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This paper revisits and strengthens a conjecture stated in 1973, a particular case
of which can be found in [42, Section 3].

It concerns “modular” representations (in the sense of Brauer) of dimension two of
the Galois group GQ = Gal(Q/Q).

If ρ : GQ → GL2(Fp) is such a representation, which we assume to be irreducible
and of odd determinant, the conjecture says that ρ really is “modular”, in the sense
that it arises from a cusp form mod p that is an eigenfunction for the Hecke operators.

In order for this statement to be both useful and computationally verifiable, it
is necessary to pinpoint the type of the modular form corresponding to ρ: level N ,
weight k, character ε. As far as N is concerned, the known examples suggest a simple
answer: N should be the Artin conductor of ρ (see Subsection 1.2); in particular, it
would only depend on the ramification of ρ away from p. As soon as N is known, the
congruence class of k mod (p− 1) and the character ε are easily obtained from the
determinant of ρ (see Subsection 1.3). It remains to determine the exact value of
the weight k (or rather its minimal value). This is a delicate question, which was
not broached in [42]. It seems that k only depends on the ramification of ρ at p
(exponents of the characters of the tame inertia, wild inertia, etc.); the precise recipe
that I propose is described in Subsections 2.2, 2.3 and 2.4.

The definitions of N , k and ε sketched above can be found in Sections 1 and 2.
Section 3 contains the main statement, with various complements. Section 4 explores
the pleasant consequences that this statement would have, if true: Fermat’s theorem,
the Taniyama-Weil conjecture, etc. Finally, Section 5 gives a number of numerical
examples, for p = 2, 3 and 7.

This text owes much to the following mathematicians, and it is my pleasure to
thank them:

*This paper appeared in the Duke Mathematical Journal, Vol. 54, No. 1, 1987.
†Translated from the original French by Alexandru Ghitza <aghitza@alum.mit.edu>.
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• John Tate, for his many letters (especially in 1973 and 1974) about the con-
jecture, as well as about the relations between the weight and the inertia at
p;

• Jean-Marc Fontaine, whose results on the local representations attached to
cohomology have confirmed Tate’s ideas, and have allowed to pinpoint the value
of the weight k attached to a representation;

• Gerhard Frey, who had the fundamental idea (see [17]) that the Taniyama-Weil
conjecture, completed appropriately, implies Fermat’s theorem; i.e. “Weil +
epsilon1 ⇒ Fermat”;

finally, and especially:

• Jean-François Mestre, who succeeded in programming and verifying sufficiently
many examples to convince me that the conjecture was worth taking seriously.
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1 Definition of N , ε, and k mod (p− 1)

1.1 Notation

The letter p denotes a prime number. We write Fp for an algebraic closure of the field
Fp, and Q for an algebraic closure of the field Q. We set GQ = Gal(Q/Q).

We consider a continuous homomorphism

ρ : GQ −→ GL(V ),

where V is a two-dimensional vector space over Fp. The image of ρ is a finite group,
which we denote G; by definition, this group is isomorphic to a subgroup of GL2(Fq),
where q is an appropriate power of p. (If p 6= 2, or if ρ is irreducible, we can take Fq
to be the field generated by the traces of the elements of G.)

We aim to attach to ρ positive integers N and k, as well as a Dirichlet character
ε : (Z/NZ)× → F×p .

1It appears that Ribet has recently succeeded in eliminating “epsilon”, so that “Weil⇒ Fermat”
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1.2 Definition of N

The integer N is simply the Artin conductor of ρ, defined as in characteristic zero
(cf. [1], [45]), except that we restrict to places that are prime to p.

More precisely, let ` be a prime number 6= p. We choose an extension to Q of the
`-adic valuation of Q, and we let

G0 ⊃ G1 ⊃ · · · ⊃ Gi ⊃ · · ·

be the sequence of ramification groups of G corresponding to this valuation ([45,
Chapter IV]). Let Vi be the subspace of V consisting of those elements fixed by Gi,
and let

(1.2.1) n(`, ρ) =
∞∑
i=0

1

[G0 : Gi]
dimV/Vi.

We can rewrite (1.2.1) as

(1.2.2) n(`, ρ) = dimV/V0 + b(V ),

where b(V ) is the “wild invariant” of the G0-module V , cf. [44, Subsection 19.3].
These formulas imply that

1. n(`, ρ) is an integer ≥ 0;

2. n(`, ρ) = 0 if and only if G0 = {1}, i.e. if and only if ρ is unramified at `;

3. n(`, ρ) = dimV/V0 if and only if G1 = {1}, i.e. if and only if ρ is tamely ramified
at `.

It follows from (a) and (b) that we can define an integer N by the formula

(1.2.3) N =
∏
`6=p

`n(`,ρ).

We will call N the conductor of ρ; by construction, N is coprime to p.

1.3 Definition of the character ε and the class of k mod (p− 1)

The determinant of the representation ρ is a homomorphism

det ρ : GQ −→ F×p .

Its image is a finite cyclic subgroup of F×p , of order coprime to p. We can therefore
think of det ρ as a character of GQ. The conductor of this character divides pN : this
can be seen, for instance, by comparing the formulas giving the conductors of ρ and
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of det ρ. We can therefore identify det ρ with a homomorphism from (Z/pNZ)× to F×p ,
or, equivalently, with a pair of homomorphisms

(1.3.1) ϕ : (Z/pZ)× −→ F×p

and

(1.3.2) ε : (Z/NZ)× −→ F×p .

As (Z/pZ)× is cyclic of order p− 1, the homomorphism ϕ is of the form

(1.3.3) x 7→ xh, with h ∈ Z/(p− 1)Z.

This can be rewritten as

(1.3.4) ϕ = χh,

where χ : GQ → F×p denotes the p-th cyclotomic character of GQ (the character that
gives the action of GQ on the p-th roots of unity).

We can summarize these formulas by saying that, if ` is a prime number not
dividing pN , and if Frob`,ρ is corresponding Frobenius element of G (defined up to
conjugation), we have

(1.3.5) det(Frob`,ρ) = `hε(`) in F×p .

In §2, we will define a certain integer k attached to ρ and we will see (in 2.5) that h
is simply the congruence class of k − 1 mod (p− 1), so that (1.3.5) can be rewritten
as:

(1.3.6) det(Frob`,ρ) = `k−1ε(`) in F×p .

Remark. Let c be the element of order 2 of GQ given by complex conjugation (relative
to an embedding of Q into C). The image of c in (Z/pNZ)× is −1. We conclude that

(1.3.7) det ρ(c) = (−1)k−1ε(−1).

In the rest of this paper, we will only consider the case where det ρ is odd, i.e.

(1.3.8) det ρ(c) = −1,

in other words

(1.3.9) ε(−1) = (−1)k in F×p .

If p = 2, this condition is automatically satisfied, since −1 = 1. If p 6= 2, the
condition means that ρ(c) is conjugate to the matrix

[
1 0
0 −1

]
.
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2 The integer k

The objective of this section is to define the integer k (the “weight”) attached to a
representation ρ. Subsections 2.1 to 2.4 contain the general definition; Subsections
2.5 to 2.9 give various examples.

2.1 Preliminaries

The integer k depends only on the restriction of the representation ρ to the decompo-
sition group at p (in fact, only on the inertia group). Therefore, in order to define it,
we will start with a representation “local at p”:

ρp : Gp −→ GL(V ) ∼= GL2(Fp),

where Gp = Gal(Qp/Qp).
We write I for the inertia group of Gp, and Ip for the largest pro-p-subgroup of I

(the wild inertia group). The quotient It = I/Ip is the tame inertia group of Gp; it is
identified with lim←−n F

×
pn , cf. [39, Proposition 2]. A character of It is said to have level

n if it factors through F×pn , and it does not factor through F×pm for any strict divisor m
of n.

If V ss denotes the semisimplification of V with respect to the action of Gp, the
group Ip acts trivially on V ss ([39, Proposition 4]), so that It acts on V ss. This action
of It is diagonalizable; it is given by two characters

ϕ,ϕ′ : It −→ F×p .

Proposition 1. The characters ϕ and ϕ′ giving the action of It on V ss have level 1

or 2. If they have level 2, then they are conjugate: we have ϕ′ = ϕp and ϕ = ϕ′p.

Proof. Let s be an element of Gp whose image in Gp/I = Gal(Fp/Fp) is the Frobenius
automorphism x 7→ xp. We check easily that, if u ∈ I, we have sus−1 ≡ up (mod Ip)):
conjugation by s acts on It = I/Ip via u 7→ up. It follows that the set {ϕ,ϕ′} is stable
under taking p-th power. There are then two cases:

1. we have ϕp = ϕ, ϕ′p = ϕ′ and the two characters ϕ and ϕ′ have level 1;

2. we have ϕp = ϕ′, ϕ′p = ϕ, ϕ 6= ϕ′, and the two characters ϕ and ϕ′ have level 2.

We now treat these two cases separately.
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2.2 Definition of k when ϕ and ϕ′ have level 2

Suppose that ϕ and ϕ′ have level 2. The representation V is then irreducible: if it
contains a stable one-dimensional subspace, then the action of It on this subspace
would be via a character that can be extended to Gp, hence of level 1. Let ψ and
ψ′ = ψp denote the two fundamental characters of level 2 of It ([39, Subsection
1.7]), in other words the two characters It → F×

p2
→ F×p corresponding to the two

embeddings of Fp2 into the field Fp. We can write ϕ uniquely as

(2.2.1) ϕ = ψa+pb = ψaψ′b, with 0 ≤ a, b ≤ p− 1.

We have b 6= a, since otherwise ϕ would equal (ψψ′)a = χa, where χ is the cyclotomic
character (or rather its restriction to I), which would contradict the assumption that
ϕ has level 2. Moreover, since ϕ′ is conjugate to ϕ, we have

(2.2.2) ϕ′ = ψbψ′a.

Interchanging ϕ and ϕ′ if necessary, we can therefore assume that

(2.2.3) 0 ≤ a < b ≤ p− 1.

Then the integer k attached to ρp is defined by:

(2.2.4) k = 1 + pa+ b.

Remarks

(1) The smallest possible value of k is k = 2, attained when a = 0, b = 1, that is when
ϕ and ϕ′ are equal to the fundamental characters ψ and ψ′ of level 2.

(2) In the particular case a = 0, we have (ϕ,ϕ′) = (ψb, ψ′b), with 1 ≤ b ≤ p− 1, and
the definition of k simplifies to

k = 1 + b (hence 2 ≤ k ≤ p).

The general case can be reduced to the case a = 0 by “twisting”. Indeed, we can
write ρp as

ρp = χa ⊗ ρ′p,

where χ is the cyclotomic character (viewed as a character of Gp, and not just of
I). The pair (a, b) attached to ρ′p is then (0, b− a), and the corresponding integer
k is k′ = 1 + b− a. We can therefore rewrite (2.2.4) as

(2.2.5) k = k′ + a(p+ 1).

(Compare this to the formula giving the filtration of the “twist” of a given modular
form, cf. [24], [40].)
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2.3 Definition of k when ϕ and ϕ′ have level 1, and Ip acts trivially

We suppose that the action of I on V is semisimple, and given by two characters
(ϕ,ϕ′) which are powers χa and χb of the cyclotomic character χ:

ρp|I =

(
χa 0

0 χb

)
The integers a and b are determined mod (p − 1). We normalize them so that

0 ≤ a, b ≤ p− 2. Moreover, by interchanging ϕ and ϕ′ if necessary, we may assume
that a ≤ b. We have then

(2.3.1) 0 ≤ a ≤ b ≤ p− 2.

The integer k is then defined by

(2.3.2) k =

{
1 + pa+ b if (a, b) 6= (0, 0)

p if (a, b) = (0, 0).

Remarks

(1) Once again, the smallest possible value of k is k = 2, corresponding to ϕ = 1,
ϕ′ = χ.

(2) The case (a, b) = (0, 0) corresponds to I acting trivially on V , in other words the
representation ρp being unramified. The general formula k = 1 + pa+ b would
give k = 1. Given that modular forms of weight 1 behave in an exceptional way,
I prefer to avoid them, and to “translate” k by p − 1; whence the value k = p

adopted here.

(3) When we twist ρp by the successive powers χ, χ2, . . . of the character χ, the
corresponding integers k form a Tate cycle, cf. [22], [21].

2.4 Definition of k when Ip does not act trivially

Suppose Ip does not act trivially, i.e. that the action of I is not tame. The elements of
V fixed by Ip form a line D, stable under Gp. The action of Gp on V/D (respectively
on D) is via a character θ1 (respectively θ2) of Gp:

(2.4.1) ρp =

(
θ2 ∗
0 θ1

)
We can write θ1 and θ2 uniquely as

(2.4.2) θ1 = χαε1, θ2 = χβε2, (α, β ∈ Z/(p− 1)Z),
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where ε1 and ε2 are unramified characters of Gp with values in F×p . The restriction of
ρp to I is therefore

ρp|I =

(
χβ ∗
0 χα

)
.

We normalize the exponents α and β by

(2.4.3) 0 ≤ α ≤ p− 2 and 1 ≤ β ≤ p− 1.

(Note that χα and χβ do not play symmetric roles here.) We set

(2.4.4) a = min{α, β} and b = max{α, β}.

In order to define k, we distinguish two cases:

(i) The case β 6= α+ 1 (i.e. χβ 6= χ · χα). We set then, as in Subsection 2.3:

(2.4.5) k = 1 + pa+ b.

(Note the case χα = χβ = 1, p ≥ 3, where (2.4.3) forces α = 0, β = p− 1, in such
a way that (2.4.5) gives k = p, as in (2.3.2).)

(ii) The case β = α+ 1 (i.e. χβ = χ · χα).

The definition of k then depends on the type of wild ramification. There are two
possible types, which I will call respectively peu ramifié and très ramifié. We
define them as follows:

Let K0 = Qp,nr be the maximal unramified extension of Qp; we have I =

Gal(Qp/K0). The group ρp(I) is the Galois group of a certain totally ramified
extension K of K0, and the wild inertia group ρp(Ip) is the Galois group of K/Kt,
where Kt is the largest tamely ramified extension of K0 contained in K.

K

Kt

K0

Since β = α+ 1, we deduce that Gal(Kt/K0) = (Z/pZ)×, so Kt = K0(z), where z
is a primitive p-th root of unity. On the other hand, the group Gal(K/Kt) = ρp(Ip)

is an elementary abelian group of type (p, . . . , p), representable as matrices by
[ 1 ∗0 1 ]. Moreover, the hypothesis β = α + 1 means that the conjugation action
of Gal(Kt/K0) = (Z/pZ)× on Gal(K/Kt) is the obvious action. Using Kummer
theory, we deduce that K can be written as

(2.4.6) K = Kt

(
x
1/p
1 , . . . , x1/pm

)
, where pm = [K : Kt],

8



the xi being elements of K×0 /K
×p
0 . If vp denotes the valuation of K0, normalized

so that vp(p) = 1, we will say that the extension K (or the representation ρp) is
peu ramifiée if

(2.4.7) vp(xi) ≡ 0 (mod p) for i = 1, . . . ,m,

i.e. if the xi can be chosen among the units of K0. Otherwise, we will say that
K and ρp are très ramifiées.

Remarks

(1) The très ramifié case is only possible if the characters ε1 and ε2 defined
by (2.4.2) are equal, in which case we have m = 1 or m = 2: this can be
seen by using the conjugation action of Gp on ρp(Ip).

(2) Let π be a uniformizer of Kt, for instance π = 1− z or π = p1/(p−1). If K/Kt

is peu ramifiée, the pm−1 characters of order p attached to this extension all
have conductor (π2); in the très ramifié case, pm − pm−1 of these characters
have conductor (πp+1) = (pπ2) and the other pm−1 − 1 have conductor (π2).

We can now define the integer k:

(ii1) The case β = α+ 1, peu ramifié

The formula is the same as in the case β 6= α+ 1:

(2.4.8) k = 1 + pa+ b = 2 + α(p+ 1).

(ii2) The case β = α+ 1, très ramifié

We add p− 1 (respectively 2 if p = 2) to the result of (2.4.8):

(2.4.9) k =

{
1 + pa+ b+ p− 1 = (α+ 1)(p+ 1) if p 6= 2

4 if p = 2.

The formulas (2.2.4), (2.3.2), (2.4.5), (2.4.8), (2.4.9) give the complete definition of
the integer k attached to the given representation ρp. Here are some properties that
follow from this definition.

2.5 Class of k mod (p− 1)

Proposition 2. We have

(2.5.1) det ρp|I = χk−1.

(Since χ has order p − 1, this formula show that the class of k mod (p − 1) is
determined by det ρp, more precisely by the restriction of det ρp to the inertia group
I.)
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Proof. We check (2.5.1) in the case of level 2 (cf. Subsection 2.2). We have then

det ρp|I = ϕ · ϕ′ = (ψaψ′b)(ψbψ′a) = (ψψ′)a+b = χa+b = χk−1,

as k − 1 = pa+ b ≡ a+ b mod (p− 1).
The other cases are analogous.

We can rewrite (2.5.1) as

(2.5.2) det ρp = εp · χk−1,

where εp is an unramified character of Gp with values in F×p . When ρp comes from a
global representation ρ of Gal(Q/Q), the character εp is just the p-component of the
character ε defined in Subsection 1.3; we have

(2.5.3) εp(Frobp) = ε(p),

where Frobp is the Frobenius element of Gp.

2.6 Values of k

If p 6= 2, the possible values of k are the integers in the interval [2, p2 − 1] that can be
written as

k = 1 + a0 + pa1, 0 ≤ a0, a1 ≤ p− 1,

with a1 ≤ a0 + 1. For instance, if p = 3, we have k = 2, 3, 4, 5, 6 or 8.
If p = 2, we have k = 2 if the action of Ip is trivial or peu ramifiée, and k = 4 if the

action of Ip is très ramifiée.

Example. Let p = 2. Let u : G2 → Z/2Z be a surjective homomorphism, and let
ρ2 : G2 → GL2(F2) be the representation given by

s 7→
(

1 u(s)

0 1

)
.

Let K/Q2 be the quadratic extension corresponding to the kernel of u. We have then

k = 2 if K/Q2 is unramified, i.e. K = Q2(
√

5);

k = 2 if disc(K/Q2) = (4), i.e. K = Q2(
√
−1) or Q2(

√
−5);

k = 4 if disc(K/Q2) = (8), i.e. K = Q2(
√

2), Q2(
√
−2), Q2(

√
10) or Q2(

√
−10).

2.7 Conditions that imply k ≤ p+ 1, when p 6= 2

Suppose p 6= 2. We have k ≤ p + 1 if and only if one of the following conditions is
satisfied:
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(2.7.1) There exists a quotient V/D of V , of dimension one, on which I acts trivially
(i.e. V has an étale quotient of dimension one); it is the case a = 0 of
Subsections 2.3 and 2.4.

(2.7.2) The action of I on V is given by two tame characters of the form (ψb, ψ′b),
with 1 ≤ b ≤ p − 1, where ψ and ψ′ are the two fundamental characters of
level 2 of It; it is the case a = 0 of Subsection 2.2.

Remarks

(1) We have k = p+ 1 if and only if the restriction of ρp to the inertia group I is of
the form [ χ ∗0 1 ] and is très ramifiée.

(2) Given any representation ρp, there exists a “twist” χm ⊗ ρp of ρp whose invariant
k is ≤ p+ 1 (compare to [42, Theorem 3]).

2.8 Conditions that imply k = 2

The following statement follows immediately from the definitions:

Proposition 3. The invariant k of ρp is equal to 2 if and only if ρp|I is of one of the
following types:

(2.8.1) ρp|I ∼=
(
ψ′ 0

0 ψ

)
,

where ψ,ψ′ : I → It → F×
p2

are the two fundamental characters of I of level 2; or

(2.8.2) ρp|I ∼=
(
χ 0

0 1

)
or

(
χ ∗
0 1

)
,

the action of the wild inertia group Ip being either trivial, or peu ramifiée.

We can given another characterization of this case, in terms of group schemes of
type (p, p). To state this, I will restrict to the case where ρp takes values in GL2(Fp),
therefore defines an (étale) group scheme of type (p, p) over the field Qp (in the
general case, we must talk about “Fq-vector space schemes” as in Raynaud [35]). We
can ask whether this group scheme extends to a finite flat group scheme over Zp,
cf. [35]; if so, I will say (cf. [48]) that the representation ρp is finite at p.

Proposition 4. We have k = 2 if and only if the following two conditions are satisfied:

(2.8.3) det ρp|I = χ;

(2.8.4) ρp is finite at p.
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Proof. According to Subsection 2.5, condition (2.8.3) is equivalent to:

(2.8.5) k ≡ 2 mod (p− 1).

The condition is therefore necessary so that k be equal to 2. Let’s show that it is
also sufficient when ρp is finite at p. According to [35, Corollary 3.4.4], each of the
characters ϕ and ϕ′ of It associated to ρp can be written as

ψnψ′n
′
, with 0 ≤ n, n′ ≤ 1,

where ψ and ψ′ are, as before, the two fundamental characters of level 2. This gives
four possibilities

1, ψ, ψ′ and ψψ′ = χ

(which can be reduced to three when p = 2 as χ is then 1). As ϕϕ′ = χ by (2.8.1),
only two possibilities remain:

(i) {ϕ,ϕ′} = {ψ,ψ′}

and
(ii) {ϕ,ϕ′} = {1, χ}.

The case (i) gives (2.8.1), whence k = 2, as stated. It remains to deal with the
case (ii); for simplicity, we will restrict to the case p 6= 2 (the case p = 2 is somewhat
different, but can be treated analogously). Let J be the finite flat group scheme over
Zp extending the scheme over Qp defined by ρp (according to [35, Proposition 3.3.2],
this scheme is unique). It follows from (ii) that ρp is reducible, and so is J . So we
have an exact sequence of finite flat group schemes over Zp:

(2.8.6) 0 −→ A −→ J −→ B −→ 0,

where A and B are finite flat group schemes of order p. Moreover, (ii) forces one
of these schemes to be étale, and the other one multiplicative. Therefore it exists a
finite étale extension R of Zp over which A or B becomes isomorphic to the constant
étale scheme Z/pZ, and B or A to the scheme µp of p-th roots of unity. Over R, the
exact sequence (2.8.6) becomes

0 −→ Z/pZ −→ J −→ µp −→ 0

or
0 −→ µp → J −→ Z/pZ −→ 0.

In the first case, it is easy to see that the extension J is split (use the connected
component of the identity), i.e. isomorphic over R to Z/pZ⊕ µp; whence (2.8.2), with
trivial action of Ip, which indeed implies that k = 2. In the second case, we note (by
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the Kummer exact sequence) that the class of the extension J is given by an element
u ∈ R×/R×p, therefore

ρp|I ∼
(
χ ∗
0 1

)
,

and the field K of Subsection 2.4 is equal to Kt(u
1/p); as u is a unit, the extension

K/Kt is either unramified or peu ramifiée, whence again k = 2 by (2.8.2). (The fact
that K/Kt is not très ramifiée can also be deduced from a general result of Fontaine,
cf. [15, Theorem 1].)

It remains to prove that k = 2 implies that ρp is finite at p. According to Proposition
3, we have to consider two cases:

1. the case where ρp|I is given by the two fundamental characters ψ and ψ′. This
case is treated in Raynaud [35, Theorem 2.4.3].

2. the case where ρp|I is of the form [ χ ∗0 1 ], with the action of Ip trivial or peu
ramifiée. We then perform a direct construction, based on the classification of
extensions of Z/pZ by µp, cf. above (a little more precisely, we start by replacing
Zp by a suitable finite étale extension R, we construct the extension in question
over R, then we descend to Zp).

2.9 Example of calculation of k: p-torsion points on a semistable
elliptic curve

Let E be an elliptic curve over Qp, with modular invariant jE , and let Ep be the group
of p-torsion points of E. The action of Gp on Ep defines a representation

ρp : Gp −→ Aut(Ep) ∼= GL2(Fp).

Since det ρp = χ, the invariant k attached to ρp satisfies

(2.9.1) k ≡ 2 mod (p− 1).

We will determine the value of k in the case where E is semistable, i.e. either has
good reduction, or has multiplicative reduction (cf. [39, Subsections 1.11 and 1.12]):

Proposition 5. (i) If E has good reduction, then k = 2.

(ii) If E has multiplicative reduction, then

k =

{
2 if vp(jE) is divisible by p

p+ 1 otherwise.

(Here, and in the following, we write vp for the p-adic valuation, normalized so that
vp(p) = 1.)
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Proof. If E has good reduction, ρp is clearly finite at p, and statement (i) follows from
Proposition 4.

If E has multiplicative bad reduction, we use the Tate model ([39, Subsection
1.12]). This shows that, after an unramified quadratic extension of Qp, we have an
exact sequence of Galois modules

0 −→ µp −→ E[p] −→ Z/pZ −→ 0

hence

ρp|I ∼=
(
χ ∗
0 1

)
.

Let qE be the element of Q×p defined by the identity

jE = q−1E + 744 + 196884qE + . . .

We note that the extension K/Kt from Subsection 2.4 is K = Kt(q
1/p
E ). This extension

is therefore très ramifiée if and only if vp(qE) is not divisible by p; since vp(qE) =

−vp(jE), we deduce (ii).

Remarks

(1) Suppose we are in case (ii) with k = 2, i.e. that E has multiplicative bad reduction
and vp(jE) is divisible by p. Let m = −vp(jE)/p and u = ppmjE, so that u is a
p-adic unit and qE is equal to the product of u−1 and the p-th power of an element
of Kt. We then have K = Kt(u

1/p) and we see that

a) if up−1 ≡ 1 (mod p2), we have K = Kt and ρp|I ∼=
[
χ 0
0 1

]
;

b) if up−1 6≡ 1 (mod p2), we have [K : Kt] = p and ρp|I ∼= [ χ ∗0 1 ].

Case (b) can indeed occur, contrary to what is stated in [6, Proposition 5.1.(3)(d)].

(2) Calculations analogous to those of Proposition 5 (but more complicated) are
possible when E has additive bad reduction. I will simply give the result in a
typical special case, that of p ≡ 1 (mod 3), with the minimal equation of E of the
form

y2 = x3 +Ax+B,

with vp(A) ≥ 1 and vp(B) = 1 (Néron type c1).

We then find

ρp|I ∼=
(
χβ 0

0 χα

)
or

(
χβ ∗
0 χα

)
,

with α = (p− 1)/6 and β = (5p+ 1)/6.

If p > 7, this implies that k = 1 + pα+β = 2 + (p− 1)(p+ 5)/6. However, for p = 7,
we can have either k = 2 + (p− 1)(p+ 5)/6 = 14, or k = 2, the latter occurring if
vp(A) ≥ 2.
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3 Statement of the conjecture

3.1 Review of cusp forms in characteristic p

Let

• N be an integer ≥ 1, coprime to p;

• k be an integer ≥ 2;

• ε be a character (Z/NZ)× → F×p .

Suppose that

(3.1.1)

{
(−1)k = ε(−1) if p 6= 2

k is even if p = 2.

We will use the notion of cusp form of type (N, k, ε) with coefficients in Fp. As
several definitions are possible (cf. [23] and [24] for instance), we better explain
what we mean:

Identify Q with a subfield of C, and choose a place of Q over p. If Z denotes the
ring of integers of Z, this choice of place defines a homomorphism Z→ Fp which we
denote z 7→ z̃. Finally denote

ε0 : (Z/NZ)× −→ Z×

the multiplicative lift of ε, i.e. the unique character with values in the prime-to-p
roots of unity such that

ε̃0(x) = ε(x) for all x ∈ (Z/NZ)×.

According to (3.1.1), we have ε0(−1) = (−1)k. We can therefore talk about cusp
forms of type (k, ε0) on Γ0(N), in the usual sense. Recall (cf. for instance [11]) that
such a form is a series

(3.1.2) F =
∑
n≥1

Anq
n (q = e2πiz),

which converges in the half-plane Im(z) > 0 and satisfies the two conditions:

1. F ((az+ b)/(cz+d)) = ε0(d)(cz+d)kF (z) for all
[
a b
c d

]
∈ Γ0(N) and all z ∈ C such

that Im(z) > 0;

2. F vanishes at the cusps, i.e. for all
[
a b
c d

]
∈ SL2(Z), the function

z 7→ (cz + d)−kF ((az + b)/(cz + d))

has a power series expansion of the type (3.1.2), with q replaced by q1/N .
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For short, we will say that such a form F is of type (N, k, ε0).
We can now define the analogous notion in characteristic p:

Definition. A cusp form of type (N, k, ε) with coefficients in Fp is a formal power
series

f =
∑
n≥1

anq
n, an ∈ Fp,

such that there exists a cusp form

F =

∞∑
n=1

Anq
n, An ∈ Z,

of type (N, k, ε0) in the sense discussed above, such that F̃ = f , i.w. that Ãn = an for
all n.

(Instead of assuming that the An belong to Z, we could just demand that they
belong to the local ring of the place of Q chosen at the start. This would not change
anything.)

We wrte S(N, k, ε) for the space of f of the type described above. This space has
the following properties:

(3.1.3) S(N, k, ε) does not depend on the choice of p-adic place of Q used to de-
fine it. Moreover, its dimension over Fp is equal to the dimension of the
corresponding space S(N, k, ε0) over C.

This follows from Shimura’s result [52, Theorem 3.52] (see also [11, Proposi-
tion 2.7]).

(3.1.4) S(N, k, ε) is stable under the action of the Hecke operators:

T` :
∑

anq
n 7→

∑
a`nq

n + ε(`)`k−1
∑

anq
`n (` - pN),

U` :
∑

anq
n 7→

∑
a`nq

n (` | pN).

For the T` and U` (` prime not equal to p), this follows from the similar
properties in characteristic zero. For Up, one observes that it is the reduction
(mod p) of the Hecke operator

Tp :
∑

anq
n 7→

∑
apnq

n + ε0(p)p
k−1

∑
anq

pn,

thanks to the hypothesis k ≥ 2.

(3.1.5) The Hecke operators commute. If

f =
∑

anq
n, f 6= 0,
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if an eigenfunction for these operators, we can multiply f by a nonzero scalar
so that a1 = 1. Once f has been normalized in this way, we have T`(f) = a`f

for ` - pN and U`(f) = a`f for ` | pN : the a` are the eigenvalues of T` and U`.
Moreover, the formal Dirichlet series

Lf (s) =
∑

ann
−s (with coefficients in Fp)

is given by the usual Euler product:

Lf (s) =
∏
`|pN

(1− a``−s)−1
∏
`-pN

(1− a``−s + ε(`)`k−1`−2s)−1.

In particular, f is determined by the a`.

(3.1.6) If f =
∑
anq

n is an eigenfunction of the Hecke operators normalized as above,
there exists a cusp form F =

∑
Anq

n of type (N, k, ε0) with coefficients in Z,
which is an eigenfunction for the T` (` - N ) and the U` (` | N ) and satisfies:

A1 = 1; F̃ = f.

Indeed, since the operators T` and U` commute, any system of eigenvalues for
these operators over Fp can be lifted to characteristic 0 (cf. for instance [11,
Lemma 6.11]). We conclude that there exists a cusp form F =

∑
Anq

n, of
type (N, k, ε0), an eigenfunction for the T` and the U`, normalized, and such
that Ã` = a` for any prime number `. It follows immediately that F̃ = f .

(Of course, F is not unique: two distinct eigenfunctions in characteristic 0

can have the same reduction to characteristic p.)

(3.1.7) Let f =
∑
anq

n be as above. According to a theorem of Deligne ([11, Theorem
6.7]), there exists a continuous semisimple representation

ρf : GQ −→ GL2(Fp)

characterized (up to conjugation) by the following property:

(D). For any prime number ` not dividing pN , the representation ρf is unram-
ified at `, and, if we write ρf (Frob`) for the corresponding Frobenius element
(defined up to conjugation), we have

(3.1.8) Trρf (Frob`) = a`

and

(3.1.9) det ρf (Frob`) = ε(`)`k−1.

Formula (3.1.9) can be rewritten with the notation of Subsection 1.3 as

(3.1.10) det ρf = εχk−1.
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Taking into account (3.1.1), this means that det ρf (c) = −1, in other words
thata det ρf is an odd character.

Remark. I assumed at the start that the level is coprime to p. In fact, this is not
necessary: all the stated results remain true in the general case. However, the
gained generality does not supply “mod p forms” that are genuinely new; indeed we
know that any cusp form with coefficients in Fp of level pmN is also of level N , at the
expense of increasing the weight. A typical example is that of forms of weight 2 and
level p, which are also of weight p+ 1 and level 1, cf. [41, Theorem 11].

3.2 The conjecture and some variants

Let us return to the notation of Section 1, and let

ρ : GQ −→ GL(V ) ∼= GL2(Fp)

be a continuous homomorphism, V being a two-dimensional vector space over Fp.
We assume that

(3.2.1) ρ is irreducible,

and

(3.2.2) det ρ is odd, cf. (1.3.8).

The conjecture then states that ρ is of type ρf as in (3.1.7). In other words:

(3.2.3?) There exists a cusp form f (of suitable type) with coefficients in Fp which
is an eigenform for the Hecke operators, and whose associated representation ρf is
isomorphic to the given representation ρ.

It is useful to make (3.2.3?) precise by giving the type (N, k, ε) of f :

(3.2.4?) The cusp form f of (3.2.3?) can be chosen to be of type (N, k, ε), where N ,
k and ε are the invariants of ρ defined in Sections 1 and 2.

If f =
∑
anq

n is normalized (a1 = 1), the fact that ρf is isomorphic to ρ translates
into the equalities

(3.2.5) Tr(Frob`,ρ) = a` and det(Frob`,ρ) = ε(`)`k−1,

which should hold for any prime number ` not dividing pN . (It is enough to have the
first equality of (3.2.5) hold for a set of ` of density 1.)

Insofar as the a` for ` dividing pN are concerned, we conjecture
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(3.2.6?) Suppose f =
∑
anq

n satisfies (3.2.3?) and (3.2.4?) and is normalized. Let `
be a prime divisor of pN . Then:

1. If a` 6= 0, there exists a line D in V stable under the decomposition group at
` (relative to a given `-adic place of Q) and such that the inertia group at `
acts trivially on V/D. (In other words, the restriction of ρ to the decomposition
group at ` has a one-dimensional étale quotient.)

Moreover, a` is equal to the eigenvalue of the Frobenius element at ` acting on
V/D.

2. If a` = 0, there are no lines in V with the properties stated in (a).

Remarks on (3.2.6?)

(1) If ` divides N , there exists at most one line D in V satisfying (a). Indeed, if there
are two such lines, ρ would be étale at `, and ` would not divide the conductor N .

We see then that, in this case, a` is completely determined by ρ.

[It is not hard to prove that D exists if and only if:

• either v`(N) = 1, v` being the `-adic valuation;

• or v`(N) = v`(cond(ε)), where cond(ε) denotes the conductor of the charac-
ter ε.

Moreover, if v`(N) = 1 and v`(cond(ε)) = 0, we can show that the eigenvalue λ of
the Frobenius element at ` acting on V/D is such that λ2 = εprim(`)`k−2, where
εprim is the primitive character defined by ε. According to (3.2.6?), we would then
have

a2` = εprim(`)`k−2,

which agrees perfectly with [27, Theorem 3(iii)].]

(2) If ` = p and ρ is ramified at p, the situation is the same as if ` divides N : the
line D is unique if it exists; the eigenvalue ap is completely determined. Hence
the uniqueness of the form f in this case; its coefficients belong to the field of
rationality of ρ, and generate this field over Fp.

(3) If ` = p and ρ is unramified at p (which means that k = p according to our
conventions, cf. Subsection 2.3), the situation is different. There are then two
possible values for ap, namely the two eigenvalues λ and µ of the Frobenius
element at p; we have λµ = ε(p). Of course, it is possible that λ = µ, in which
case ap is completely determined. If λ 6= µ, in all the cases I know, there are two
distinct cusp forms f such that ρf ∼= ρ, one with ap = λ and the other with ap = µ.
Note that λ and µ do not necessarily lies in the field of definition of ρ (which is
generated by the a` for ` 6= p): they could be quadratic over this field; we will see
such examples in Section 5.1.
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(4) If should be possible to make (3.2.6?) more precise by determining the action on
f of the Atkin-Lehner-Li operators W` (` | N ), [3]. The corresponding pseudo-
eigenvalues (in the sense of [3]) can undoubtedly be written in terms of the local
constants of ρ (Deligne [9, Section 6]).

Remarks on (3.2.4?)

(5) It is likely that N and k are minimal for ρ, in other words that, if ρ is isomorphic
to ρf ′ with f ′ of type (N ′, k′, ε′), N ′ coprime to p, k′ ≥ 2, then N ′ is a multiple of N
and k′ is ≥ k. In particular, if we write f as F̃ as in (3.1.6), F must be a newform
(cf. [11], [27]) of type (N, k, ε0).

(6) Instead of defining cusp forms with coefficients in Fp by reduction from charac-
teristic 0, as we have done, we could have used Katz’s definition [23], which leads
to a space that is a priori larger2, hence could give rise to more representations
ρf . It would be interesting to see if the additional representations obtained in
this way can be irreducible; I know no such example (for k ≥ 2), but, if this were
to happen, one should modify (3.2.4?) and (3.2.6?). It would also be interesting
to study from this point of view the case k = 1, which we have so far excluded;
maybe Katz’s definition then gives rise to many more representations ρf?

3.3 Example k = 2

We apply the conjectures of the previous subsection to a representation

ρ : GQ −→ GL2(Fp)

satisfying:

1. det ρ = χ;

2. ρ is absolutely irreducible (i.e. irreducible over Fp);

3. ρ is finite at p, in the sense of Subsection 2.8.

[When p 6= 2, we can replace (b) by the following condition, which seems a priori
weaker:

(b′) ρ is irreducible (over Fp).

Indeed, (a) implies that det ρ is odd, so that the eigenvalues of ρ(c) are +1 and −1;
since p 6= 2, these eigenvalues are distinct. Suppose that ρ decomposes over Fp into
a direct sum of two one-dimensional representations; this decomposition would then

2Katz’s definition has the following pleasant property: any form of weight k is also of weight k + p− 1.
With the definition we have adopted, this is true for p ≥ 5, but false for p = 2 or 3.
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have to be the one given by the eigenvalues of ρ(c), and therefore rational over Fp,
contradicting (b′).]

Let N , k and ε be the invariants of ρ. According to Subsection 1.3, we have ε = 1,
and then Proposition 4 of Subsection 2.8 tells us that k = 2. Conjecture (3.2.4?) then
gives:

(3.3.1?) There exists a cusp form of weight 2 and level N , with coefficients in Fp,
which is an eigenfunction of the Hecke operators and whose associated representa-
tion ρf is isomorphic to ρ.

According to (3.2.6?), this cusp form has coefficients in Fp, except maybe in the
case when ρ is unramified at p (which can only occur if p = 2).

We can restate (3.3.1?) in terms of the Jacobian J0(N) of the modular curve X0(N)

associated with the group Γ0(N):

(3.3.2?) The representation ρ occurs as a Jordan-Hölder quotient of the representa-
tion of GQ on the p-torsion points of J0(N).

3.4 Questions

We give two questions, one for pessimists, the other for optimists:

(1) How could one construct counter-examples to the conjectures of Subsection 3.2?
I have made many attempts in this direction. They have all failed, as we will see
in Section 5.

(2) Can we reformulate these conjectures in the framework of a theory of representa-
tions (mod p) of adelic groups? In other words, is there a “Langlands philosophy
modulo p”, as Ash and Stevens ask in [2]? If so, this might allow us to:

• give a more natural definition of the weight k attached to ρ;

• replace GL2 by GLN , or even by a reductive group;

• replace Q by other global fields.

4 Applications

These applications include:

• Fermat’s equation and its variants (Sections 4.1 to 4.3);

• the discriminants of semi-stable elliptic curves (Section 4.4);

• the structure of group schemes of type (p, p) over Z (Section 4.5);
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• the Taniyama-Weil conjecture, and its extension to abelian varieties with real
multiplication (Sections 4.6 and 4.7);

• the cohomology of smooth projective varieties over Q with Betti number 2 in
odd dimension (Section 4.8).

Except for the latter, these applications only use the conjecture (3.2.4?) in the case
ε = 1, k = 2, cf. Section 3.3.

4.1 Review of certain elliptic curves over Q

Let A,B,C be three non-zero integers, pairwise coprime, and such that

A+B + C = 0.

Let us choose integers x1, x2, x3 such that

x1 − x2 = A, x2 − x3 = B, x3 − x1 = C.

The elliptic curve with equation

y2 = (x− x1)(x− x2)(x− x3)

is independent of the choice of xi (up to isomorphism). To make things precise, we
will take x1 = A, x2 = 0, x3 = −B, so that the above equation can be written

(4.1.1) y2 = x(x−A)(x+B).

We denote the curve thus defined by EA,B,C , or simply E.

Remark. A permutation of A,B,C of signature 1 (resp. −1), does not change E (resp.
replaces E by its “twist” by the quadratic extension Q(

√
−1)/Q).

Let us now give some properties of bad reduction of E (cf. Frey [17]).

(4.1.2) Bad reduction at ` 6= 2. Let ` be a prime number 6= 2. The curve E has
bad reduction at ` if and only if ` divides ABC, and this bad reduction is then of
multiplicative type.

This follows immediately from (4.1.1). We also note that this equation provides a
minimal model of E at `, cf. Tate [4, p. 47].

(4.1.3) Bad reduction at 2. We shall confine ourselves to the case:

(4.1.4) A ≡ −1 (mod 4) and B ≡ 0 (mod 32).

By the change of variables

x = 4X, y = 8Y + 4X,
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we transform (4.1.1) into the equation

(4.1.5) Y 2 +XY = X3 + cX2 + dX, with c = (B − 1−A)/4, d = −AB/16,

whose reduction (mod 2) is:

Y 2 +XY =

{
X3 if A ≡ 7 (mod 8)

X3 +X2 if A ≡ 3 (mod 8).

We thus obtain a cubic on F2 with a double point at (0, 0) having distinct tangents
(these tangents being rational over F2 if and only if A ≡ 7 (mod 8)). It follows that
E has bad reduction of multiplicative type at 2 (Tate, loc. cit.) and that (4.1.5) is a
minimal equation at 2, hence also over Spec(Z) according to what we have just seen.
The corresponding discriminant ∆ is:

(4.1.6) ∆ = 2−8A2B2C2.

Thus E has everywhere either good reduction or bad reduction of multiplicative
type: it is a semi-stable curve. Its conductor is given by:

(4.1.7) cond(E) = rad(ABC),

where rad(X) designates the product of the primes dividing X (i.e. the largest
square-free divisor of X).

The modular invariant jE of E is:

(4.1.8) jE = 28(C2 −AB)3/A2B2C2.

If ` divides ABC, we have:

(4.1.9) v`(jE) = −v`(∆) =

{
−2v`(ABC) if ` 6= 2

8− 2v`(ABC) if ` = 2.

p-torsion points of E. Let p be a prime number ≥ 5. We will focus on the represen-
tation

ρEp : GQ −→ GL2(Fp)

given by the p-torsion points of E.
First we have:

Proposition 6. The representation ρEp is irreducible.

(As its determinant is equal to the cyclotomic character χ, the representation is
even absolutely irreducible, cf. Section 3.3.).
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Proof. Suppose that ρEp is reducible, i.e. that E contains a subgroup X of order p
which is Q-rational. Since E is semi-stable, the action of GQ on X is either via the
trivial character or via the character χ ([39, p. 307]). In the first case, E has a
Q-rational point of order p; as the points of order 2 of E are also Q-rational, the order
of the torsion group of E(Q) is ≥ 4p ≥ 20, which contradicts a theorem of Mazur ([28,
Theorem 8]). In the second case, the curve E′ = E/X has a Q-rational point of order
p, and one applies the same argument as above.

Remark. Instead of using Theorem 8 of [28], we could have employed more general
results of Mazur [29].

We will now determine the invariants (N, k, ε) attached to ρEp :

(4.1.10) As det ρEp = χ, we have ε = 1.

(4.1.11) We have k = 2 if vp(∆) is divisible by p (i.e. if vp(ABC) is divisible by p),
and k = p + 1 otherwise. This follows from Proposition 5 of Section 2.9, using the
fact that E is semi-stable.

(4.1.12) The conductor N of ρEp is equal to the product of the primes ` 6= p such
that v`(∆) is not divisible by p. This is a general property of semi-stable curves, which
can be checked immediately on the Tate models “Gm/q

Z”.

Remark. Given (4.1.6), the condition “v`(∆) is not divisible by p” is equivalent to:

(4.1.13) v`(ABC) 6≡

{
0 (mod p) if ` 6= 2

4 (mod p) if ` = 2.

4.2 Fermat’s theorem

Let p be a prime number ≥ 5.

Theorem 1. Assume (3.3.1?). Then the equation

ap + bp + cp = 0

has no solution with a, b, c ∈ Z and abc 6= 0.

Proof. Let (a, b, c) be such a solution. After homothety and permutation, we may
assume that a, b and c are coprime, and b ≡ 0 (mod 2), a ≡ −1 (mod 4). If we set

A = ap, B = bp, C = cp,

the conditions (4.1.2) of Section 4.1 are met. Let E = EA,B,C be the corresponding
elliptic curve, and let ρEp be the representation of GQ given by its p-torsion points. By
construction, we have

v`(ABC) ≡ 0 (mod p) for all primes `.
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It follows, using (4.1.11) and (4.1.13), that the invariants k and N attached to ρEp are
equal to 2. Moreover ρEp is irreducible (Proposition 6). Conjecture (3.3.1?) then says
that ρEp is isomorphic to the representation ρf attached to a normalized cusp form f

of weight 2 and level 2 with coefficients in Fp. But such a form does not exist: the
modular curve X0(2) has genus 0. Hence the theorem.

Remark. The relationship between “solutions of the Fermat equation” and “p-torsion
points on certain elliptic curves” appears already in work of Hurwitz ([20]) from
1886.

Since then, it has been used by various authors, including Hellegouarch [19],
Vélu [54] and Frey [16], [17]. The method followed here is taken from Frey [17].

4.3 Variants of Fermat’s theorem

Let p be a prime number ≥ 11.

Theorem 2. Assume (3.3.1?). Let L be a prime number 6= p belonging to the set

S = {3, 5, 7, 11, 13, 17, 19, 23, 29, 53, 59},

and let α be an integer ≥ 0. Then the equation

(4.3.1) ap + bp + Lαcp = 0

has no solutions with a, b, c ∈ Z and abc 6= 0.

Proof. We proceed as in Theorem 1. First of all, we can obviously assume that
0 < α < p. Let (a, b, c) be a solution of the equation (4.3.1), with a, b, c pairwise
coprime. Let A,B,C be the three integers ap, bp, Lαcp (which are easily seen to be
pairwise coprime), rearranged so that B is even (hence divisible by 2p and a fortiori
by 32) and A ≡ −1 (mod 4). We consider the representation ρEp attached to the
elliptic curve E = EA,B,C . By (4.1.11) and (4.1.13) the invariants k and N of this
representation are k = 2 and N = 2L (note that L was assumed to be distinct from
p). By (3.3.1?), there is a cusp form

f = q + a2(f)q2 + · · ·+ an(f)qn + . . .

with coefficients in Fp, of weight 2 and level 2L, which is an eigenfunction of the
Hecke operators, and such that the associated representation ρf is isomorphic to ρEp .
We will show that this is impossible. This is clear for L = 3, 5 since no such f exist in
this case: the modular curves X0(6) and X0(10) have genus 0. We assume therefore
that L ≥ 7.

Lemma 1. (a) The form f is the reduction to characteristic p of a primitive form F

of level 2L in characteristic 0.
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(b) We have a3(f) = 0 or ±4.

(c) We have a5(f) = ±2 or ±6.

Proof. By (3.1.6) we have f = F̃ , where F is a cusp form of weight 2 and level
2L, with coefficients in Z, and which is a normalized eigenfunction of the Hecke
operators. If F were not primitive, it would arise in level L and the representation ρf
would be unramified at 2. But ρEp is ramified at 2, since its conductor is 2L. Part (a)
follows.

To prove (b) we distinguish two cases:

(1) The curve E has good reduction at 3, i.e. ABC 6≡ 0 (mod 3).

Let Ẽ be the reduction of E at 3. It is an elliptic curve over F3 whose points of
order 2 are rational. The number of rational points of Ẽ is therefore a multiple of
4. As this number is between 1 + 3− 2

√
3 and 1 + 3 + 2

√
3, it is equal to 4. This

means that the trace of the Frobenius endomorphism of Ẽ is 0. Hence a3(f) = 0

(in F3) by (3.1.8).

(2) The curve E has bad reduction at 3.

We have seen that this bad reduction is multiplicative. If it is split (i.e. if over Q3,
E is isomorphic to a Tate curve), the GQ3-module Ep is an extension of Z/pZ by
µp; the eigenvalues of the Frobenius endomorphism at 3 are then 1 and 3; their
sum is 4. Hence a3(f) = 4 in this case. When the reduction is not split, there is a
quadratic “twist”, and we get a3(f) = −4.

The proof of (c) is analogous to the one of (b): we find that a5(f) = ±2 when E has
good reduction at 5, and a5(f) = ±6 otherwise.

Lemma 2. Let L ∈ S with L ≥ 7 and let

F = q +A2q
2 + · · ·+Anq

n + . . . , An ∈ Z,

a normalized primitive form of weight 2 and level 2L. We then have

A3 = ±1,±2 or ± 3 if L 6= 23

and
A5 = 4 if L = 23.

Proof. This can be verified case-by-case:

L 7 13 17 19 29 53 59

values of A3 −2 1, −3 −2 1, −1 −1, −3 1, −1, 2, −2 −1, −1, 2, 2

(L = 11 is missing from this table since there are no primitive forms of weight 2 for
level 22.)
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We can now finish the proof of Theorem 2. For L = 23, comparing Lemmas 1 and 2
shows that we have

±2 or ± 6 ≡ 4 (mod p),

which is impossible for p ≥ 7. Similarly, if L 6= 23, L ∈ S and L ≥ 7, we have

0 or ± 4 ≡ ±1,±2 or ± 3 (mod p),

which is impossible for p ≥ 11.

Remarks

(1) The hypothesis p 6= L is not essential; it was only used to ensure that the weight
k is 2, which allowed us to apply (3.3.1?). If p = L, we have k = p+ 1, N = 2, and
the arguments go through if we assume the validity of (3.2.4?) for k = p+ 1 as
well as for k = 2.

(2) It is possible that Theorem 2 remains true for p = 5 and p = 7. The question could
be treated, without using conjectures, by traditional methods of factorization and
descent (cf. for example Dénes [12]).

(3) The smallest value of L that does not appear in the set S of Theorem 2 is L = 31

(which is a Mersenne number–cf. above). For this value, the described method
leads to a representation ρEp that could, for instance, be isomorphic to the one
attached to the following primitive form F of level 62:

F = q + q2 + q4 − 2q5 + q8 + . . .

I do not see how to get to a contradiction from here, especially since the equation
a5 + b5 + 31c5 = 0 has indeed the solution (1,−2, 1); this solution leads to the
curve E of equation y2 = x(x + 1)(x − 32), which is a Weil curve of level 62

corresponding to F .

I also do not see how to attack the equations

ap + bp + 15cp = 0 and ap + 3bp + 5cp = 0,

for which the conductor N is 30.

(4) If we fix L, we can ask what happens for p sufficiently large. In this direction,
Mazur has pointed out the following result:

Assume (3.3.1?). Let L be a prime number 6= 2 that is neither a Fermat number
nor a Mersenne number (i.e. L cannot be written in the form 2n ± 1). There
exists a constant CL such that, if p ≥ CL and α ≥ 0, the equation

ap + bp + Lαcp = 0

27



has no solutions with a, b, c ∈ Z and abc 6= 0.

The demonstration is similar to that of Theorem 2; the hypothesis on L is used to
show that there is no elliptic curve of conductor 2L whose three points of order 2

are rational over Q.

4.4 Discriminants of semistable elliptic curves

Conjecture (3.3.1?) would allow a positive answer to questions of Brumer-Kramer ([6,
Section 9]):

Proposition 7. Assume (3.3.1?). Let E be a semi-stable elliptic curve over Q, and let
∆ be the discriminant of its minimal model. Suppose that |∆| is a p-th power. Then E
has a Q-rational subgroup of order p, and p ≤ 7.

Proof. For p = 2, we note that the extension of Q generated by the points of order 2 of
E is unramified outside of 2; its Galois group is then neither S3 nor A3, and this shows
that one of these points is Q-rational. For p = 3, 5, 7, we use an analogous argument
(cf. [6, Proposition 9.2]). It remains to show that the case p > 7 is impossible. If p > 7,
the representation ρEp is irreducible (Mazur [29, Theorem 4]). On the other hand,
the hypotheses on E imply that the invariants (N, k, ε) of ρEp are equal to (1, 2, 1).
According to (3.3.1?), ρ

E
p would come from a normalized cusp form of weight 2 and

level 1. We get a contradiction: such a form does not exist.

Proposition 8. Assume (3.3.1?). Let E be an elliptic curve over Q whose conductor
is a prime number P . Let ∆ = ±Pm be the discriminant of the minimal model of E.
We then have m = 1, except if E is a Setzer-Neumann curve, or if P = 11, 17, 19 or 37.

Proof. Suppose m > 1. Then there exists a prime number p dividing m, and we can
apply Proposition 7. We conclude therefore that p ≤ 7. If p = 2, E has a rational point
of order 2, and it is a Setzer-Neumann curve ([33], [50]) unless P is equal to 17. If
p = 3, 5 or 7, there exists a curve that is Q-isogenous to E and has a rational point of
order p ([39, p. 307]); according to Miyawaki [32], this is impossible for p = 7 and
this implies that P = 11 for p = 5, and P = 19 or 37 for p = 3.

4.5 Group schemes of type (p, p) over Z

Let p be a prime number ≥ 3.

Theorem 3. Assume (3.3.1?). Any finite flat group scheme of type (p, p) over Z is
then isomorphic to one of the following three:

Z/pZ⊕ Z/pZ, Z/pZ⊕ µp, µp ⊕ µp.
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Let J be a finite flat group scheme of type (p, p) over Z. We know that J is étale
over Spec(Z)− {p}, hence defines a representation

ρ : GQ −→ GL2(Fp)

which is unramified outside p. As p 6= 2, knowing ρ determines J (Raynaud [35,
Proposition 3.3.2]).

Lemma 3. If ρ is reducible, J is isomorphic to Z/pZ⊕ Z/pZ, Z/pZ⊕ µp or µp ⊕ µp.

Proof. The reducibility of ρ is equivalent to the existence of an exact sequence

0 −→ A −→ J −→ B −→ 0,

where A and B are finite flat group scheme of order p over Z. According to Oort-
Tate [34], A and B are isomorphic to either Z/pZ or µp. The lemma then follows from
the fact that any extension of B by A is split (Fontaine [15, Section 3.4.3]).

Lemma 4. If ρ is irreducible, we have det ρ = χ.

Proof. The character det ρ : GQ → F×p is unramified outside p, hence of the form χi,
with 0 ≤ i ≤ p− 2. Raynaud’s local results [35] (cf. Section 2.8, proof of Proposition
4) show that the only possibilities for i are i = 0, 1 and 2. Moreover (loc. cit.) the case
i = 0 is only possible if J is étale at p, in which case ρ is everywhere unramified, hence
ρ = 1 by Minkowski, contradicting the hypothesis that ρ is irreducible. Similarly,
i = 2 is only possible if the dual of J is étale at p, leading to a contradiction by the
same argument. We are left with i = 1, hence the lemma.

Proof of Theorem 3. Theorem 3 now follows immediately. Indeed, if ρ is reducible,
we apply Lemma 3. If ρ is irreducible, Lemma 4 together with Proposition 4 of
Section 2.8 show that the invariants (N, k, ε) attached to ρ are (1, 2, 1); we get a
contradiction with (3.3.1?) by the argument employed in the proof of Proposition
7.

Remarks

(1) For p = 3, 5, 7, 11, 13 or 17, Fontaine [15] proved (without using any conjecture)
a result more general than Theorem 3: any finite flat group scheme of type
(p, . . . , p) over Z is a direct sum of copies of Z/pZ and µp.

(2) Theorem 3 does not extend to the case p = 2: apart from Z/2Z⊕Z/2Z, Z/2Z⊕µ2
and µ2 ⊕ µ2, there is a fourth possibility, namely a certain non-split extension of
Z/2Z⊕ µ2. The corresponding representation ρ can be written as

ρ =

(
1 u

0 1

)
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where u : GQ → Z/2Z is the homomorphism with kernel Gal(Q/Q(i)). This group
scheme of type (2, 2) can be obtained as the 2-torsion group of the elliptic curve

y2 + xy + y = x3 − x2 − x− 14,

of conductor 17 and discriminant −174.

4.6 The Taniyama-Weil conjecture

Let E be an elliptic curve over Q, let jE be its modular invariant, and let N be its
conductor.

Theorem 4. Assume (3.3.1?). Then E is a Weil curve of level N .

(In particular, E is isomorphic to a quotient of the Jacobian J0(N) of the modular
curve X0(N).)

Proof. For any prime number p, write ρEp : GQ → GL2(Fp) for the representation of
GQ given by the p-torsion points of E. We have

(4.6.1) det ρEp = χ.

Moreover:

Lemma 5. There exists a constant CE such that, for all p ≥ CE , we have:

(4.6.2) ρEp is irreducible;

(4.6.3) the conductor of ρEp is N .

Proof. This is a well-known result. Indeed, according to Mazur [29], (4.6.2) holds as
soon as p > 163. On the other hand the definition of the conductor of E in terms of
`-adic representations (cf. [18], [38], [49]) shows that the conductor Np of ρEp divides
N (which is in fact sufficient for our purposes). Moreover, if p ≥ 5, we check that
Np = N if and only if p satisfies the following two conditions:

1. p does not divide N ;

2. for any ` such that v`(N) = 1, p does not divide v`(jE).

(Note, regarding (b), that the hypothesis v`(N) = 1 means that E has bad
multiplicative reduction at `, and hence we have v`(jE) < 0.)
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Let’s restrict to those prime numbers p ≥ CE. According to (3.3.1?), ρ
E
p is iso-

morphic to the representation ρfp attached to a cusp form of weight 2 and level
N

fp =
∑

an,pq
n,

with coefficients in Fp, which is a normalized eigenform for the Hecke operators.
According to (3.1.6), fp lifts to characteristic 0: there exists a cusp form of weight

2 and level N
F =

∑
Anq

n,

with coefficients in Z, which is a normalized Hecke eigenform and such that F̃ = fp.
A priori, F depends on p. But there are only finitely many possible such F , since the
weight and the level are fixed. We conclude that there exists a choice of F such that

F̃ = fp

for all p ∈ P , where P is an infinite set of prime numbers. Let then ` be a prime
not dividing N . The curve E has good reduction at `. Let a` be the trace of the
corresponding Frobenius endomorphism. We have

a` ≡ a`,p (mod p) for all p 6= `.

It follows that the image of the algebraic integer A` − a` in Fp is equal to 0 for all
p ∈ P , p 6= `. As P is infinite, this implies that

(4.6.4) A` = a` for all ` - N.

In particular, the A` belong to Z. They define a Weil curve EF whose level divides N ;
according to (4.6.2), the `-adic representation attached to E and EF are isomorphic,
and it is known (Faltings [13], [14]) that this forces E and EF to be isogenous over Q.
This proves Theorem 4.

Remarks

(1) Theorem 4 was suggested to me by P. Colmez at the Colloquium in Luminy, in
June 1986. Until then, I had not realized the full extent (both interesting and
worrisome) of the consequences of the conjectures from Section 3.

(2) The form F constructed in the above proof is a newform; this follows from a
theorem of Carayol [8].

(3) The method described here applies to other questions of the same type. Here is
one example, taken from [51]:

Let K = Q(
√
D) be a real quadratic field; let σ denote the involution of K. Let

E be an elliptic curve over K, let Eσ be its conjugate, and let λ : E → Eσ be

31



an isogeny such that λσ ◦ λ = −c, where c is an integer > 0. Shimura asks the
following question ([51, p. 184]): is it true that E comes (via the construction
given in [51]) from a newform of type (N, 2, ε), where N is an appropriate integer,
and ε is the quadratic character attached to K? We can show that the answer is
“yes” if we assume Conjecture (3.2.4?). The proof is analogous to that of Theorem
4 (we work with a system of `-adic representations which is rational over Q(

√
−c),

and whose determinant is the product of ε and the cyclotomic character).

For other examples, see Sections 4.7 and 4.8.

4.7 Abelian varieties with real multiplication

Let X be an abelian variety over Q of dimension n ≥ 1. We say that X has real
multiplication (cf. Ribet [36]) if the Q-algebra KX = Q ⊗ EndQ(X) is a totally real
number field of degree n. It is known that such varieties appear when we decompose
the Jacobians J0(N) under the action of the Hecke operators, cf. Shimura [52, Section
7.5]. te Conversely:

Theorem 5. Assume (3.3.1?). Then any n-dimensional abelian variety X over Q with
real multiplication is isomorphic to a quotient of J0(N), where N is the n-th root of
the conductor of X.

The proof is analogous to that of Theorem 4 (which we recover when n = 1). I will
simply give a sketch. First of all:

(4.7.1) The abelian variety X defines a “system of λ-adic representations” of GQ
of degree 2 and rational over KX ; the determinant of this system is the cyclotomic
character.

This is explained in Ribet [36].
If X has good reduction at `, we write a` for the trace of the corresponding

endomorphism (in the above λ-adic system); it is an integer in the field KX .
(4.7.2) The conductor of X is of the form Nn, with N an integer ≥ 1.
The definition of the conductor given in [18, Exposé IX, Section 4] (see also [38, nr.

2.1]) involves certain local characters of degree 2n, with values in Q. We observe (as
for (4.7.1) above) that these characters can be written as sums of n conjugates of
characters of degree 2 with values in KX . The claim (4.7.2) follows easily from this.

We now fix an embedding of KX into Q. For any prime number p, we chose in
Section 3.1 a p-adic place of Q, hence we get a place λp of KX . If we assume that
p is totally split in KX , the residue field of λp is Fp; by reduction (mod λp), the
corresponding λp-adic representation defines a representation

ρXp : GQ −→ GL2(Fp).

The representations ρXp satisfy the following properties:

(4.7.1) det ρXp = χ.
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This follows from (4.7.1).
(4.7.4) If p is sufficiently large, then ρXp is irreducible.
This follows from a theorem of Faltings [14, p. 204], and can also be seen by an

elementary argument, analogous to the one we will use in the next section to prove
Theorem 6.

(4.7.5) If p is sufficiently large, then the conductor of ρXp is N .
This can be verified using the properties of Néron models described in [18, Exposé

X, Section 4]. (The fact that the conductor of ρXp divides N is much easier to prove,
and will suffice us.)

(4.7.6) If p is sufficiently large, then the invariant k of ρXp is 2.
This follows from Proposition 4 of Section 2.8.
Once (4.7.3),. . . ,(4.7.6) are established, we can apply (3.3.1?). Therefore, for any

sufficiently large p that is totally split in KX , there is a cusp form of weight 2 and
level N :

fp =
∑

an,pq
n,

with coefficients in Fp, which is a normalized eigenfunction of the Hecke operators,
and such that ρXp ∼= ρfp ; in particular

a`,p = ã` for all ` - N, ` 6= p.

By lifting fp to characteristic zero via (3.1.6) we obtain a cusp form of weight 2 and
level N :

F =
∑

Anq
n,

with coefficients in Z, which is a normalized eigenfunction of the Hecke operators,
and such that F̃ = fp for all p ∈ P , where P is an infinite set of prime numbers that
are totally split in KX . If ` - N , we have then

Ã` = a`,p = ã` for all p ∈ P, p 6= `,

hence A` = a` since P is infinite. The systems of λ-adic representations defined by X
and by F are therefore isomorphic. The theorem follows from Faltings [13].

Remark. Here also, F is primitive, cf. Carayol [8].

4.8 Projective varieties with Betti number 2 in odd dimension

Let:
X be a smooth projective variety over Q;
XC = X(C) the complex manifold defined by X;
m an odd integer ≥ 1;
Hm(XC,C) the m-th cohomology group of XC with complex coefficients.

We make the following two assumptions:
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(4.8.1) dimHm(XC,C) = 2 (i.e. the m-th Betti number of XC is 2);
(4.8.2) The Hodge decomposition of Hm(XC,C) is of type (m, 0) + (0,m).

Let us choose a finite set S of primes that is sufficiently large so that X has good
reduction outside S. If ` /∈ S, we can define a reduction modulo ` of X, which
is a smooth variety X̃` over F`. Let π` and π′` the eigenvalues of the Frobenius
endomorphism of X̃`, acting on the cohomology in degree m. According to Deligne,
π` and π′` are integers in a quadratic imaginary field, and we have

(4.8.1) π′` = π` and π`π` = `.

We set

(4.8.2) a`(X) = π` + π`.

We have a`(X) ∈ Z and |a`(X)| ≤ 2`m/2.
(Note that X̃` is not unique in general, as opposed to the case of abelian varieties.

However, any two choices of X̃` give the same a`(X), cf. [38, Section 1.2].)

Theorem 6. Assume (3.2.4?). There are then:

(a) an integer N ≥ 1 all of whose prime divisors belong to S,

(b) and a cusp form of type (N,m+ 1, 1):

F = q + · · ·+Anq
n + . . . ,

which is a normalized eigenfunction of the Hecke operators,

such that

(4.8.3) A` = a`(X) for all ` /∈ S.

(In other words, the a`(X) are the eigenvalues attached to a form of weight m+ 1

whose level only involves prime numbers in S.)
It is useful to restate Theorem 6 in terms of Galois representations.
Let X be the Q-variety obtained from X by extension of scalars from Q to Q, and

let Hm
et (X,Qp) be the m-th étale cohomology group of X with coefficients in Qp. We

write Hp for the Qp-dual of Hm
et (X,Qp). The group GQ acts on Hp. We obtain a

p-adic representation of GQ of dimension 2; its determinant is the m-th power of the
cyclotomic character GQ → Z×p . As p varies, these representations form a compatible
rational system of p-adic representations, where the traces of Frobenius elements
are the a`. (Note that these are the “arithmetic” Frobenius elements, rather than
the “geometric” ones, which explains why we work with the dual.) Theorem 6 is
equivalent to saying that this system of representations is isomorphic to the one
given by a cusp form of weight k = m+ 1.

34



Proof of Theorem 6. We reuse the method employed for Theorem 4. Write T for the
set of p such that either Hm

et (X,Zp) or Hm+1
et (X,Zp) has nonzero torsion; this T is a

finite set. If p /∈ T , we have dimHm
et (X,Fp) = 2; so the action of GQ on the dual of

Hm
et (X,Fp) defines a representation

ρp : GQ −→ GL2(Fp),

which is unramified outside S and p (it is a reduction modulo p of the representation
of GQ on Hp considered above; in particular, we have det ρp = χm). It is essential for
what follows to know the behavior of ρp at p, and more precisely, its invariant k in
the sense of Section 2. According to a theorem of J-M. Fontaine (proved using some
of his recent results obtained in collaboration with W. Messing), we have

(4.8.6) (Fontaine–unpublished). If p is sufficiently large, the invariant k of the
representation ρp is m+ 1.

(Here is where we use the hypothesis on the Hodge decomposition of Hm(XC,C).)
We now consider the conductor Np of ρp. It is clear that Np is of the form

Np =
∏
`∈S

`n(`,p) with n(`, p) ≥ 0.

We have to bound the exponents n(`, p), for fixed ` and varying p. Conjecture C3

of [38] implies that n(`, p) is bounded when ` varies (in fact, it is likely that for p
sufficiently large n(`, p) is equal to the exponent of the conductor defined in [38,
Formula (11)].) Since C3 has not been proved, we restrict ourselves to primes p
satisfying the following congruences:

(4.8.4)


p 6≡ ±1 (mod 23) if 2 ∈ S,
p 6≡ ±1 (mod 32) if 3 ∈ S,
p 6≡ ±1 (mod `) for all ` ∈ S, ` ≥ 5.

We can then bound n(`, p):
(4.8.8) If p satisfies (4.8.4) and ` ∈ S, ` 6= p, we have:

n(`, p) ≤ 9 for ` = 2,

n(`, p) ≤ 5 for ` = 3,

n(`, p) ≤ 2 for ` ≥ 5.

Indeed, let I`,p be the inertia subgroup at ` of ρp(GQ). As det ρp is not ramified
at `, I`,p is contained in SL2(Fp), and its cardinality divides p(p2 − 1). If ` ≥ 5,
hypothesis (4.8.4) implies that I`,p has cardinality coprime to `; the representation
ρp is tame at `, and from Section 1.2 we have n(`, p) ≤ 2. When ` = 3 (resp. ` = 2),
the Sylow `-subgroups of SL2(Fp) are cyclic of order 3 (resp. quaternionic of order 8);
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applying the bound on conductors in the Section 4.9 that follows, we conclude that
n(3, p) ≤ 5 (resp. n(2, p) ≤ 9).

We denote by P the set of primes p satisfying the conditions (4.8.6) and (4.8.7). It
is a infinite set.

(4.8.9) If p ∈ P is sufficiently large, then the representation ρp is irreducible.
Let P ′ be the set of p ∈ P such that ρp is reducible. If p ∈ P ′, the semisimplification

of ρp is given by two characters

α, β : GQ −→ F×p with αβ = χm.

It follows from (4.8.6) that one of these characters, say α, is unramified at p. The
conductor of α divides Np and we have

(4.8.5) a`(X) ≡ α(`) + α(`)−1`m (mod p)

for all ` /∈ S, ` 6= p.
Let α0 : (Z/NpZ)× → Z× be the multiplicative lift of α, cf. Section 3.1. According to

(4.8.8), Np has only finitely many possible values. There are therefore only finitely
many possibilities for α0. If P ′ were infinite, there would be an α0 that appears for
an infinite subset P ′′ of P ′. If ` /∈ S, set

b` = α0(`) + α0(`)
−1`m.

By (4.8.10), a`(X) and b` have the same image in Fp for all p ∈ P ′′, p 6= `. As P ′′ is
infinite, this implies

a`(X) = b` for all ` /∈ S,

hence
{π`, π′`} = {α0(`), α0(`)

−1`m},

which is absurd. This gives us (4.8.9).
By combining (4.8.6), (4.8.8), and (4.8.9), we can find an infinite set P1 or prime

numbers, and an integer N of the form
∏
`∈S `

n` , such that for all p ∈ P1 the repre-
sentation ρp has the following properties:

(a) ρp is irreducible with determinant χm;

(b) the conductor of ρp is N ;

(c) the invariant k of ρp is m+ 1.

As m is odd, (a) implies that ρp is absolutely irreducible if p ∈ P1, p 6= 2. We can
then apply (3.2.4?). Hence for all p ∈ P1, p 6= 2, there exists a cusp form of weight
k = m+ 1 and level N :

fp =
∑

an,pq
n,

with coefficients in Fp, which is a normalized eigenfunction of the Hecke operators,
and such that ρp ∼= ρfp . We conclude as in the proof of Theorem 4, by lifting fp to
characteristic 0, and observing that there are only finitely many possibilities.
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Remarks

(1) We find in Schoen [37] an example where conditions (4.8.1) and (4.8.2) are
satisfied, with m = dimX = 3, k = 4, S = {5}, N = 52. It is a variety X that
resolves the singularities of the hypersurface in P4 of equation

X5
0 +X5

1 +X5
2 +X5

3 +X5
4 − 5X0X1X2X3X4 = 0.

We can then find the cusp form F and prove the relation (4.8.5) without using
any conjectures: it is enough to apply Faltings’s method ([13, p. 362–363], see
also [47]) to the 2-adic representations defined by X and by F .

(2) As was noticed by S. Bloch [5], the conclusion of Theorem 6 can also be deduced
from the “archimedean” (rather than modulo p) conjectures on the L-functions
attached to motives (Deligne [10]), combined with Weil’s [55] characterization of
modular forms. From this point of view, hypothesis (4.8.2) insures that the factor
at infinity of the L-function is indeed (2π)−sΓ(s).

(3) If we remove hypothesis (4.8.2), the Hodge decomposition of Hm(XC,C) is of
type (m − r, r) + (r,m − r) with 0 ≤ r < m/2. Assuming (3.2.4?), we can prove
the existence of a normalized cusp form

F =
∑

Anq
n,

of weight m− 2r, such that a`(X) = `rA` for all ` /∈ S: the representation of GQ
on Hp is obtained from the one attached to F via an r-th “Tate twist”. The proof
is essentially the same.

4.9 An upper bound on conductors

Since the question is local, we use the following standard notations:
K is a field complete with respect to a discrete valuation;
vK : K× → Z is the normalized valuation of K;
K is the algebraic closure of K;
GK = Gal(K/K) is the Galois group of K over K.

We assume that K is of characteristic 0, and that its residue field is perfect of
characteristic p > 0. We denote

eK = vK(p)

the absolute ramification index of K.
(Beware of the change of notation: in the previous section, the residue characteris-

tic was denoted `.)
Let V be a finite-dimensional vector space over a field Ω of characteristic 6= p, and

let ρ : GK → GL(V ) be a continuous homomorphism. The exponent of the conductor
of ρ is an integer n(ρ) ≥ 0, which we define as in Section 1.2:
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if (Gi)i≥0 is the sequence of ramification groups of the finite group G = ρ(GK), we
have

(4.9.1) n(ρ) =
∑
i≥0

gi
g0

dim(V/Vi),

where gi is the cardinality of Gi, and Vi is the subspace of V fixed by Gi.
It is useful to rewrite this definition as

(4.9.2) n(ρ) = dim(V/V0) + b(ρ),

where
b(ρ) =

∑
i≥1

gi
g0

dim(V/Vi)

is the wild invariant of ρ ([44, Section 19.3]).
The upper bound we are aiming for is the following:

Proposition 9. Let pc be the cardinality of the wild inertia group G1, and let N be
the dimension of V over Ω. We have

(4.9.3) b(ρ) ≤ NeK
(
c+

1

p− 1

)
.

Moreover, if G1 is not cyclic, this inequality is strict.

Given (4.9.2), this implies:

Corollary 1. We have

(4.9.4) n(ρ) ≤ N(1 + eKc+ eK/(p− 1)),

where the inequality is strict if G1 is not cyclic.

Proof of Proposition 9. Let I be the largest index i ≥ 1 such that Gi 6= {1}. We bound
dimV/Vi above by N if i ≤ I, and by 0 if i > I. Hence

(4.9.5) b(ρ) ≤ N

g0
(g1 + · · ·+ gI) ≤

N

g0

I +
∑
i≥1

(gi − 1)

 .

By an elementary result on ramification groups ([45, p. 79, Exercise 3]), we have:

(4.9.6) I ≤ g0eK/(p− 1),

where the inequality is strict if G1 is not cyclic.
On the other hand, the integer

d =
∑
i≥0

(gi − 1)
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equals the valuation of the different of the extension L/K of Galois group G ([45, p.
72]). By a bound due to Hensel (reproduced in [45, p. 67]), we have

d ≤ g0 − 1 + g0eKc,

hence

(4.9.7)
∑
i≥1

(gi − 1) ≤ g0eKc.

By combining (4.9.5), (4.9.6), and (4.9.7), we obtain the desired inequality (4.9.3),
and we see that this inequality is strict if G1 is not cyclic.

Remark. When G1 is abelian of exponent ph, we can prove that

b(ρ) ≤ NeK
(
h+

1

p− 1

)
.

As h ≤ c, this improves (4.9.3).

Application to (4.8.8). In the situation of (4.8.8), there are two cases to consider:

(a) Residue characteristic 3. With the notation in Proposition 9 (which differ from
those in Section 4.8, as already mentioned), we have p = 3, N = 2, eK = 1 and
c ≤ 1, hence n(ρ) ≤ 5 by (4.9.4). This bound is optimal: there are elliptic curves
of conductor 35.

(b) Residue characteristic 2. We have p = 2, N = 2, eK = 1, and c ≤ 3, with G1 cyclic
if c = 3; hence n(ρ) ≤ 9 according to (4.9.4). In fact, a more detailed analysis
shows that n(ρ) ≤ 8, which is optimal: there are elliptic curves of conductor 28.

5 Examples

This section gathers a number of examples for which we can verify, at least partly,
the conjectures of Section 3. Most of the verifications required the use of a computer;
these were programmed and done by J-F. Mestre.

The considered values of p are:

• p = 2 (sections 5.1 and 5.2),

• p = 3 (sections 5.3 and 5.4),

• p = 7 (section 5.5).
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5.1 Examples coming from GL2(F2) ∼= S3

Let K be a nonabelian cubic field and let Kgal be its Galois closure. The group
Gal(Kgal/Q) is isomorphic to the symmetric group S3, which is in turn isomorphic to
GL2(F2). We obtain a representation

ρK : GQ −→ GL2(F2),

which is absolutely irreducible, and to which we can apply the conjectures of Section
3.

The invariants (N, k, ε) of ρK are easy to determine. If we write the discriminant D
of the field K as

D = ±2mN, with N odd > 0, and m = 0, 2 or 3,

we observe that

• the conductor of ρK is N ;

• the character ε is 1;

• the weight k of ρK is 2 (respectively 4) if m = 0, 2 (respectively if m = 3).

Conjecture (3.2.4?) predicts the existence of a cusp form f with coefficients in F2

(or in F4 if m = 0, i.e., if K is unramified at 2), of type (N, k, 1), which is a normalized
eigenvector for the Hecke operators, and such that ρK is isomorphic to ρf . The
following table lists the cases where this was verified by computer:

D < 0 k = weight N = level

−23 2 23

−31 2 31

−44 2 11

−59 2 59

−76 2 19

−104 4 13

D > 0 k = weight N = level

148 2 37

229 2 229

257 2 257

316 2 79

(In the cases D = −23, D = −31 and D = 257, the ideal (2) is inert in K, and
the eigenvalue of U2 is a primitive root of 1, i.e., an element of F4 − F2, according
to (3.2.6?). For the other values of D, the eigenvalue of U2 is 0 or 1, and all the
coefficients of f are in F2.)

In the general case, I only know how to prove a result that is weaker than (3.2.4?):

Proposition 10. There exists a form f of type (N, k′, 1), for a suitable k′, such that
ρK is isomorphic to ρf .
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(In particular, ρK satisfies (3.2.3?).)

Proof. We use the obvious embedding S3 → GL2(Z), which gives a representation

ρK0 : GQ −→ GL2(C),

which “lifts” ρK to characteristic 0. The determinant of ρK0 is the quadratic character

εD : GQ −→ S3
sgn−−→ {±1}

which corresponds to the field Q(
√
D). We then distinguish two cases:

(i) D < 0, i.e., K is a cubic imaginary field.

The character εD = det ρK0 is then odd. As the image of ρK0 is S3, which is a
dihedral group, we conclude (cf. [11], ]cite45) that ρK0 is the representation
attached to a cusp form F1 of weight 1, character εD and level |D|; we can
even write F explicitly in terms of theta functions of binary quadratic forms
of discriminant D. Let ED be the Eisenstein series of weight 1 and character
εD (which is also a theta function). The product F = F1 · ED is a cusp form of
weight 2, character 1 and level |D|. If f = F̃ is the mod 2 reduction of F , we
have f = F̃1, since ẼD = 1. The form f is then the desired form; indeed, by
construction f is of type (2mN, 2, 1), hence also of type (N, k′, 1) for a suitable
k′.

(It should be possible to make this proof more precise and obtain the exact value
of k′. I have only done this for m = 0, i.e., D = −N , where one obtains k′ = 2,
as expected.)

(ii) D > 0, i.e., K is a totally real cubic field.

The field Q(
√
D) is then a real quadratic field, and the representation ρK0 is

induced by a character ψ of order 3 of Q(
√
D). Choose an auxiliary character α

of Q(
√
D) with the following properties:

(111) the order of α is a power of 2;

(222) α has signatures + and − at the two infinite places of Q(
√
D);

(333) α is unramified at every finite place of Q(
√
D) of residual characteristic

6= 2.‘

(The existence of such a character is easy to prove.)

Let ρ′0 = Ind(ψα) be the representation of GQ induced by the character ψα of
the field Q(

√
D). According to (ii1), its reduction in characteristic 2 is isomorphic

to Ind(ψ) ∼= ρK . According to (ii2), its determinant is odd, and from (ii3) we know
that its conductor is of the form 2MN , with M an integer. We can then apply to
ρ′0 the argument used in case (i) for ρK0 : this representation is associated with
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a cusp form F ′ of weight 1 and level 2MN ; by reduction to characteristic 2, F ′

gives the desired form f . (Note that here F ′ is a linear combination of theta
functions of indefinite binary forms.)

Remark. The same kind of argument applies to any representation

ρp : GQ −→ GL2(Fp), p 6= 2,

of odd determinant, and such that the image of ρp(GQ) in PGL2(Fp) is a dihedral
group; in particular,the weak conjecture (3.2.3?) holds for such a representation.

5.2 Examples coming from SL2(F4) ∼= A5

Let K be a degree 5 field extension of Q whose Galois closure Kgal has Galois
group the alternating group A5. As A5 is isomorphic to SL2(F4), we get a surjective
homomorphism GQ → SL2(F4), hence an absolutely irreducible representation

ρK : GQ −→ GL2(F4)

with det ρK = 1.
Once again, we wish to verify the conjectures of Section 3 for ρK . As the conductor

N of ρK is often very large, the computations are only practical if N is a prime
number, and if the weight k is 2, as this allows us to apply the “graph method” ([30],
[31]). The following table indicates the different cases studied by Mestre; we wrote
D for the square root of the discriminant of K, with sign + if K is real and sign − if
K is imaginary.

D < 0 N = level

−2083 2083

−2707 2707

−3203 3203

−3547 3547

−4027 4027

D > 0 N = level

23887 887

8311 8311

228447 8447

13613 13613

2224077 24077

The examples with D < 0 are extracted from a table of J. Buhler [7, pp. 136–141];
those with D > 0 come from [31, Section 4.2].
Remarks

(1) In each of the cases considered, Mestre obtains a cusp form f with coefficients in
F4 (or, sometimes, in F16), of the desired type (N, 2, 1), which is an eigenform of
the Hecke operators U2, T3, T5, . . ., whose eigenvalues for the first three operators
are the correct ones. It is therefore likely that the representation ρf attached
to f is isomorphic to ρK ; however, a complete proof would require considerable
work, which has not been done.
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(2) The case D < 0 is not very surprising. Indeed, the representation ρK can be
lifted to characteristic 0, its image then being a certain central extension of A5

by a cyclic group of order a power of 2 (use an embedding of A5 into PGL2(C)

and apply the results of Tate appearing in [43, Section 6]). If D < 0, this
representation has odd determinant, and therefore comes from a cusp form F

of weight 1 (if we assume the validity of Artin’s conjecture for L-functions). By
reducing F to characteristic 2, we obtain a form f such that ρf ∼= ρK (cf. the proof
of Proposition 10), which shows that ρK satisfies the weak conjecture (3.2.3?).

The case D > 0 is more surprising: we don’t see a priori any way of attaching ρK

to any modular form whatsoever.

5.3 Examples coming from GL2(F3) ∼= S̃4

The group PGL2(F3) acts on the projective line P1(F3), which has 4 points, and this
defines an isomorphism PGL2(F3) ∼= S4. As the kernel of GL2(F3) → PGL2(F3) is
{±1}, we conclude that GL2(F3) is a central extension of degree 2 of S4; in fact, it is
the extension denoted S̃4 in [46, Section 1.5].

It is well-known that S̃4 can be embedded into GL2(Z[
√
−2]), and this embedding

gives, via reduction modulo 3, the above isomorphism S̃4
∼= GL2(F3). This allows us

to associate to any representation

ρ : GQ −→ GL2(F3)

its lift to characteristic 0

ρ0 : GQ −→ GL2(Z[
√
−2]) ⊂ GL2(C).

Suppose that ρ satisfies the conditions of Section 3.2, i.e., that it is irreducible with
odd determinant. Then so does ρ0, and we can apply the results of Langlands [26]
and Tunnell [53]. We conclude that ρ0 comes from a cusp form of weight 1 and level
equal to the conductor of ρ0, which we can write as 3mN0, where N0 is coprime to 3.
Therefore, as in Section 5.1, we obtain:

Proposition 11. There exists a form f of type (N0, k
′, ε), for a suitable k′, such that

ρ is isomorphic to ρf .

(Here, ε is the character GQ → {±1} constructed from det ρ as explained in Section
1.3.)

In particular ρ satisfies the weak conjecture (3.2.3?).

Remark. The conductor 3mN0 of ρ0 is closely related to the conductor N of ρ defined
in Section 1. If we put

N =
∏
6̀=3

`n(`) and N0 =
∏
`6=3

`n0(`),
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we observe indeed that:
(5.3.1) If the inertia group at ` of ρ(GQ) ∼= ρ0(GQ) is cyclic of order 3, we have

n(`) = 1 and n0(`) = 2.
(5.3.2) In all other cases, we have n(`) = n0(`).
In particular, N divides N0, and the prime factors of N and N0 are the same.

The conjecture (3.2.4?) then states (among other things) that the level N0 from
Proposition 11 can be lowered to N . Here are some examples where this level
lowering does indeed occur:

Examples coming from elliptic curves. Let E be an elliptic curve over Q. Suppose
there is a prime number ` > 3 at which E has bad reduction of type c3 or c6 in the
sense of Néron (types IV or IV∗ of Kodaira). With the notations of [39, Section 5.6],
this is equivalent to saying that E has potentially good reduction at `, and that the
corresponding group Φ` is cyclic of order 3. Let ρ be the representation

ρE : GQ −→ GL2(F3)

defined by the 3-torsion points of E. According to (5.3.1), the exponent of ` in
N (respectively N0) is 1 (respectively 2). We should therefore witness a lowering.
Indeed:

Example (Example (5.3.3)). The curve 121F (cf. [4, p. 97]). The equation of E is

y2 + xy = x3 + x2 − 2x− 7.

It has good reduction outside of ` = 11, and bad reduction of type c3 at 11, hence
N0 = 112 and N = 11. Moreover, the representation ρE is irreducible. Conjecture
(3.2.4?) predicts that ρE comes from a form of weight 2 and level 11. But there is only
one such form (up to multiplication by a scalar): the one corresponding to the curve
E′ of conductor 11 and equation

y2 + y = x3 − x2.

We conclude that the representations ρE and ρE
′

must be isomorphic, so that the
traces a` and a′` of their Frobenius endomorphisms must satisfy:

a` ≡ a′` (mod 3) for all ` 6= 3, 11.

The following table (taken from [4, pp. 117–119]) shows that this is indeed the case,
at least for ` < 50:

` 2 5 7 13 17 19 23 29 31 37 41 43 47

a` 1 1 −2 1 −5 6 2 9 −2 −3 −5 0 2

a′` −2 1 −2 4 −2 0 −1 0 7 3 −8 −6 8
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Example (Example (5.3.4)). The curve 147I (cf. [4, p. 103]). The equation of E is

y2 + y = x3 + x2 − 114x+ 473.

Its conductor is 147 = 3·72. It has multiplicative bad reduction at 3, and bad reduction
of type c6 at 7, hence N0 = 72, N = 7. The representation ρE has conductor 7; as it is
très ramifiée at 3, its weight k is 4. The conjecture (3.2.4?) predicts that ρE comes
from a cusp form of weight 4 and level 7. Once again, there is a unique such form
(up to normalization):

F = q +
∑
n≥2

Anq
n

= q − q2 − 2q3 − 7q4 + 16q5 + 2q6 − 7q7 + 15q8 + . . . .

(See below for the computation of the coefficients of F .)
If a` denotes the trace of the Frobenius endomorphism of E at `, we must then

have
a` ≡ A` (mod 3) for all ` 6= 3, 7.

This is indeed the case, at least for ` < 50:

` 2 5 11 13 17 19 23 29 31 37 41 43 47

a` 2 −2 −2 1 0 1 0 4 9 3 −10 5 −6

A` −1 16 −8 28 54 −110 48 −110 12 −246 182 128 324

Computation of F . Let L be the ring of integers of the field Q(
√
−7). The series

f1 =
∑
z∈L

qzz = 1 + 2q + 4q2 + 6q4 + 2q7 + . . .

f2 =
1

2

∑
z∈L

z2qzz = q − 3q2 + 5q4 − 7q7 − 3q8 + . . .

are the modular forms of weights 1 and 3 respectively, of level 7 and character the
Legendre character mod 7. Their product f1 · f2 is the form F considered above;
whence the computation of the coefficients of F .

5.4 Examples coming from SL2(F9) ∼= Ã6

Let G be the subgroup of GL2(F9) formed by the elements of determinant ±1. We
have

G = {±1,±i} · SL2(F9) = SL2(F9) ∪ i · SL2(F9),

where i denotes an element of order 4 in F×9 . The image of this group in PGL2(F9) is
PSL2(F9), which is isomorphic to the alternating group A6. We thus have a projection
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ϕ : G → A6. The pair (ϕ,det) defines a surjective homomorphism G → A6 × {±1},
with kernel {±1}. We thus have an exact sequence:

(5.4.1) {1} −→ {±1} −→ G −→ A6 × {±1} −→ {1}.

Let us know take a field K of degree 6 over Q, with Gal(Kgal/Q) ∼= A6, as well as a
quadratic field Q(

√
D). We get homomorphisms

αK : GQ −→ A6 and εD : GQ −→ {±1},

whence
α : GQ −→ A6 × {±1}.

Let us try to lift α to a homomorphism

ρ : GQ −→ G.

Given (5.4.1), there is an obstruction to this lifting, namely a cohomology class

obs(α) ∈ H2(GQ, {±1}) ∼= Br2(Q),

cf. [46, Section 1.1]. The following lemma gives a way of computing this class:

Lemma 6. Let w ∈ Br2(Q) be the Witt invariant of the quadratic form TrK/Q(x2),
cf. [46]. We have:

(5.4.2) obs(α) = w + (−1)(D).

(Recall, loc. cit., that (−1)(D) is the element of Br2(Q) that corresponds to the
quaternion algebra (−1, D).)

Proof. According to Theorem 1 of [46], w is the obstruction to lifting

αK : GQ −→ A6
∼= PSL2(F9)

to a homomorphism
GQ −→ Ã6

∼= SL2(F9).

On the other hand, (−1)(D) is the obstruction to lifting

εD : GQ −→ {±1}

to a homomorphism
GQ −→ {±1,±i}.

The lemma follows from these two facts, via an easy argument.

Let us now make particular choices for K and D. We will take:
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• D = −3;

• K = the sextic field defined by an equation

X6 + aX + b = 0, a, b ∈ Z,

the pair (a, b) being chosen such that the equation is irreducible with Galois
group A6.

[Here are some possible choices of a and b, obtained by Mestre: (a, b) = (24,−20);
(30, 25); (240, 400); (240,−400); (48,−80); (432, 720); (480,−400).]

According to [46, Section 3.3], the fact that K is defined by such an equation
implies that

w = (3)(−1) + (−1)(−1) = (−1)(−3),

whence
obs(α) = 0

by Lemma 6. We can therefore lift α to a homomorphism

ρ : GQ −→ G ⊂ GL2(F9).

Of course, the representation ρ thus obtained is not unique; it is only defined up to
quadratic twist. As in Tate’s theory (described in [43, Section 6]), we can use this
twisting to make the invariants k and N of ρ as small as possible; in particular, we
can choose ρ in such a way that k = 2 or 4, and that N is only divisible by those
prime factors of the discriminant d which are not equal to 3 (i.e., ` = 2 and 5 in the
examples given above). Then the conjectures of Section 3 claim the existence of a
cusp form f =

∑
anq

n of type (N, k, 1), with coefficients in F9, which is a normalized
eigenfunction of the Hecke operators, and such that ρ ∼= ρf . The latter relation
implies a strong link between the coefficients a` (for ` - 3N ) and the decomposition of
` in the field K. More precisely, let ord(`) denote the order of the Frobenius element
attached to ` in Gal(Kgal/Q) ∼= A6. We must have:

ord(`) = 1 or 3⇔ a2` =

(
`

3

)
;

ord(`) = 2⇔ a` = 0;

ord(`) = 4⇔ a2` = −
(
`

3

)
;

ord(`) = 5⇔ a2` = −1.

(Recall that the coefficients a` are elements of the field F9.)
In particular, if ` 6= 3 does not divide the discriminant of X6 + aX + b, the number

of solutions in F` of the congruence

x6 + ax+ b ≡ 0 (mod `)
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must be 1 (respectively 2) if and only if a` is an element of order 8 of F×9 (respectively
if a` = 0).

The search for such a form f was done by J-F. Mestre in each of the cases (a, b) =

(24,−20), . . . , (480,−400) given above, as well as a few others. The conductor N is
then equal to 2m5n, where m and n depend on (a, b). Determining n is not hard: if
the ramification is wild at 5 (which is the case in the examples), n is the exponent
of 5 in d1/2. On the other hand, determining m is a dyadic exercise that I have not
performed; this forced Mestre to try the different possible levels: 2 ·5n, 225n, 235n, . . .,
until he found a level with a form f of the desired type. His results are summarized
in the following table:

a b d1/2 k = weight level

24 −20 233353 2 2353 = 1000

30 25 233354 2 ≥ 20000?
240 400 223354 2 2254 = 2500

240 −400 233354 2 2354 = 5000

48 −80 233353 2 2353 = 1000

432 720 223553 4 2253 = 500

480 −400 233254 2 2354 = 5000

Note the case a = 30, b = 25, where no level ≤ 10000 works: it seems that the
conductor N is of the form 2m54, with m ≥ 5, hence N ≥ 20000, which is too big
for the method employed (based on the Eichler-Selberg trace formula). In all the
other cases, we find indeed a cusp form with the desired properties, as least for `
sufficiently small.

5.5 An example using the simple group PSL2(F7) of order 168

The degree 7 extension of Q defined by the equation

(5.5.1) X7 − 7X + 3 = 0

has Galois group PSL2(F7) (W. Trinks–cf. [25]). We will use it to construct a repre-
sentation of GQ in characteristic 7. The method is analogous to that of the previous
section:

Let G be the subgroup of GL2(F49) defined by:

G = {±1,±i} · SL2(F7) = SL2(F7) ∪ i · SL2(F7),

where i is an element of order 4 of F×49. We have detG = {±1}, and the image of G in
PGL2(F49) is PGL2(F7). We get the exact sequence:

(∗) {1} −→ {±1} −→ G −→ PSL2(F7)× {±1} −→ {1}.
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Let K be the field of degree 7 defined by (5.5.1), and let αK : GQ → PSL2(F7) be
the corresponding homomorphism. On the other hand, let

ε : GQ −→ {±1}

be the quadratic character associated with the field Q(
√
−3). The pair (αK , ε) defines

a homomorphism
α : GQ −→ PSL2(F7)× {±1}.

Let obs(α) ∈ Br2(Q) be the obstruction to lifting α to a homomorphism

ρ : GQ −→ G ⊂ GL2(F49).

A calculation analogous to that of Lemma 6 shows that

obs(α) = w + (−1)(−3),

where w is the Witt invariant of the quadratic form TrK/Q(x2). According to [46,
Section 3.3], we have w = (−1)(−3), hence obs(α) = 0. This proves the existence of
the representation

ρ : GQ −→ GL2(F49)

we are looking for. By construction, we have det ρ = ε.
Once again, we choose ρ so that its conductor is as small as possible. The discrimi-

nant of the polynomial X7 − 7X + 3 is 38 78 and that of the field K is 36 78. It follows
that the conductor of ρ can be chosen to be 3n, and a ramification calculation shows
that n = 3. On the other hand, the study of the ramification at 7 shows that the action
of the inertia at 7 is:

either

(
χ ∗
0 χ−1

)
, either

(
χ4 ∗
9 χ−4

)
,

where χ is the cyclotomic character.
After tensoring ρ by χ, or by χ4, we get a new representation ρ′ where the action

of inertia at 7 is given by: (
χ2 ∗
0 1

)
,

which leads to a weight k equal to 3, cf. Sections 2.3 and 2.4. We have

det ρ′ = ε · χ2.

[Note that ρ′ takes values in a group that is a little bigger than G: we have

Im ρ′ = GL2(F7) ∪ i ·GL2(F7).]

The conjectures of Section 3 state that ρ′ is of the form ρf , where f =
∑
anq

n

is a cusp form of type (33, 3, ε), with coefficients in F49, and which is a normalized

49



eigenfunction for the Hecke operators. The link between the eigenvalues a` (` 6= 3, 7)
and the decomposition of ` in K is the following:

if we write ord(`) for the order of the Frobenius automorphism attached to ` in
Gal(Kgal/Q) ∼= PSL2(F7), we must have:

ord(`) = 1 or 7 ⇔ a2` = 4`2ε(`) in F7

ord(`) = 2 ⇔ a` = 0 in F7

ord(`) = 3 ⇔ a2` = `2ε(`) in F7

ord(`) = 4 ⇔ a2` = 2`2ε(`) in F7

with ε(`) =

(
`

3

)
.

Indeed, we can find a form f with these properties, at least for ` small enough. It
is the reduction (mod 7) of a newform F in characteristic 0:

F = q +
∑
n≥2

Anq
n

= 9 + 3iq2 − 5q4 − 3iq5 + 5q7 − 3iq8 + . . .

This form has coefficients in Z[i]. It can be computed easily, cf. above. The following
table gives the values of ord(`) and A` for ` ≤ 37:

` 2 5 11 13 17 19 23 29 31 37

ord(`) 7 7 7 4 3 3 3 7 7 4

A` 3i −3i −15i −10 18i −16 −12i 30i −1 20

(For example, for ` = 17, we have a2` ≡ A2
` ≡ −2 (mod 7), ε(`) = −1, `2 ≡ 2 (mod 7),

hence a2` = `2ε(`) in F7, in accordance with the fact that ord(`) = 3.)
Calculation of F . Let θ1 be the theta function associated with the field Q(

√
−3):

θ1 =
∑
x,y∈Z

qx
2+xy+y2 = 1 + 6

(
q + q3 + q4 + 2q7 + q9 + . . .

)
.

It is an Eisenstein series of weight 1, level 3 and character ε. If we set

θ2 = θ1(3z) = 1 + 6
(
q3 + q9 + q12 + . . .

)
θ3 = θ1(9z) = 1 + 6

(
q9 + q27 + q36 + . . .

)
,

we obtain forms of levels 32 and 33.
On the other hand, the series

g = q
∏
n≥1

(
1− q3n

)2 (
1− q9n

)2
= q − 2q4 − q7 + 5q13 + . . .

is the unique normalized cusp form of weight 2, level 33 and trivial character (it
corresponds to the elliptic curve y2 + y = x3 − 3, of conductor 33).
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The products gθ1, gθ2 and gθ3 are forms of weight 3, level 33 and character ε.
They form a basis for the space of cusp forms of type (33, 3, ε). The normalized
eigenfunctions for the Hecke operators can be obtained, for instance, by diagonalizing
the operator T2. We find:

F =
1

2
igθ1 −

1

2
(1 + i)gθ2 +

3

2
gθ3 = q + 3iq2 − 5q4 + . . . ,

F = −1

2
igθ1 −

1

2
(1− i)gθ2 +

3

2
gθ3 = q − 3iq2 − 5q4 + . . . ,

G = gθ2 = q + 4q4 − 13q7 + . . .

The series G is of (CM) type: it corresponds to a Hecke character for the field
Q(
√
−3).

The series F is the cusp form we are looking for.
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