Letter* from J-P. Serre to J. Tate, 7 August 1987

Jean-Pierre Serre

Dear Tate,

I feel as though I understand a little bit better the modular forms (mod p), as well as our dear $W_k = M_k/M_{k-(p-1)}$ from 1973 and 1974.

I started with the following problem: how should one interpret in an adelic manner the modular forms (mod p) of all levels and all weights? (This is question 2, p. 198, of my article in *Duke Math. J.*, t. 54—the one "aimed at optimists".) More precisely, we are interested in the eigenvalues (a_{ℓ}) of the Hecke operators T_{ℓ} ($\ell \neq p$, ℓ coprime to the level) coming from these modular forms. Here is the answer (or in any case an answer...):

Let D be the quaternion algebra over \mathbb{Q} ramified at $\{p,\infty\}$ and let $D_{\mathbb{A}}^{\times}$ be the group of adelic points of the multiplicative group D^{\times} . Then:

Theorem. The systems of eigenvalues (a_{ℓ}) (with $a_{\ell} \in \overline{\mathbb{F}}_p$) coming from the modular forms (mod p) are the same as those coming from the locally constant functions $f \colon D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times} \to \overline{\mathbb{F}}_p$.

(The action of the T_ℓ 's on these functions is defined in a more or less obvious manner, except for a factor of $1/\ell$ multiplying the naive Hecke operator.)

The functions f described above can also be seen as functions $f \colon D_{\mathbb{A}}^{\times} \to \overline{\mathbb{F}}_p$ such that

$$(1) f(ux\gamma) = f(x)$$

for all $\gamma \in D_{\mathbb{Q}}^{\times}$ and all u in an open subgroup of $D_{\mathbb{A}}^{\times}$. Note that any open subgroup contains the real component $D_{\mathbb{R}}^{\times}$, which is connected. We can therefore remove $D_{\mathbb{R}}^{\times}$ if we so desire, i.e. work with the ring of finite adeles \mathbb{A}_f .

^{*}This appeared in the *Israel Journal of Mathematics*, Vol. 95, 1996 (bundled with a subsequent letter from Serre to Kazhdan), under the title *Two letters on quaternions and modular forms (mod p)*.

Translated from the original French by Alexandru Ghitza <aghitza@alum.mit.edu>.

For the historical and mathematical context, see the prefacing comments by R. Livné in the above reference. In particular, note that before publication, Serre removed a few short paragraphs (indicated by "..." in the text), as well as inserted a few comments (enclosed within brackets [] in the text).

Proof of the Theorem. Fix a level $N \geq 3$, coprime to p, and work with modular forms (mod p) of level N, in the manner of Katz in Anvers¹ III (LN 350). The corresponding modular curve is not absolutely irreducible; too bad! By definition, a form of weight k, with coefficients in $\overline{\mathbb{F}}_p$, associates to any pair (E,α) , where E is an elliptic curve and α an N-level structure on E, an element $f(E,\alpha)$ of $\omega^k(E)$, i.e. an (invariant) differential k-form on E. It is also, if you want, a section of a certain sheaf \mathcal{M}_k on the modular curve X(N). I will denote $M_k(N)$, or simply M_k , the space of global sections:

$$M_k = H^0(X(N), \mathcal{M}_k).$$

According to Swinnerton-Dyer (for $p \geq 5$) and Katz (for p = 2, 3), there is a natural embedding $M_{k-(p-1)} \to M_k$ given by multiplication by a certain form A of weight p-1 (namely E_{p-1} if $p \geq 5$, b_2 if p=3 and a_1 if p=2).

In 1973-1974, we were very interested in the structure of the quotient

$$W_k = M_k / M_{k-(p-1)},$$

seen as a module over the Hecke operators T_{ℓ} , $\gcd(\ell, pN) = 1$.

From a sheaf point of view, this involves considering the exact sequence

$$0 \to \mathcal{M}_{k-(p-1)} \xrightarrow{A} \mathcal{M}_k \to \mathcal{S}_k \to 0,$$

where S_k is the cokernel of multiplication by A. As A vanishes at the supersingular points with multiplicity 1, the structure of the sheaf S_k is clear: it is 0 away from the supersingular points ("S"="supersingular"), and of dimension 1 at these points. Let S_k be the space of global sections of S_k . We have the exact sequence

$$0 \to M_{k-(p-1)} \to M_k \to S_k \to H^1(\mathcal{M}_{k-(p-1)}) \to H^1(\mathcal{M}_k) \to 0,$$

or even:

(2)
$$0 \to W_k \to S_k \to H^1(\mathcal{M}_{k-(p-1)}) \to H^1(\mathcal{M}_k) \to 0.$$

We have therefore embedded W_k into a slightly larger space S_k ; the two spaces are by the way equal if k > p+1 as in this case $H^1(\mathcal{M}_{k-(p-1)})$ is 0 (by duality).

The space S_k is much easier to describe concretely than its subspace W_k : by its very construction, it is the space of functions

elliptic curve over
$$\overline{\mathbb{F}}_p$$
 invariant differential k -form with level N structure on the curve.

The action of the Hecke operators T_{ℓ} on S_k is just as obvious. If $f(E, \alpha)$ is a function as above (with E supersingular) we have

(3)
$$(f \mid T_{\ell})(E, \alpha) = \frac{1}{\ell} \sum_{C} f(E/C, \alpha_{C}),$$

¹Serre presumably means Antwerp III.

where C ranges over the $\ell+1$ subgroups of order ℓ of E, where α_C denotes the level N structure on E/C induced by α , and where I identify the differential forms on E/C to those on E, via the isogeny $E \to E/C$. In short, it is as usual!

Of course, this action of T_{ℓ} on S_k extends the action on W_k .

Remarks:

(4) The S_k only depend on k modulo $p^2 - 1$ (and on N and p...).

Indeed any supersingular curve over $\overline{\mathbb{F}}_p$ has a canonical (and functorial) \mathbb{F}_{p^2} -structure, namely the one where the Frobenius is equal to -p. Then the tangent space to E also has a canonical \mathbb{F}_{p^2} -structure, and its (p^2-1) -st tensor power has a canonical basis. This basis allows us to identify $\omega^k(E)$ and $\omega^{k+p^2-1}(E)$, and this identification is compatible with isogenies, hence with the operators T_ℓ . (We already knew this result for W_k for large enough k; in fact S_k is the "stabilization" of W_k , as topologists would say.)

[Canonical basis for $\omega^{p^2-1}(E)$ for E supersingular:

Let's write E in the standard form:

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

and let $\omega = dx/(2y + a_1x + a_3)$.

If p=2, the canonical basis of $\omega^{p^2-1}(E)$ is $a_3\omega^{\otimes 3}$.

If p = 3, it is $b_4^2 \omega^{\otimes 8}$, where $b_4 = a_1 a_3 + 2 a_4$.

If $p \geq 5$, it is $B^{p-1}\omega^{\otimes (p^2-1)}$, where B is the Eisenstein series E_{p+1} .]

Another useful formula (which I do not need at the moment):

(5)
$$S_{k+p+1} \cong S_k[1]$$
, where [1] denotes a "Tate twist".

This formula will become obvious later, from the quaternionic point of view. We knew it already—but only up to semisimplification—for the W_k with k large enough. According to G. Robert (*Invent. math.* **61** (1980), p. 123), the isomorphism $S_k[1] \to S_{k+p+1}$ is given by multiplication by $B = E_{p+1}$ if $p \ge 5$. There are analogous constructions for p = 2 and p = 3.

[If p=2 we choose in M_3 an element A_3 whose image in $S_3=M_3/M_2$ is the element " a_3 " given above (such an element exists because $N\geq 3$); multiplication by A_3 gives the desired isomorphism $S_k[1]\to S_{k+3}$.

If p=3, it is the same thing using the element $b_4=a_1a_3+2a_4$ of S_4 .]

(6) Any system (a_{ℓ}) of eigenvalues of the T_{ℓ} that comes from an M_k also comes from an $S_{k'}$ and vice-versa.

(The weight k' may be different from k, but in any case we have

$$k' \equiv k \pmod{p-1}$$
.)

This is clear: if (a_ℓ) comes from $f \in M_k$, we write f as $A^m g$, with g not divisible by A; the image of g in $S_{k'}$, where k' = k - m(p-1), is nonzero and corresponds to (a_ℓ) . Conversely, if (a_ℓ) comes from S_k , we may, thanks to the periodicity of the S_k 's, assume that $k \geq p+1$, in which case S_k is a quotient of M_k and therefore (a_ℓ) comes from M_k .

Conclusion: instead of looking at the T_{ℓ} 's over the M_k 's for $k=0,1,\ldots$, it suffices to look at them over the S_k 's where k ranges over the integers modulo (p^2-1) . This suggests constructing the direct sum

(7)
$$S(N) = \bigoplus_{k \mod p^2 - 1} S_k(N).$$

(8) You see now what we are about to do: we will interpret S(N) as a space of functions on $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$, using the well-known correspondence between supersingular curves and quaternions.

More precisely, choose a maximal order $D_{\mathbb{Z}}$ of $D=D_{\mathbb{Q}}$, and set:

 $O_p=\mathbb{Z}_p\otimes D_\mathbb{Z}=$ the unique maximal order of $D_p=\mathbb{Q}_p\otimes D_\mathbb{Z}$;

 O_p^{\times} = the multiplicative group of O_p ;

 $O_p^{\times}(1)=$ the kernel of $O_p^{\times}\to \mathbb{F}_{p^2}^{\times}$, that is the kernel of reduction (mod π), where π is a uniformizer of O_p ;

 $O_{\ell} = \mathbb{Z}_{\ell} \otimes D_{\mathbb{Z}}$, isomorphic to the matrix algebra $M_2(\mathbb{Z}_{\ell})$, $\ell \neq p$;

 $O_\ell^{ imes}=$ the multiplicative group of $O_\ell\cong \mathrm{GL}_2(\mathbb{Z}_\ell)$;

 $O_{\ell}^{\times}(N) = \text{the subgroup of the latter consisting of the elements} \equiv 1 \pmod{\ell^n}$, where ℓ^n is the largest power of ℓ that divides N;

 $U(1,N) = D_{\mathbb{R}}^{\times} \times O_{p}^{\times}(1) \times \prod_{\ell \neq p} O_{\ell}^{\times}(N)$, an open subgroup of $D_{\mathbb{A}}^{\times}$.

Consider the finite set $\Omega_N=U(1,N)\backslash D_{\mathbb{A}}^\times/D_{\mathbb{Q}}^\times$. The following statement will not surprise you:

(9) There is a bijection (almost but not quite canonical, see below) between Ω_N and the set of isomorphism classes of triples (E, ω, α) , where E is a supersingular elliptic curve over $\overline{\mathbb{F}}_p$, ω is a nonzero invariant differential form on E rational over \mathbb{F}_{p^2} , and α is a level N structure on E. (Moreover, this bijection is compatible with loads of more or less obvious operators, in particular the correspondences T_{ℓ} .)

Let's admit (9), which is a mere exercise (see below). We deduce from it:

- (10) The space $S(N) = \bigoplus S_k(N)$ defined in (7) is isomorphic to the space of functions on Ω_N , and this isomorphism is compatible with
 - a) the action of the T_{ℓ} 's, for $\ell \nmid pN$;
 - b) the decomposition with respect to the weight mod $(p^2 1)$.

(On the side of Ω_N , the "weight" comes from the natural action of $O_p^\times/O_p^\times(1)=\mathbb{F}_{p^2}^\times$ on Ω_N .)

In other words, we can interpret S(N) as the space of functions $f \colon D_{\mathbb{A}}^{\times} \to \overline{\mathbb{F}}_p$ such that $f(ux\gamma) = f(x)$ if $u \in U(1,N)$, $\gamma \in D_{\mathbb{Q}}^{\times}$. And the union of the S(N)'s with varying N can be identified with the space V_1 of locally constant functions on $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$ that are invariant under $O_p^{\times}(1)$.

To finish the proof of the theorem stated at the start, it remains to explain why the condition of invariance under $O_p^\times(1)$ is irrelevant. This is simply because $O_p^\times(1)$ is an *invariant pro-p-subgroup* in D_p^\times , therefore also in $D_{\mathbb{A}}^\times$. We have the following lemma:

Lemma. Let G be a pro-p group acting continuously on a vector space V over $\overline{\mathbb{F}}_p$, and let T_ℓ be a set of endomorphisms of V that commute with G. Let (a_ℓ) be a system of eigenvalues for the T_ℓ 's corresponding to a common eigenvector $v \neq 0$ in V. We can then choose v to be invariant under G (without changing the (a_ℓ)).

(If V_a is the eigenspace of V corresponding to (a_ℓ) , then V_a is $\neq 0$ and stable under G, hence contains a vector $\neq 0$ that is fixed by G.)

This concludes, more or less, the proof of the theorem. To complete it, I have to give some details about the proof of (9). This is a bit annoying, but essentially trivial. One way to proceed is to interpret the elements of $\Omega_N = U(1,N) \backslash D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$ as isomorphism classes of projective $D_{\mathbb{Z}}$ -modules of rank 1, endowed with "level πN structures". (If \mathfrak{a} is a nonzero two-sided ideal of $D_{\mathbb{Z}}$, a "level \mathfrak{a} structure" on a projective $D_{\mathbb{Z}}$ -module P is simply a basis of $P/\mathfrak{a}P$ as a $D_{\mathbb{Z}}/\mathfrak{a}$ -module.) We then choose a triple (E,ω,α) with $\operatorname{End}(E)=D_{\mathbb{Z}}$ and note that, if P is a projective $D_{\mathbb{Z}}$ -module of rank 1 with level πN structure, then the elliptic curve $E_P=E\otimes_{D_{\mathbb{Z}}}P$ is automatically endowed with an ω and an α . The map

class of
$$P \mapsto$$
 class of (E_P, ω, α)

is bijective, as is easily seen (the main point is, of course, that two supersingular curves are isogenous.) I can't be bothered to give further details.

Some complements:

- (11) The action of D_p^{\times} on the space S(N) is of "dihedral type"; in particular, a uniformizer π of D_p^{\times} interchanges S_k and S_{pk} , which are therefore isomorphic as (T_ℓ) -modules (we already knew this, thanks to the operator V of the usual theory). We can also see this in terms of projective modules with level πN structure: to such a module P we associate its unique submodule of index p^2 , endowed with the obvious level πN structure (not entirely obvious, for the level π part of the structure... one needs to think a little).
- (12) We can use the action of the center of $D_{\mathbb{A}}^{\times}$ to decompose the space of functions on $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$ just as we do in the complex case. The central characters that appear here are trivial at infinity. They are characters $\varpi \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \overline{\mathbb{F}}_p^{\times}$. We decompose them as $\chi^k \varepsilon$, where χ is the usual cyclotomic character (mod p) and ε has conductor coprime to p; the integer k is defined mod (p-1), and has the same parity as ε if $p \neq 2$. If (a_ℓ) is given by an eigenfunction with character $\varpi = \chi^k \varepsilon$, the corresponding Galois representation ρ_a satisfies

$$\det \rho_a = \chi^{-1} \varpi = \chi^{k-1} \varepsilon.$$

(There is therefore a "twist by χ^{-1} " compared to what we would get from a correspondence à la Langlands. In Deligne's terminology (LN 349, pp. 99–100) it is a correspondence "à la Hecke", unless it is "à la Tate"...)

(13) If $\psi \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \overline{\mathbb{F}}_p^{\times}$ is an arbitrary character, by composing ψ with the reduced norm $\operatorname{Nrd} \colon D_{\mathbb{A}}^{\times} \to \mathbb{A}^{\times}$, we get a function on $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$ that I will denote ψ_D . It is an eigenfunction for the T_{ℓ} 's with eigenvalues $(1 + \ell^{-1})\psi(\ell)$, for ℓ coprime to the conductor of ψ ; the corresponding Galois representation is $\chi^{-1}\psi \oplus \psi$, of Eisenstein type. The central character is ψ^2 .

The function ψ_D can be used to *twist* a system of eigenvalues. Indeed, if f is a locally constant function on $D_{\mathbb{A}}^{\times}/D_{\mathbb{O}}^{\times}$, we have:

$$(f.\psi_D) \mid T_\ell = \psi(\ell)(f \mid T_\ell).\psi_D.$$

The case $\psi=\chi$ is particularly interesting: the corresponding function χ_D belongs to S_{p+1} , and the above formula shows that the map $f\mapsto f.\chi_D$ is an isomorphism from $S_k[1]$ to S_{k+p+1} , as stated in (5). (This proof is very closely related to that of G. Robert, loc.cit., p. 124, Lemma 7.)

(14) I return to the exact sequence (2) from the start:

(2)
$$0 \to W_k \to S_k \to H^1(\mathcal{M}_{k-(p-1)}) \to H^1(\mathcal{M}_k) \to 0.$$

We can determine the H^1 's via duality: $H^1(\mathcal{M}_k)$ is dual to $H^0(\Omega \otimes \mathcal{M}_{-k})$. As Ω is isomorphic to the sheaf \mathcal{M}_2^0 of cusp forms of weight 2, $\Omega \otimes \mathcal{M}_{-k}$ is isomorphic

to \mathcal{M}_{2-k}^0 . We therefore transform (2) into the exact sequence

(2')
$$0 \to W_k \to S_k \to \text{the dual of } M^0_{p+1-k} \to \text{the dual of } M^0_{2-k} \to 0.$$

What is the structure of (T_ℓ) -module of the dual of M_{p+1-k}^0 that is compatible with this exact sequence? One would want to say (but I do not know how to prove it) that this module is, perhaps up to semisimplification, a *twist* of M_{p+1-k}^0 , the only reasonable twist being, by the way:

$$(15) M_{n+1-k}^0[k-1].$$

You had yourself obtained a similar result when you proved that any system of eigenvalues can be obtained, up to twist, in weight $\leq p+1$. (Conversely, if a formula as above were true, it would give an easy proof of this twist result: using (5), we place ourselves in an S_k with $1 \leq k \leq p+1$ and then use (2').)

To prove (15), one needs the courage to describe the behavior of the duality theorem in relation to correspondences. Not amusing! I will do without for now.

I want to tell you now about the *problems* that come up. There are plenty of these. Here are the main ones:

(16) How can one describe the subspace W_k of S_k ($0 < k \le p+1$) in quaternion terms, i.e. in terms of functions on the space $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$? One would want to say that the W_k 's, and their images under the action of $D_{\mathbb{A}}^{\times}$, generate a pretty $D_{\mathbb{A}}^{\times}$ -submodule, but how to characterize it? Must we involve functions that are invariant not under $O_p^{\times}(1)$, but under $O_p^{\times}(n)$, $n \ge 2$? I don't see it.

A related question is to define Atkin's " U_p " operator in quaternion terms. Note that U_p cannot be defined on all of S_k , as it is stably zero; but one should be able to define it on W_k for $1 < k \le p+1$.

(17) One would like to know how to define directly the Galois representation

$$\rho_a \colon \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}) \to \operatorname{GL}_2(\overline{\mathbb{F}}_p)$$

attached to a system (a_ℓ) of eigenvalues of the T_ℓ 's. It is not clear that this is a reasonable question. But in any case we would like to know this: if a system (a_ℓ) comes from an eigenfunction $f \in S_k$, is it true that it can only come from an $S_{k'}$ if we have

(18)
$$k' \equiv k \text{ or } pk \pmod{p^2 - 1}$$
?

Alas, (18) appears to be false for a system (a_ℓ) of Eisenstein type, i.e. corresponding to a reducible representation ρ_a . But I hope it is true when ρ_a is irreducible. If that were the case, ρ_a would determine the pair (p,pk) mod (p^2-1) , which

would be a "multiplicity 1 theorem" for the p-component. Moreover, if $k(\rho_a)$ denotes the weight attached to ρ_a by the somewhat quirky rules in *Duke Math. J.*, t. 54, we would have:

(19) $k(\rho_a) = \text{ one of the two integers (or the unique integer) in}$ the interval $[1, p^2 - 1]$ congruent to k or $pk \mod (p^2 - 1)$.

This would explain why the weights in Duke are $\leq p^2 - 1$ (careful, for p = 2, we have to modify the definition in Duke by replacing 4 by 3).

Of course, we would want to make (19) more precise, and pinpoint which of the two integers in question is equal to $k(\rho_a)$; this requires knowledge of the subspaces W_k of the S_k 's, i.e. one must first know how to answer (16).

(20) A question unrelated to quaternions, but natural in the context of the weights:

Start with $f \in M_k$, with k=1, an eigenfunction for the Hecke operators, and let ρ be the corresponding Galois representation. Is it true that ρ is unramified at p? This is clear if f lifts to a weight 1 form in characteristic 0, but we are dealing here with forms "à la Katz", which have no reason to lift to characteristic 0. One therefore needs a different proof. How to go about it? The question is linked to the special case k=1 of (16): how to characterise $W_1=M_1$ inside the much larger space S_1 ?

Of course, we would want the converse to be true: if ρ is unramified at p, it should come from M_1 . Unfortunately I lack numerical examples for this type of situation. Even the dihedral case (for instance when p=2 and $\mathrm{Im}(\rho)=\mathrm{GL}_2(\mathbb{F}_2)=S_3$) is not obvious.

[This question has been mostly answered by B. Gross (*Duke Math. J.*, **61** (1990), 445–517) and R.F. Coleman–J.F. Voloch (*Invent. math.*, **110** (1992), 263–281). See also B. Edixhoven, *Invent. math.* **109** (1992), 563–594.]

- (21) This brings us to consider the structure of $D_{\mathbb{A}}^{\times}$ -module on the space F of locally constant functions (with values in $\overline{\mathbb{F}}_p$) on the homogeneous space $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$. I know too little of the complex theory to be sure of the right questions to ask. In any case, we can fix a central character ω , and restrict our attention to the subspace F_{ω} of F consisting of functions f such that $f(xy) = \omega(x)f(y)$ for all x in the center of $D_{\mathbb{A}}^{\times}$. The direct sum of the F_{ω} 's is not F, but that is not a big deal: any simple submodule of F is contained in an F_{ω} . Regarding the F_{ω} 's, we would like them to contain "sufficiently many" simple modules. For instance:
- (22) Does every nonzero $D_{\mathbb{A}}^{\times}$ -submodule of F_{ω} contain a simple submodule? [The answer is: no. The only simple submodules of F are the dimension 1 subspaces generated by the ψ_D , cf. (13). See the letter to Kazhdan.]

. . .

- (24) If an (a_{ℓ}) comes from a level N_1 , as well as from another level N_2 , does it come from level $\gcd(N_1,N_2)$ (assuming this $\gcd \geq 3$, to avoid trouble)? This would be a theorem "à la Ribet". One should be able to prove this, provided one has good answers to the questions asked in (21).
- (25) Links with Eichler's theory. One way to attack the space F described above (that of locally constant functions on $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$) is to view it as the reduction (mod p) of the space of functions (complex, if we like—or integer-valued, if that is preferred) that are locally constant on the same space. Up to changing the level, this boils down to looking at the T_{ℓ} 's as "Brandt matrices", or rather as the reduction (mod p) of Brandt matrices. Thanks to Eichler, we know that this produces the same semisimplification as a certain space of weight 2 on " $\Gamma_0(p)$ in level N", at least for k divisible by p+1. Whence another way of comparing this space with that of modular forms (mod p). To be honest, I am too unfamiliar with Eichler's theory (especially with the levels π and N used here) to be able to state the correspondence precisely. But this should not be difficult for the experts (Gross, Ribet, Marie-France).
- (26) p-adic analogues. Instead of considering the locally constant functions on $D_{\mathbb{A}}^{\times}/D_{\mathbb{Q}}^{\times}$, with values in \mathbb{C} , it would be more amusing to consider those with p-adic values, i.e. with values in $\overline{\mathbb{Q}}_p$. If we decompose \mathbb{A} into $\mathbb{Q}_p \times \mathbb{A}'$, we would ask for these functions to be locally constant with respect to the variable in $D_{\mathbb{A}'}$ and to be continuous (or analytic, or more) with respect to the variable in D_p ... Would there be p-adic Galois representations attached to such functions, presumably to eigenfunctions for the Hecke operators? Can we interpret the constructions of Hida (and Mazur) in such a way? I have no idea.
- (27) Generalizations. We can extend this "day-dreaming" by asking which algebraic groups can replace D^{\times} in all of the above. One thing is certain: one needs a condition of "compactness" at infinity.

. . .

J-P. Serre

PS—It is possible that all my k's must be replaced by -k's, and other things of the same type; various conventions are possible here, and I have not yet made a choice.