
Letter* from J-P. Serre to J. Tate,
7 August 1987

Jean-Pierre Serre

Dear Tate,
I feel as though I understand a little bit better the modular forms (mod p), as well

as our dear Wk =Mk/Mk−(p−1) from 1973 and 1974.
I started with the following problem: how should one interpret in an adelic manner

the modular forms (mod p) of all levels and all weights? (This is question 2, p. 198,
of my article in Duke Math. J., t. 54—the one “aimed at optimists”.) More precisely,
we are interested in the eigenvalues (aℓ) of the Hecke operators Tℓ (ℓ 6= p, ℓ coprime
to the level) coming from these modular forms. Here is the answer (or in any case
an answer. . . ):
LetD be the quaternion algebra over Q ramified at {p,∞} and letD×

A be the group
of adelic points of the multiplicative group D×. Then:

Theorem. The systems of eigenvalues (aℓ) (with aℓ ∈ Fp) coming from the modular
forms (mod p) are the same as those coming from the locally constant functions
f : D×

A/D
×
Q → Fp.

(The action of the Tℓ’s on these functions is defined in a more or less obvious
manner, except for a factor of 1/ℓ multiplying the naive Hecke operator.)
The functions f described above can also be seen as functions f : D×

A → Fp such
that

(1) f(uxγ) = f(x)

for all γ ∈ D×
Q and all u in an open subgroup of D×

A . Note that any open subgroup
contains the real component D×

R , which is connected. We can therefore remove D×
R

if we so desire, i.e. work with the ring of finite adeles Af .

*This appeared in the Israel Journal of Mathematics, Vol. 95, 1996 (bundled with a subsequent letter
from Serre to Kazhdan), under the title Two letters on quaternions and modular forms (mod p).
Translated from the original French by Alexandru Ghitza <aghitza@alum.mit.edu>.
For the historical and mathematical context, see the prefacing comments by R. Livné in the above
reference. In particular, note that before publication, Serre removed a few short paragraphs (indi-
cated by “. . . ” in the text), as well as inserted a few comments (enclosed within brackets [ ] in the
text).
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Proof of the Theorem. Fix a level N ≥ 3, coprime to p, and work with modular forms
(mod p) of level N , in the manner of Katz in Anvers1 III (LN 350). The corresponding
modular curve is not absolutely irreducible; too bad! By definition, a form of weight
k, with coefficients in Fp, associates to any pair (E,α), where E is an elliptic curve
and α an N -level structure on E, an element f(E,α) of ωk(E), i.e. an (invariant)
differential k-form on E. It is also, if you want, a section of a certain sheaf Mk on
the modular curve X(N). I will denote Mk(N), or simply Mk, the space of global
sections:

Mk = H0(X(N),Mk).

According to Swinnerton-Dyer (for p ≥ 5) and Katz (for p = 2, 3), there is a natural
embedding Mk−(p−1) → Mk given by multiplication by a certain form A of weight
p− 1 (namely Ep−1 if p ≥ 5, b2 if p = 3 and a1 if p = 2).
In 1973–1974, we were very interested in the structure of the quotient

Wk =Mk/Mk−(p−1),

seen as a module over the Hecke operators Tℓ, gcd(ℓ, pN) = 1.
From a sheaf point of view, this involves considering the exact sequence

0 → Mk−(p−1)
A−→ Mk → Sk → 0,

where Sk is the cokernel of multiplication by A. As A vanishes at the supersingular
points with multiplicity 1, the structure of the sheaf Sk is clear: it is 0 away from the
supersingular points (“S”=“supersingular”), and of dimension 1 at these points. Let
Sk be the space of global sections of Sk. We have the exact sequence

0 →Mk−(p−1) →Mk → Sk → H1(Mk−(p−1)) → H1(Mk) → 0,

or even:

(2) 0 →Wk → Sk → H1(Mk−(p−1)) → H1(Mk) → 0.

We have therefore embedded Wk into a slightly larger space Sk; the two spaces are
by the way equal if k > p+ 1 as in this case H1(Mk−(p−1)) is 0 (by duality).
The space Sk is much easier to describe concretely than its subspace Wk: by its

very construction, it is the space of functions

elliptic curve over Fp

with level N structure
7→ invariant differential k-form

on the curve.

The action of the Hecke operators Tℓ on Sk is just as obvious. If f(E,α) is a function
as above (with E supersingular) we have

(3) (f | Tℓ)(E,α) =
1

ℓ

∑
C

f(E/C, αC),

1Serre presumably means Antwerp III.
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where C ranges over the ℓ+1 subgroups of order ℓ of E, where αC denotes the level
N structure on E/C induced by α, and where I identify the differential forms on
E/C to those on E, via the isogeny E → E/C. In short, it is as usual!
Of course, this action of Tℓ on Sk extends the action on Wk.

Remarks:

(4) The Sk only depend on k modulo p2 − 1 (and on N and p. . . ).

Indeed any supersingular curve over Fp has a canonical (and functorial) Fp2 -
structure, namely the one where the Frobenius is equal to −p. Then the tangent
space to E also has a canonical Fp2 -structure, and its (p2 − 1)-st tensor power

has a canonical basis. This basis allows us to identify ωk(E) and ωk+p2−1(E),
and this identification is compatible with isogenies, hence with the operators
Tℓ. (We already knew this result for Wk for large enough k; in fact Sk is the
“stabilization” of Wk, as topologists would say.)

[Canonical basis for ωp2−1(E) for E supersingular:

Let’s write E in the standard form:

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

and let ω = dx/(2y + a1x+ a3).

If p = 2, the canonical basis of ωp2−1(E) is a3ω⊗3.

If p = 3, it is b24ω
⊗8, where b4 = a1a3 + 2a4.

If p ≥ 5, it is Bp−1ω⊗(p2−1), where B is the Eisenstein series Ep+1.]

Another useful formula (which I do not need at the moment):

(5) Sk+p+1
∼= Sk[1], where [1] denotes a “Tate twist”.

This formula will become obvious later, from the quaternionic point of view. We
knew it already—but only up to semisimplification—for the Wk with k large
enough. According to G. Robert (Invent. math. 61 (1980), p. 123), the iso-
morphism Sk[1] → Sk+p+1 is given by multiplication by B = Ep+1 if p ≥ 5. There
are analogous constructions for p = 2 and p = 3.

[If p = 2 we choose in M3 an element A3 whose image in S3 = M3/M2 is the
element “a3” given above (such an element exists becauseN ≥ 3); multiplication
by A3 gives the desired isomorphism Sk[1] → Sk+3.

If p = 3, it is the same thing using the element b4 = a1a3 + 2a4 of S4.]

(6) Any system (aℓ) of eigenvalues of the Tℓ that comes from anMk also comes from
an Sk′ and vice-versa.
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(The weight k′ may be different from k, but in any case we have

k′ ≡ k (mod p− 1).)

This is clear: if (aℓ) comes from f ∈ Mk, we write f as Amg, with g not divisible
by A; the image of g in Sk′ , where k

′ = k−m(p−1), is nonzero and corresponds to
(aℓ). Conversely, if (aℓ) comes from Sk, we may, thanks to the periodicity of the
Sk’s, assume that k ≥ p + 1, in which case Sk is a quotient of Mk and therefore
(aℓ) comes fromMk.

Conclusion: instead of looking at the Tℓ’s over the Mk’s for k = 0, 1, . . . , it
suffices to look at them over the Sk’s where k ranges over the integers modulo
(p2 − 1). This suggests constructing the direct sum

(7) S(N) =
⊕

k mod p2−1

Sk(N).

(8) You see now what we are about to do: we will interpret S(N) as a space of func-
tions on D×

A/D
×
Q , using the well-known correspondence between supersingular

curves and quaternions.

More precisely, choose a maximal order DZ of D = DQ, and set:

Op = Zp ⊗DZ = the unique maximal order of Dp = Qp ⊗DZ;

O×
p = the multiplicative group of Op;

O×
p (1) = the kernel of O×

p → F×
p2
, that is the kernel of reduction (mod π), where

π is a uniformizer of Op;

Oℓ = Zℓ ⊗DZ, isomorphic to the matrix algebraM2(Zℓ), ℓ 6= p;

O×
ℓ = the multiplicative group of Oℓ

∼= GL2(Zℓ);

O×
ℓ (N) = the subgroup of the latter consisting of the elements ≡ 1 (mod ℓn),

where ℓn is the largest power of ℓ that divides N ;

U(1, N) = D×
R ×O×

p (1)×
∏

ℓ ̸=pO
×
ℓ (N), an open subgroup of D×

A .

Consider the finite set ΩN = U(1, N)\D×
A/D

×
Q . The following statement will not

surprise you:

(9) There is a bijection (almost but not quite canonical, see below) between ΩN and
the set of isomorphism classes of triples (E,ω, α), where E is a supersingular el-
liptic curve over Fp, ω is a nonzero invariant differential form on E rational over
Fp2 , and α is a level N structure on E. (Moreover, this bijection is compatible
with loads of more or less obvious operators, in particular the correspondences
Tℓ.)

Let’s admit (9), which is a mere exercise (see below). We deduce from it:
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(10) The space S(N) =
⊕
Sk(N) defined in (7) is isomorphic to the space of functions

on ΩN , and this isomorphism is compatible with

a) the action of the Tℓ’s, for ℓ ∤ pN ;

b) the decomposition with respect to the weight mod (p2 − 1).

(On the side of ΩN , the “weight” comes from the natural action of O×
p /O

×
p (1) =

F×
p2

on ΩN .)

In other words, we can interpret S(N) as the space of functions f : D×
A → Fp

such that f(uxγ) = f(x) if u ∈ U(1, N), γ ∈ D×
Q . And the union of the S(N)’s

with varying N can be identified with the space V1 of locally constant functions
on D×

A/D
×
Q that are invariant under O×

p (1).

To finish the proof of the theorem stated at the start, it remains to explain why
the condition of invariance under O×

p (1) is irrelevant. This is simply because
O×

p (1) is an invariant pro-p-subgroup in D×
p , therefore also in D×

A . We have the
following lemma:

Lemma. Let G be a pro-p group acting continuously on a vector space V over
Fp, and let Tℓ be a set of endomorphisms of V that commute with G. Let (aℓ)
be a system of eigenvalues for the Tℓ’s corresponding to a common eigenvector
v 6= 0 in V . We can then choose v to be invariant under G (without changing the
(aℓ)).

(If Va is the eigenspace of V corresponding to (aℓ), then Va is 6= 0 and stable
under G, hence contains a vector 6= 0 that is fixed by G.)

This concludes, more or less, the proof of the theorem. To complete it, I have to
give some details about the proof of (9). This is a bit annoying, but essentially
trivial. One way to proceed is to interpret the elements of ΩN = U(1, N)\D×

A/D
×
Q

as isomorphism classes of projective DZ-modules of rank 1, endowed with “level
πN structures”. (If a is a nonzero two-sided ideal of DZ, a “level a structure” on
a projective DZ-module P is simply a basis of P/aP as a DZ/a-module.) We then
choose a triple (E,ω, α) with End(E) = DZ and note that, if P is a projective DZ-
module of rank 1 with level πN structure, then the elliptic curve EP = E ⊗DZ P

is automatically endowed with an ω and an α. The map

class of P 7→ class of (EP , ω, α)

is bijective, as is easily seen (the main point is, of course, that two supersingular
curves are isogenous.) I can’t be bothered to give further details.
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Some complements:

(11) The action of D×
p on the space S(N) is of “dihedral type”; in particular, a uni-

formizer π of D×
p interchanges Sk and Spk, which are therefore isomorphic as

(Tℓ)-modules (we already knew this, thanks to the operator V of the usual the-
ory). We can also see this in terms of projective modules with level πN structure:
to such a module P we associate its unique submodule of index p2, endowed with
the obvious level πN structure (not entirely obvious, for the level π part of the
structure. . . one needs to think a little).

(12) We can use the action of the center of D×
A to decompose the space of functions

on D×
A/D

×
Q just as we do in the complex case. The central characters that ap-

pear here are trivial at infinity. They are characters ϖ : Gal(Q/Q) → F×
p . We

decompose them as χkε, where χ is the usual cyclotomic character (mod p) and
ε has conductor coprime to p; the integer k is defined mod (p − 1), and has the
same parity as ε if p 6= 2. If (aℓ) is given by an eigenfunction with character
ϖ = χkε, the corresponding Galois representation ρa satisfies

det ρa = χ−1ϖ = χk−1ε.

(There is therefore a “twist by χ−1” compared to what we would get from a
correspondence à la Langlands. In Deligne’s terminology (LN 349, pp. 99–100)
it is a correspondence “à la Hecke”, unless it is “à la Tate”. . . )

(13) If ψ : Gal(Q/Q) → F×
p is an arbitrary character, by composing ψ with the reduced

norm Nrd: D×
A → A×, we get a function on D×

A/D
×
Q that I will denote ψD. It is

an eigenfunction for the Tℓ’s with eigenvalues (1 + ℓ−1)ψ(ℓ), for ℓ coprime to
the conductor of ψ; the corresponding Galois representation is χ−1ψ ⊕ ψ, of
Eisenstein type. The central character is ψ2.

The function ψD can be used to twist a system of eigenvalues. Indeed, if f is a
locally constant function on D×

A/D
×
Q , we have:

(f.ψD) | Tℓ = ψ(ℓ)(f | Tℓ).ψD.

The case ψ = χ is particularly interesting: the corresponding function χD be-
longs to Sp+1, and the above formula shows that the map f 7→ f.χD is an isomor-
phism from Sk[1] to Sk+p+1, as stated in (5). (This proof is very closely related to
that of G. Robert, loc.cit., p. 124, Lemma 7.)

(14) I return to the exact sequence (2) from the start:

(2) 0 →Wk → Sk → H1(Mk−(p−1)) → H1(Mk) → 0.

We can determine the H1’s via duality: H1(Mk) is dual to H
0(Ω ⊗M−k). As Ω

is isomorphic to the sheaf M0
2 of cusp forms of weight 2, Ω⊗M−k is isomorphic
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to M0
2−k. We therefore transform (2) into the exact sequence

(2’) 0 →Wk → Sk → the dual ofM0
p+1−k → the dual ofM0

2−k → 0.

What is the structure of (Tℓ)-module of the dual of M0
p+1−k that is compatible

with this exact sequence? One would want to say (but I do not know how to
prove it) that this module is, perhaps up to semisimplification, a twist ofM0

p+1−k,
the only reasonable twist being, by the way:

(15) M0
p+1−k[k − 1].

You had yourself obtained a similar result when you proved that any system of
eigenvalues can be obtained, up to twist, in weight ≤ p + 1. (Conversely, if
a formula as above were true, it would give an easy proof of this twist result:
using (5), we place ourselves in an Sk with 1 ≤ k ≤ p+ 1 and then use (2’).)

To prove (15), one needs the courage to describe the behavior of the duality
theorem in relation to correspondences. Not amusing! I will do without for now.

I want to tell you now about the problems that come up. There are plenty of these.
Here are the main ones:

(16) How can one describe the subspaceWk of Sk (0 < k ≤ p+1) in quaternion terms,
i.e. in terms of functions on the space D×

A/D
×
Q? One would want to say that the

Wk’s, and their images under the action ofD×
A , generate a prettyD

×
A -submodule,

but how to characterize it? Must we involve functions that are invariant not
under O×

p (1), but under O
×
p (n), n ≥ 2? I don’t see it.

A related question is to define Atkin’s “Up” operator in quaternion terms. Note
that Up cannot be defined on all of Sk, as it is stably zero; but one should be able
to define it on Wk for 1 < k ≤ p+ 1.

(17) One would like to know how to define directly the Galois representation

ρa : Gal(Q/Q) → GL2(Fp)

attached to a system (aℓ) of eigenvalues of the Tℓ’s. It is not clear that this is a
reasonable question. But in any case we would like to know this: if a system (aℓ)

comes from an eigenfunction f ∈ Sk, is it true that it can only come from an Sk′

if we have

(18) k′ ≡ k or pk (mod p2 − 1)?

Alas, (18) appears to be false for a system (aℓ) of Eisenstein type, i.e. correspond-
ing to a reducible representation ρa. But I hope it is true when ρa is irreducible.
If that were the case, ρa would determine the pair (p, pk) mod (p2 − 1), which
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would be a “multiplicity 1 theorem” for the p-component. Moreover, if k(ρa) de-
notes the weight attached to ρa by the somewhat quirky rules in Duke Math. J.,
t. 54, we would have:

(19) k(ρa) = one of the two integers (or the unique integer) in

the interval [1, p2 − 1] congruent to k or pk mod (p2 − 1).

This would explain why the weights in Duke are ≤ p2 − 1 (careful, for p = 2, we
have to modify the definition in Duke by replacing 4 by 3).

Of course, we would want to make (19) more precise, and pinpoint which of
the two integers in question is equal to k(ρa); this requires knowledge of the
subspaces Wk of the Sk’s, i.e. one must first know how to answer (16).

(20) A question unrelated to quaternions, but natural in the context of the weights:

Start with f ∈Mk, with k = 1, an eigenfunction for the Hecke operators, and let
ρ be the corresponding Galois representation. Is it true that ρ is unramified at
p? This is clear if f lifts to a weight 1 form in characteristic 0, but we are dealing
here with forms “à la Katz”, which have no reason to lift to characteristic 0. One
therefore needs a different proof. How to go about it? The question is linked to
the special case k = 1 of (16): how to characterise W1 = M1 inside the much
larger space S1?

Of course, we would want the converse to be true: if ρ is unramified at p, it
should come from M1. Unfortunately I lack numerical examples for this type
of situation. Even the dihedral case (for instance when p = 2 and Im(ρ) =

GL2(F2) = S3) is not obvious.

[This question has been mostly answered by B. Gross (Duke Math. J., 61 (1990),
445–517) and R.F. Coleman–J.F. Voloch (Invent. math., 110 (1992), 263–281).
See also B. Edixhoven, Invent. math. 109 (1992), 563–594.]

(21) This brings us to consider the structure of D×
A -module on the space F of locally

constant functions (with values in Fp) on the homogeneous space D×
A/D

×
Q . I

know too little of the complex theory to be sure of the right questions to ask.
In any case, we can fix a central character ω, and restrict our attention to the
subspace Fω of F consisting of functions f such that f(xy) = ω(x)f(y) for all x
in the center of D×

A . The direct sum of the Fω’s is not F , but that is not a big
deal: any simple submodule of F is contained in an Fω. Regarding the Fω’s, we
would like them to contain “sufficiently many” simple modules. For instance:

(22) Does every nonzero D×
A -submodule of Fω contain a simple submodule?

[The answer is: no. The only simple submodules of F are the dimension 1 sub-
spaces generated by the ψD, cf. (13). See the letter to Kazhdan.]

. . .
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(24) If an (aℓ) comes from a level N1, as well as from another level N2, does it come
from level gcd(N1, N2) (assuming this gcd ≥ 3, to avoid trouble)? This would be
a theorem “à la Ribet”. One should be able to prove this, provided one has good
answers to the questions asked in (21).

(25) Links with Eichler’s theory. One way to attack the space F described above
(that of locally constant functions on D×

A/D
×
Q ) is to view it as the reduction (mod

p) of the space of functions (complex, if we like—or integer-valued, if that is
preferred) that are locally constant on the same space. Up to changing the
level, this boils down to looking at the Tℓ’s as “Brandt matrices”, or rather as
the reduction (mod p) of Brandt matrices. Thanks to Eichler, we know that this
produces the same semisimplification as a certain space of weight 2 on “Γ0(p)

in level N”, at least for k divisible by p + 1. Whence another way of comparing
this space with that of modular forms (mod p). To be honest, I am too unfamiliar
with Eichler’s theory (especially with the levels π and N used here) to be able
to state the correspondence precisely. But this should not be difficult for the
experts (Gross, Ribet, Marie-France).

(26) p-adic analogues. Instead of considering the locally constant functions onD×
A/D

×
Q ,

with values in C, it would be more amusing to consider those with p-adic values,
i.e. with values in Qp. If we decompose A into Qp × A′, we would ask for these
functions to be locally constant with respect to the variable in DA′ and to be
continuous (or analytic, or more) with respect to the variable in Dp. . .Would
there be p-adic Galois representations attached to such functions, presumably
to eigenfunctions for the Hecke operators? Can we interpret the constructions
of Hida (and Mazur) in such a way? I have no idea.

(27) Generalizations. We can extend this “day-dreaming” by asking which algebraic
groups can replace D× in all of the above. One thing is certain: one needs a
condition of “compactness” at infinity.

. . .

J-P. Serre

PS—It is possible that all my k’s must be replaced by −k’s, and other things of the
same type; various conventions are possible here, and I have not yet made a choice.
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