0 0 0

This is equal to

w;iDg % o B Dy 2 twi Xy Dyt Dy P twst o
0 0 0 0 0 0

_ (IA/O—U)O‘”2 (iBy + Dy /2 twi X Wi Dy V) T D VA ! 0)

0 0
(%" 0
L0 0/’

whence the first statement in 1°. The converse follows immediately from this and the
fact that every sequence in ,, has a converging subsequence.
Now let (Z]) be another sequence converging to Z}, € Q,, and let

A B
C D

* %

o

Z, = (AZ,+ B)(CZ,+ D) with M = < ) & Sp(n, R);

without loss of generality ' < r. We have then
(Z)7' = (Dz," +0)(BZ, + 4)

and, by passage to the limit,
(Zg)~" 0 Bi B\ (Zy' 0 (A A
0 0 By By 0 0 A Az

_ (D1 D\ (Z;' 0O (G G
- \Da Dy 0 0 Cyr Cy )’



where the blocks are (r,n — r). By comparing the corresponding coefficients, we get
the relations

Z01 0
(1.8) <( %) 0> (B1Z5"' + A1) = D1 25" + G,
ZN~1 0
(1.9) <( 00) o) Ap = Cho,
(1.10) 0= Do Zy"' + Co,
(1.11) 0=0Co.

As the imaginary part Y, of Z; is > 0, it follows from (1.10) that Co; = Dy = 0, which,
together with (1.11), shows that M € &; we have therefore that

Al ‘Bl
M, =
1 <CH l)1> € Sp(TJR)

ZV —1
and then (1.8)) shows that <( %) 8) has rank r; hence r =" and Z) = M1 Z,. O

2 Construction of the space G

We now construct the space &* which is a generalization to the case of arbitrary n
of the &7 stated above. We could use the bounded model of the Siegel space, i.e. the
space of complex symmetric matrices W of degree n such that WW < E,,. But we will
instead construct directly the space corresponding to the half-plane &,,.

Let I' = I'), be the Siegel modular group; consider the set of pairs (M, Z) with M €T,
Z € 6, (0 <r < n); take the equivalence relation defined by

(M,Z)~(M',2"),Z € &,,Z' €6,y = r=1,(M)"'Mec®! 7 =w(M)'M)Z.

This is clearly an equivalence relation; we write M.Z for the equivalence class of

(M, Z) and we denote by &} the set of equivalence classes. We can view &, as a subset

of &} via the natural injective map Z —— 1.Z; similarly we can make I" act on &, via

the obvious formula M; (M.Z) = (M1 M).Z, since (M, Z) ~ (M', Z') obviously implies

that (M1 M, Z) ~ (MyM’, Z"). All of this agrees with the usual notations when n = r.
We have therefore

(2.1) S* = U rs,.

n
0<r<n

More precisely, if we decompose I' into right cosets for I' N &;':

(2.2) r=JM,Tneyp),

we have the following decomposition of G;;:

(2.3) & =| | M6,

Note that we can consider (2;, C &; and obtain &; =I'(2;.
We now define a topology on &;; we are interested in a topology 7 on &} satisfying

1° 7T induces the “natural” topology on €27.

2° The actions of M € I' on &;, are continuous maps.



3° If two points z, 2’ of &} are not I'-equivalent, there exist neighborhoods U of x and
U’ of 2/ such that TU N U’ = ().

4° Each point z € &} has a system of open neighborhoods {U} such that I';U = U and
if MUNU # () then M € T',, where I';, is the stabilizer of z in I".

Our main results consist of the following theorems:

Theorem 1. Among the topologies satisfying conditions 1° and 2°, there is a finest
one, denoted T ; it also satisfies condition 3°.

Theorem 2. There exists a unique topology, denoted T, satisfying conditions 1°, 2°,
3°, and 4°.

Before giving the proofs, we discuss the consequences of these theorems. We start
by considering the quotient space I'\G}, with the topology induced by 7 . the open
sets of I'\& are the images of the 7'-open sets of G} under the canonical projection
m: 6F — I'\G}. We have then

n

Theorem 3. The quotient space I'\G} is Hausdorff and compact.

Proof. The space is Hausdorff by condition 3° above; it is compact since it is the
continuous image of the compact space (2}, O

We now have
ne;= J rre,
0<r<n
by (2.1I); as the stabilizer of &, in I' is I' N &) and the action of I' N & on &, is the
same as that of w, (' N &) =T, I'\I'G, is canonically identified with I',\&,; we have
therefore

(2.4) ne,= (J I\e.

0<r<n

There are several topologies satisfying conditions 1° and 2°; but they all induce the
same topology on any finite union of M;2} (M; € I'). If they also satisfy condition 3°,
they induce the same topology on the quotient space I'\G}, so that we can assume
in Theorem 3 that the topology on I'\ &} is defined by any topology on &} satisfying
conditions 1°, 2°, and 3°.

3 Proof of Theorems 1 and 2

We first define the topology 7, as follows: we declare a subset F of &% to be 7' -closed

if and only if for all M € I' we have that M F N (2} is closed in the “natural” topology

on Q. It is clear that this defines a topology 7' and that the latter satisfies condition

2°. To verify condition 1°, it suffices to prove that if F' is closed in 2} (in the “natural”

topology), then M F N (2 is also closed, for all M € I'; but this follows immediately

from Lemma 1. It is clear that 77 is the finest topology satisfying conditions 1° and 2°.
To prove the last statement of Theorem 1, we need several lemmas:

Lemma 2. For each r there exists a finite number of MZ-(T) € &) such that the relations

MQ,.NQ, #( for M €T (and hence M € &) imply that w,(M) = @, (Mi(r)) for some
T.

This is an immediate consequence of the fact that {2, is a “fundamental open” of I,..
We note in fact that, if < n, there are infinitely many M < I" such that MQ, NQ, # 0.



Lemma 3. For each Z € Q,, there exists a neighborhood U of Z in Q) such that
1° if M €T and MU NQ* # (), then M € &" and MZ € Q,;
2° if M €T and MU NU # (), then M € T'y, the stabilizer of Z inT.

Proof. Suppose M € T is fixed. It is clear that if MU N Q¥ # (0 for all neighborhoods
U of Z in Qf, then MZ € Q} and hence M € &7, M Z € Q,. Therefore we can take a
neighborhood U of Z such that

ve |J

r<s<n

and that the statement of the Lemma holds for all MZ-(S) (r < s < n) stated in Lemma
2. We then prove that the statement of the Lemma holds for all M € I'. Indeed, if
MU N} # 0, there exists s (r < s < n) such that MU N Qg # (); by Lemma 2 we

then have M € " and w,(M) = w; <Mi(5)>. Hence Mi(s) N Qs # () and by our choice
of U we have Mi(s) €&y, Mi(S)Z € Q,; next ws(M) = w; (M.(s)) € &7, hence M € &7,

7
wr (M) = w, (MZ-(S) ) and so MZ = Ml-(s)Z € Q,, which proves the first statement in the
Lemma. The second statement can be proved similarly. O

Lemma 4. Let Z € (,; if U is a neighborhood of Z in ()}, then U= I';U isaT'-
neighborhood of Z.

Proof. We may assume that U satisfies property 1° stated in Lemma 3; therefore if
MUN QF #+ () with M € T then M € 87, MZ € Q,. So there are only finitely many
possibilities for M (up to right multiplication by I'z) such that MU N Q} # (. Hence it
suffices to prove that MU N 2r is a neighborhood of M Z in 2} for these finitely many
representatives M modulo I'y. Let r < s < n, Uy = U N Q,; then

MUNQ, = | MTzUNQ,.

r<s<n

ButasI'z D T NN and I' = ¢, (I;) x ([ NNY), we can take M such that M € ¢, (T;).
Then MT ,U, N Q, contains all the matrices Z(*) € Q, such that

(r)
7() — tZl Z12) x4y, Y='WDW, D= (didij),
AV

with ZY) close enough to M Z and d,;; sufficiently large. (This follows from the
Proposition proven in the Appendix.) Therefore MU N (2}, is a neighborhood of M Z in
Qr. O

We now prove the last statement of Theorem 1. Let z, 2’ be two points of &} that are
not I'-equivalent; we need to construct neighborhoods U and U’ of z, respectively 2/,
that are I'-saturated and disjoint; it suffices to do this for two points

z,72¢ |J .

0<r<n

Let U, U’ be respective neighborhoods of Z and Z’ in 2 such that Mi(T)U NU’" = () for
all Mi(r) from Lemma 2; it is clear then that MU NU’ = forall M € I". Let U = I'U,
U’ =I'U’; by Lemma 4 these are 7' -neighborhoods of Z and Z’ in &%, and they are
I'-saturated and disjoint, from which we deduce the desired statement.



We now prove Theorem 2. We define the topology 7E)F as follows: we say that U is
a %F-neighborhood of z € & if and only if U is a I',-saturated 7' -neighborhood of z.

For
ze |J o

0<r<n

such a neighborhood always contains a neighborhood U=T4U as given in Lemma
4; taking U sufficiently small so that condition 2° of Lemma 3 is satisfied, U = I';U
is a %F—neighborhood of Z satisfying condition 4°; it follows immediately that the
conditions for the systems of neighborhoods are satisfied for 7 ; it is then clear that
7'0F is a topology satisfying conditions 1°, 2°, 3°, and 4°; condition 1° is satisfied since
for U = I'zU, we can make

oney= |J MPuna;
Mi(S)EFZ

as small as we want by taking U to be sufficiently small.

Finally, we prove the uniqueness of the topology satisfying conditions 1°, 2°, 3°, and
4°. Let T be such a topology and let U; be a T-neighborhood of Z € , satisfying
condition 4°; setting U = U; N Qr, U=T4U, we geta %F-neighborhood U of Z, clearly
contained in f]l ; conversely let U = I'zU be a %F-neighborhood of Z € Q),.; we may
assume that U is contained in a T-neighborhood of U; of Z satisfying condition 4°; let
U, =T'U; U, is a T-neighborhood of Z, because it is a I'-saturated %F-neighborhood of
Z, and because 7 and 76F define the same topology on the quotient space I'\&} due to
conditions 1°, 2°, and 3°; we have then

ﬁlﬂﬁzzﬁlﬂ U Miﬁzﬁlﬂ(j:ﬁ,
M;€er/Ty
hence U is a T-neighborhood of Z, which proves our statement.
The classical topology of &7 is 7BF ; we see easily that the two topologies 7' and 7E)F
are in fact different; we note also that these topologies are not locally compact. We

also note that the topologies 7' and 76F induce the same topology on G, (0 < r < n),
namely the original topology on &,..

Appendix

We complete here the proof of Lemma 4. By changing notation, this involves the
following setup: let U, and U] be neighborhoods of Z, € Q, in Q,; let K and K’ be
positive numbers, U, = V) (U,, K) the set of all matrices Z € (), such that

Z 7
z-{, 1 12 =X +iY, Y ='WDW, D = (didij),
AP

with Z; € U,, dy4+1 > K. Let U] the analogue of U obtained by replacing 2, U,, and K
by M Lo, U/, and K’, where M is an element of +4(I',). We have to prove that, given
U,, K, and M,, we can choose U/ and K’ such that

(3.1) Ué C (FS)Z0U5~
Then it suffices to take K" such that
My Ve (MU K") C UL,

which is possible thanks to the continuity of MO_1 in QU Mo_lﬁj;.
We will use the following result:



Proposition. With the above notation, given M, and a bounded U,, we can choose K’
such that U, is contained in (I's N N%) Q.

The statement we want to prove follows from the Proposition: indeed we get finitely
many M; € I'; N 917 such that
U, c | M0,
i

and hence, modifying U/ and K’ so that
(M7 'U)NQs cU;  foralli
(which is possible thanks to the continuity of MZ-_1 in QF), we get

U, c | mius,

(2

and therefore (3.7).
So it remains to prove the Proposition. Let

A
Z:(l 1ﬁe@.
21y Z

We will show that, if we take K’ sufficiently large, there exists M € I's N ¢ such that
MZ' € Q. But the group I'; N N? is generated by transformations of the form

t
(i) M= ( voo ) with U = (E 0 ) U, being integral and unimodular;

0 Ut 0 U,
.. U0 . E Ujp .
(i) M = (0 U_1>' with U = (0 B > U2 integral;
(iii) M = BT , With T = |, 0 T , where T3 and T» are integral, and Tb = ‘T5.
0 F Tio Ty
If we set
X' X!
Z/ — X/ ~Y/ X/ — 1 12
o (), i)
w! W D' 0
Y/:t /D/ / I 1 12 D/: 1
W DWW, w ( o w3’ 0 Dy’

then these transformations act as follows:
(1) Wiy — WU, TWiDLWS — U 'WE DLW Us;
(i) Wiy +— Wiy + W{Ua, ‘W}DLW) unchanged;
(iil) Xy +— Xy +Th2, X5+ X, +T», Y’ unchanged;

and these transformations do not change X/, W, and D). By setting Z”’ = M Z' for
some M of type (i), we can arrange that ‘W45 DiWJ € S’(u) (in the notation of [6], [5]),
that is that

|w;’j| <u (forr+1<i<j<s), d <ud;’_H (forr+1<4i<s).
Next, using a transformation of type (ii), we can arrange that

lwii] < - (for1<i<r,r4+1<j<s).

N | =



Finally, using a transformation of type (iii), we can arrange that
" 1 . .
|xij|§§ (forr+1<j <s, any 7).

Under all these transformations Z{ = Z] does not change. Finally, we see that we can
choose M € I'y N so that Z” = M Z’ satisfies all the conditions of belonging to 2,
with the exception of
d! <ud .

But d!! = d). is bounded as Z] ranges through U/. Moreover, there are only finitely many
transformations of type (i) as Z’ ranges through M, 'Q such that Z| € U/ (indeed, for
Z'=My'Z € My'Q, and 7, € U}, all the coefficients of Yj — Y> are bounded). We
can therefore choose K’ depending only on U/, u, and My, in such a way that, for all
Z' e U, Z" = MZ' also satisfies d; < ud),,, thatis MZ' € Q. This concludes the
proof of the Proposition.

Bibliographic note

The above compactification was given in [3] (but without using the space &;). Lemma

2 of [3]] corresponds to Lemma 1 of the present talk, but the proof is much simplified

by an idea of Godement. In any case the introduction of the space G is preferable,

especially in view of its usefulness in the consideration of groups commensurable to I'.
Other methods of compactification can be found in [2] 4].
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