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Abstract

The interplay between number theory and algebraic geometry has been fruitful for

both fields. In this thesis, we study the groups arising from elliptic curves and pointed

conics from both arithmetical and algebro-geometric perspectives, with an emphasis

on finiteness results and the existence of different normal forms, as well as the broader

conceptual foundations that underlie the subject matter. In general, notions and results

that have applications to cryptography are given special attention, and the applications

of the aforementioned groups to public-key cryptography constitutes the main topic of

the final chapter.
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Introduction

The interactions between number theory and geometry have a long and distinguished

history. Euclid’s formula for Pythagorean triples, for example, has at it’s heart a

geometric insight about circle and lines, now referred to as stereographic projection,

and in light of the ancient Greek preoccupation with conic sections, it’s perhaps not

surprising that a Greek name is associated with this formula.

The fruitful interplay between arithmetic and geometry continues to this day. Many

of these connections center around elliptic curves, which are smooth projective curves

of genus 1 equipped with a distinguished basepoint. Note that elliptic curves have

only a passing connection to the ellipses of ancient Greek geometry; for example, the

equation y2 = x3 + 1 defines an elliptic curve, but not an ellipse. Every elliptic curves

becomes a group in a canonical way, and the study of the group structure has provided

remarkable insights into number theoretic phenomena. A recent success story is Andrew

Wile’s proof of the modularity theorem for semistable elliptic curves, which was enough

to imply Fermat’s last theorem. Elliptic curves are the topic of Chapter 4.

Recently, Shirali [41] has shown that conics, too, become groups in a natural way,

once a distinguished basepoint has been chosen. Chapter 5 examines these groups

and studies different notions of morphism between them, emphasizing connections to

number theory and arithmetic. Pell conics, which are defined by the equation x2−dy2 =

1, receive particular attention, due to the availability of an explicit group law in this

context.

Chapter 6 looks at some applications to public-key cryptography, and focuses in

particular on elliptic curve cryptography (ECC). Since the invention of ECC in the mid

1980s, it has grown in popularity due to the comparatively shorter key lengths, and

today enjoys widespread adoption [19]. Our emphasis is on key-exchange protocols,

which allow parties that have never communicated before to establish a shared secret

even if an eavesdropper can hear every message they exchange. The thesis concludes

with a look at how elliptic curves are being used to develop key-exchange protocols that
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can resist attack by a quantum computer.

Chapters 1,2 and 3 are preliminary material and can probably be skipped by the

impatient reader. Chapter 1 develops some aspects of field theory that are particularly

relevant to the study of arithmetical geometry. Chapter 2 builds the basis theory of

Galois connections and closure operators due to their wide applicability in connection

with the Zariski topology and field theory. This leads, in some ways, to a more satisfying

theory; for example, the fact that the Zariski-closure of a subset X of affine space

(defined as the intersection of all Y ⊇ X such that Y is Zariski-closed) exactly equals

V (I(X)), is an immediate consequence of general facts about Galois connections that

we might as well prove in maximum generality. Chapter 3 establishes the basic facts

about affine and projective varieties that are used in the rest of the thesis.

Chapters 3 and 4 roughly follow Joseph H. Silverman’s The Arithmetic of Elliptic

Curves [43]. Silverman’s book is very interesting insofar as it goes to great lengths to

avoid technical machinery and abstract generalities; for example, his definition of the

Picard group of a curve avoids mention of line bundles altogether in favour of the more

elementary definition in terms of equivalence classes of formal Z-linear combinations of

points. This aversion to technical machinery is greatly reflected in the present work,

in which, for example, no mention of ringed spaces is made. Hopefully, this makes the

material more accessible to a wider audience.
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Notation and Terminology

The natural numbers

The set of natural numbers N will begin at zero:

N = {0, 1, 2, . . .}.

The main relevance of this for our purposes is that it makes the following statements

true.

(a) A vector space is finite-dimensional iff it has a basis whose cardinality is a natural

number.

(b) The kernel of a group homomorphism is finite iff the cardinality of its kernel is a

natural number.

(c) The Krull dimension of a variety is always a natural number.

(d) If P is a regular function, then the value of ordP (f) is either a natural number or

infinity.

Cardinality

If S is a set, we’ll write #S for the cardinality of S. This notation will usually be

employed where #S is a natural number, however in full generality it should be regarded

as a cardinal number. The advantage of using cardinal numbers is that they allow us to

phrase Proposition 4.5.2 and Proposition 4.5.4 without adding finiteness assumptions,

which is arguably more satisfying.

Similarly, the dimension of a vector space (i.e. a K-module) will, in general, be

regarded as a cardinal number. This allows us to speak of the dimension of the field

K(x) as a K-module, for example; its dimension is ℵ0, the smallest infinite cardinal

number.
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Fields

If K is a field, write K for its algebraic closure and K∗ for its group of units. Given

a ∈ K, write a for the image of a under the inclusion K ↪→ K. Similarly, if f ∈ K[x] is

a polynomial, the corresponding element of K[x] will be denoted f.

Rings versus algebras

For the purposes of this report, everyK-algebra will be associative and unital by default,

but not necessarily commutative, and a K-ring will be a commutative k-algebra. We’ll

use the term algebra to mean a Z-algebra (i.e. a not-necessarily commutative ring)

and reserve the term ring to mean a Z-ring (i.e. all our rings will be commutative.)

The main advantage of these conventions is that they allow us to avoid the phrase

‘non-commutative ring,’ since these are just called algebras.

The above changes also fit better with the definition of a ringed space, since the rings

of the structure sheaf are always assumed commutative, and although the notion of a

ringed space is not used in this thesis, it is good to prepare for the future in small ways

such as this. Note also that the above conventions are consistent with the standard

meaning of phrases like ‘a K-scheme is a locally K-ringed space X such that...’ in

which the term ‘K-ringed’ implicitly carries an assumption of commutativity, which is

consistent with the use of the term K-ring as introduced above.

Projections and indeterminates

The notation πn will be overloaded in the following way. Firstly, it will denote the

projection to the ith factor in a Cartesian product. For example:

π1 : A×B → A, π2 : A×B → B.

The notation πi will also be used to denote indeterminates in a polynomial ring whenever

a canonical ordering on the variables is desired. In particular, if f ∈ K[π1, π2], then we

can write f(x, y) without ambiguity; it is understood to mean the result of replacing

every copy of π1 with x and every copy of π2 with y. For instance, if f ∈ K[π1, π2] is

given by f = π2
1 + π2

2, then f(x, y) = x2 + y2 and f(3, 4) = 25.
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Affine space

Given a natural number n, we write An
K for the set K

n
. This means in particular that, as

sets An
K and An

K
mean the same thing. However, as topological spaces, they’re different,

an in particular, the latter has more closed sets than the former. See Definition 3.1.4

for the precise definition.
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Chapter 1

Fields, separability, and degree

1.1 Set-theoretic ideals

In ring theory, ideals are characterized by two conditions; they’re closed under taking

multiples, and also under addition. Subsets satisfying only the first of these conditions

are also useful. For example, the set of all elements of K[x] that have a degree-1 factor

is closed under taking multiples, but not closed under addition; consider the sum of x

and 1 − x, for example. The following definition provides terminology for this more

general notion.

Definition 1.1.1. Let R denote a ring (or even just a commutative monoid). Then a

set-theoretic ideal of R is a set S ⊆ R that is closed under multiples, meaning that if

x ∈ S, then for all a ∈ R we have ax ∈ S.

Remark. The above notion is sometimes referred to as a ‘monoid ideal,’ but the

phrase set-theoretic ideal is better. In particular, note that rings are monoid objects in

the world of Z-modules, whereas monoids are monoid objects in the world of sets. In

light of this, the thing that’s really changing is not whether we’re dealing with monoids,

it’s whether we’re working in Set or Ab. It is consequently better to choose terminology

that emphasizes this.

There are many natural examples of set-theoretic ideals that are not closed under

addition. We’ve already discussed that the notion of having a degree-1 factor. Another,

more basic example is the set of all zero divisors in a ring (if x is a zero-divisor, then

so too is ax.) Note that in the ring Z/6, both 2 and 3 are zero divisors, but their sum,

being its own multiplicative inverse, is not. Another example of a set-theoretic ideal is

the set of all non-units in a ring (if x is a non-unit in a ring, then so too is ax.) Once
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again, the sum of two non-units needn’t be a non-unit; for example, consider 3 and −2

in Z.

Proposition 1.1.2. Let R denote a ring (or even just a commutative monoid) and

suppose S ⊆ R is a subset. Then the following are equivalent:

(a) S is a set-theoretic ideal

(b) RS ⊆ S

(c) RS = S

Proof. For (a) → (b), suppose S is a set-theoretic ideal. Consider x ∈ RS. We must

show that x ∈ S. Write x = ay for some a ∈ R and some y ∈ S. Since y ∈ S, thus

ay ∈ S. Hence x ∈ S, as desired. For (b) → (a), suppose RS ⊆ S. Consider x ∈ S. We

must show that for all a ∈ R, we have ax ∈ S. Since a ∈ R and x ∈ S, thus ax ∈ RS.
So ax ∈ S, as desired. For (b) → (c), suppose RS ⊆ S. We must show RS ⊇ S. Since

R ⊇ {1}, hence RS ⊇ 1S. Hence RS ⊇ S, as desired. The implication (c) → (b) is

trivial.

Proposition 1.1.3. Given a ring R and a subset S ⊆ R, the set

RS := {rx : r ∈ R, x ∈ S}

is the smallest set-theoretic ideal containing S.

Proof. We must show the following:

(a) RS is a set-theoretic ideal

(b) RS ⊇ S

(c) If X ⊇ S is a set-theoretic ideal, then X ⊇ RS.

For part (a), we must show that R(RS) ⊆ RS. But since RR ⊆ R, this is trivial.

For part (b), we must show that RS ⊇ S. But since rings have unity, we have RS ⊇
{1}S = S. For part (c), assume that X ⊇ S is a set-theoretic ideal. Then RX ⊇ RS.

But since X is a set-theoretic ideal, we know by Proposition 1.1.2 that RX = X. Hence

X ⊇ RS as desired.
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Remark. In plain language, what we’ve just shown is that an element a ∈ R is

divisible by some element of a set S ⊆ R if and only if a belongs to the set-theoretic

ideal generated by S. For example, a polynomial f ∈ K[π1] has a degree-1 factor if and

only if f is an element of the set-theoretic ideal generated by degree-1 polynomials.

The notion of a prime ideal generalizes without effort to set-theoretic ideals.

Definition 1.1.4. Let R denote a ring. Suppose X ⊆ R is a set-theoretic ideal. Then

X is said to be prime iff for all a, b ∈ R, we have that if ab ∈ X, then a ∈ X or b ∈ X.

All the examples we’ve looked at so far are prime. In particular, if ab is a zero-

divisor, then a is a zero-divisor or b is a zero-divisor; similarly with the property of

being a non-unit. Similarly, the set-theoretic ideal of polynomials having a degree-1

factor is prime; if fg has a degree-1 factor, then either f has a degree-1 factor, or g has

a degree-1 factor.

Definition 1.1.5. Let R denote a ring. Suppose S ⊆ R is an arbitrary subset. Then

an element a ∈ R is said to be squarefree with respect to S iff for all x ∈ S, we have

x2 - a.

Proposition 1.1.6. Given an element a ∈ R and a subset S ⊆ R, the element a is

squarefree with respect to S if and only if it is squarefree with respect to the set-theoretic

ideal generated by S.

Proof. (⇒). Assume that a ∈ R is squarefree with respect to S. Consider y ∈ RS. Our

goal is to show that y2 - a. We have y = bx for some a ∈ R and x ∈ S. Assume toward

a contradiction that y2 | a. Then b2x2 | a. Thus x2 | a, a contradiction.

(⇐). Assume that a ∈ R is squarefree with respect to RS. Consider x ∈ S. Our goal

is to show that x2 - a. Since x ∈ S, we deduce that x ∈ RS. Thus x2 - a, as desired.

1.2 Separable polynomials

With the above notions in place, we’re ready to consider the notion of a separable

polynomial. Let K denote a field and consider f ∈ K[π1]. We say that f has no

repeated roots if and only if it is squarefree with respect to polynomials of degree exactly

1. We say that f has no repeated factors if and only if it squarefree with respect to

polynomials of degree at least 1. Note that the latter condition is stronger than the

former; for example, it’s correct to say that (x2 + 1)2 ∈ R[x] has no repeated roots, but

it’s incorrect to say that it has no repeated factors.
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Proposition 1.2.1. Over an algebraically closed field, having no repeated roots is

equivalent to having no repeated factors.

Proof. It is clear that if a polynomial has no repeated factors, then it has no repeated

roots. Let us therefore prove the other direction. Assume toward a contradiction that

f ∈ K[π1] has no repeated roots, but does have a repeated factor. Writing g ∈ K[π1]

for a repeated factor, we can find h ∈ K[π1] such that f = g2h. Since g is a (non-trivial)

factor, it has degree at least 1. Since f has no repeated roots, this means that g has

degree at least 2. Hence by algebraic closedness, we can factor g as a product of degree

1 polynomials, call them A and B. Thus f = A2B2h. But this means that A is a

repeated root of P , a contradiction.

Definition 1.2.2. Let K denote a field. Then an element f ∈ K[π1] is said to be

separable if and only if it has no repeated roots, or equivalently, no repeated factors.

An element f ∈ K[π1] is said to be separable if and only if f ∈ K[π1] is separable.

Separability is the strongest condition we’ve considered so far:

separable → no repeated factors→ no repeated roots.

However, under ‘ordinary’ circumstances, the left implication in the above chain is

actually an equivalence. For example, define f(x) = x2 + 1 ∈ R[x]. It’s clear that f has

no repeated factors. But since f(x) as factorizes as (x + i)(x− i), and since i 6= −i in

C, hence f ∈ C[π1]. It follows that f ∈ R[π1] is separable. Fields like R in which this

equivalence holds are called perfect.

Definition 1.2.3. Let K denote a field. Then K is perfect if and only if every element

of K[π1] with no repeated factors is separable. Otherwise it is imperfect.

Examples of perfect fields include every field of characteristic 0 (such as Q and R,
and the p-adic numbers Qp. Hence every imperfect field is of non-zero characteristic.

every finite field (namely Fp and Fpn). Imperfect fields tend to be harder to find, but

the characteristic-2 rational function field K = F2(t) is a standard example. To see

this, let’s take a moment to verify the following:

Proposition 1.2.4. If K = F2(t), then the polynomial P ∈ K[π1] defined by P (x) =

x2 − t ∈ K[x] is irreducible.

Proof. Assume toward a contradiction that it’s reducible, the degree 1 factors being

x− a and x− b respectively, with a, b ∈ K Then

x2 − t = (x− a)(x− b) = x2 − (a+ b)x+ ab.
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Equating coefficients, we see that b = −a and that ab = 0. From this we deduce that

a(−a) = 0. Hence a = 0, from which we deduce b = 0. Thus x2−t = (x−0)(x−0) = x2.

Equating coefficients again, we deduce that −t = 0, a contradiction.

Proposition 1.2.5. The field K = F2(t) is imperfect.

Proof. We need to find an element of K[π1] that has no repeated factors, but which is

not separable. The polynomial f(x) = x2 − t ∈ K[x] does the job. Since f irreducible,

hence it has no repeated factors. On the other hand, P ∈ K[π1] is reducible. In

particular, if we let
√
t denote any square root of t, then we can write P (x) = (x −√

t)(x +
√
t). Since we’re in characteristic 2, we deduce that P (x) = (x −

√
t)2. Thus

P ∈ K[π1] is not separable. Thus P ∈ K[π1] is not separable. Thus F2(t) is an imperfect

field.

1.3 Separable elements

So far, we’ve looked at separable polynomials. This can be used to define the notion

of a separable element of a field extension. In what follows, the following fact will be

helpful.

Proposition 1.3.1. Let K denote a field. Then for all non-zero polynomials f, g ∈
K[π1], if (f) = (g), then deg(f) = deg(g).

Proof. Since (f) = (g), hence f ∈ (g), so g | f. Thus g · h = f for some non-zero

h ∈ K[π1]. Thus deg(f) = deg(g) + deg(h). So deg(f) ≥ deg(g). A similar argument

shows the reverse inequality. Hence deg(f) = deg(g), as desired.

Let us now recall the notion of a minimal polynomial. For any field J and any a ∈ J,
define I(a) = {f ∈ J [π1] : f(a) = 0}. We have:

Definition 1.3.2. Let J/K denote an algebraic field extension. Then the minimal

polynomial of an element a ∈ J is the unique monic polynomial ma ∈ K[π1] such that

ma generates the ideal I(a) ∩K[π1] of K[π1].

Proof. Our goal is to show that I(a)∩K[π1] is generated by a unique monic polynomial

in K[π1]. To see existence, note that K[π1] is a principal ideal domain, hence the ideal

I(a)∩K[π1] is generated by some f ∈ K[π1]. Since J/K is an algebraic field extension,

hence I(a) ∩ K[π1] is non-zero, and hence f is non-zero. Thus f has a degree, call it

n, and the coefficient c of πn1 in f is non-zero. Since c is non-zero, it is a unit, so f/c
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is a monic polynomial that generates the same ideal as f , namely I(a) ∩K[π1]. To see

uniqueness, assume that f and g are monic polynomials that generate I(a)∩K[π1]. Our

goal is to show that f = g. By Proposition 1.3.1, both f and g have the same degree,

call it n. Since f and g are both monic, hence the coefficient of πn1 in both f and g is 1,

and this the coefficient of πn1 in f−g is 0. Now assume toward a contradiction that f−g
is non-zero, so that in particular, it has a well-defined degree. Since deg(f−g) ≤ n, and

since f − g has no degree n term, hence deg(f − g) < n. A routine computation shows

that (f − g)(a) = 0, and thus f − g ∈ I(a)∩K[π1]. We deduce that f | f − g. But this

implies that deg(f) ≤ deg(f − g), and hence that n ≤ deg(f − g), a contradiction.

Example. The minimal polynomial of
√

2 with respect to R/Q is π2
1 − 2 ∈ Q[π1],

and the minimal polynomial of i with respect to C/R is π2
1 + 1 ∈ R[x].

Definition 1.3.3. Let J/K denote an algebraic field extension. Then an element a ∈ J
is said to be separable (with respect to the extension) if and only if its minimal poly-

nomial ma ∈ K[π1] is a separable polynomial. Otherwise we say that a is inseparable.

Example. The element
√

2 ∈ Q is separable with respect to R/Q, because the

polynomial m√2(x) = x2 − 2 ∈ Q[x] has the property that m√2(x) ∈ Q[x] can be

expressed as a product of degree-1 polynomials. In particular:

m√2(x) = (x−
√

2)(x+
√

2).

Similarly, the element i ∈ R is separable with respect to C/R because the polynomial

mi(x) = x2 + 1 ∈ Q[x] has the property that mi(x) ∈ Q[x] can be expressed as a

product of degree-1 polynomials. In particular:

mi(x) = (x− i)(x+ i).

On the other hand, let K = F2(t) and let J = K. Then m√t = x2 + t, and we’ve already

seen that x2 + t is inseparable. Hence
√
t ∈ J is inseparable with respect to J/K.

Summarizing what we’ve done so far, we’ve defined a notion of separability for

univariate polynomials over K, which strengthens the condition of having no repeated

factors. We’ve defined the notion of a perfect field to exactly mean that this distinction

makes no difference. We then used the notion of a separable polynomial to define the

notion of a separable element of an algebraic field extension. This can be applied, in

particular, to the algebraic field extension K/K, and we can ask what the separable

elements of this field extension are, and in particular whether there’s any elements of K
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that fail to separable. If K is perfect, the answer turns out to be ‘no’, as the following

result shows.

Definition 1.3.4. An algebraic field extension J/K is said to be a separable extension

if and only if every a ∈ J is separable over the extension, and purely inseparable if and

only if every a ∈ J \K is inseparable over the extension.

Remark. The same terminology will be used for morphisms of fields; in particular, a

morphism f : K → J is said to be separable if and only if the field extension J/img(f)

is separable, and purely inseparable if and only if this extension is purely inseparable.

Proposition 1.3.5. Let K denote a field. Then K is perfect if and only if K/K is a

separable extension.

Proof. (⇒). Assume K is perfect and consider a ∈ K. Our goal is to show that the

corresponding minimal polynomial ma ∈ K[π1] is separable. Since ma is a minimal

polynomial (this is straightforward to prove), hence in particular ma has no repeated

factors. But since K is perfect, this implies that ma is separable, as desired.

(⇐). Assume K/K is not a separable extension. Our goal is to show that K

is imperfect. That is, it is enough to find an example of an inseparable polynomial

f ∈ K[π1] such that f has no repeated factors. Since K/K is not a separable extension,

hence there exists a ∈ K such that ma is inseparable. But since ma is irreducible, hence

it has no repeated factors. Thus f := ma provides the desired example.

Now recall the definition of a Galois extension.

Definition 1.3.6. A Galois extension is an algebraic field extension J/K that is normal

and separable.

Corollary 1.3.7. Let K denote a field. Then K is perfect if and only if K/K is a

Galois extension.
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This means, among other things, that if K is a perfect field, then infinite Galois

theory can be applied to the field extension K/K. According to Silverman [43, p.1],

the assumption that K is a perfect field is unnecessary for much of the theory of

elliptic curves, but that also that things are simpler in this case. We’ll therefore follow

Silverman in studying elliptic curves over perfect fields only, as this prevents us from

having to frown at every result we wish to cite to wonder if it really holds in the full

generality of K being an arbitrary field. Consequently, we’ll make use of the following

conventions:

K is a perfect field.

K is its algebraic closure

GK/K is the Galois group of the field extension K/K

If more time was available, it would be interesting to explore the question: ‘to

what extent is the assumption that K is perfect actually necessary for the theory that

follows?’

1.4 Degree of a morphism of fields

Degree is usually conceived as a property of field extensions, but it is slightly more

convenient for our purposes to define degree as a property of morphisms between fields,

as opposed to the more usual definition in which it’s a property of field extensions.

From this viewpoint, the degree of a morphism of fields measures the extent to which

it fails to be surjective.

Definition 1.4.1. If f : K → L is a morphism of fields, then the degree of f , denoted

deg(f) is the dimension of L as a K-module. This is sometimes written [L : K] when

the morphism f is clear from the context.

Proposition 1.4.2. If f : K → L and g : L → M are morphisms of fields, then

deg(g ◦ f) = deg(f) · deg(g).

Proof. Our goal is to show that the dimension of M as a K-module is equal to deg(f) ·
deg(g). Let ϕ : Kdeg(f) → L denote a K-linear isomorphism. Let ψ : Ldeg(g) → M

denote an L-linear isomorphism. Then the composite

Kdeg(f)·deg(g) → (Kdeg(f))deg(g)
ϕdeg(g)

−−−−→ Ldeg(g) ψ−→M
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is a K-linear isomorphism Kdeg(f)·deg(g) →M. Hence the dimension of M as a K-module

is deg(f) · deg(g), as desired.

The notion of degree can be decomposed into separable and inseparable parts. In

particular, it turns out that the separable elements of a field extension J/K form

an intermediate subfield of the extension; the interested reader is directed to Steve

Mitchell’s notes on the subject [28]. This means, in particular, that given a morphism

of fields f : K → J, we can factor f as a composite

K
f−→ f sep ↪→ J,

where f sep is defined as the intermediate subfield of J/img(f) consisting of all elements

of J that are separable over this extension. This factorization of f into two parts allows

us to break up its degree into separable and inseparable parts, as described below.

Definition 1.4.3. If f : K → L is a morphism of fields, then the separable degree of

f , denoted degs(f), is the degree of the map f : K → f sep, and the inseparable degree

of f , denoted degi(f), is the degree of the inclusion f sep ↪→ L.

Proposition 1.4.4. Let f : K → L denote a morphism of fields. Then:

deg(f) = degs(f)degi(f).

Proof. This is a consequence of applying Proposition 1.4.2 to the following composite:

K
f−→ f sep ↪→ L.

An easy but helpful observation observation is that f is separable if and only if

degs(f) = deg(f).

1.5 Transcendence degree

Recall that given a morphism of fields f , the degree of f measures the extent to which

f fails to be surjective. Unfortunately, the notion of degree can sometimes gives unin-

formative results. For instance, the inclusions R → R(x) and R → R(x, y) both have

degree ℵ0, yet clearly the former ‘fails to be surjective’ to a much greater extent than

the latter. In situations such as this, the notion of transcendence degree can be useful.

The material in this section is mainly from Alex Wright’s notes on the subject [46].
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Definition 1.5.1. Given a K-ring R, a subset {r1, · · · , rn} of R is said to be alge-

braically independent over K if and only if for all f ∈ K[π1, . . . , πn], we have

f(r1, . . . , rn) = 0→ f = 0.

Given a morphism of fields ϕ : K → L, a subset {l1, . . . , ln} of ϕ is said to be

algebraically independent over ϕ if and only if it is algebraically independent over K

when L is made into a K-algebra via ϕ.

Proposition 1.5.2. Every K-ring has a maximal subset of elements that are alge-

braically independent over K.

Proof. This is a straightforward application of Zorn’s Lemma. The details are left to

the reader.

Definition 1.5.3. Let ϕ : K → L denote a morphism of fields. If L has a maximal

algebraically independent subset over ϕ that is finite with n elements, then every max-

imal algebraically independent subset over ϕ has exactly n elements, and we refer to n

as the transcendence degree of ϕ.

Remark. The degree of a morphism of fields should probably have been called

its linear degree, and the transcendence degree should probably have been called its

algebraic degree. It’s a bit late to change things now, but being aware of this analogy

can aid the memory a bit. It’s also helpful when talking to other mathematicians; ‘no

sorry, I meant its linear degree’ instantly conveys the intended meaning.

Proof. This is proven in Alex Wright’s notes [46, p.4].

Corollary 1.5.4. The transcendence degree of the inclusion of K into K(π1, . . . , πn)

is exactly n.
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Chapter 2

Closure operators and Galois

connections

The material in this section is mainly standard results, but it’s also interspersed with

my own thinking about the Galois connection (I, V ) at the heart of classical algebraic

geometry, and the closure operators it induces. Fundamentally, it is general facts about

Galois connections that allow the classical theory of the Zariski topology to function,

and this point of view has influenced how I look at Galois connections in general.

Consequently there is no one source where most of this material comes from. However,

the interested reader is directed to the article A primer on Galois connections [18]

where I learned much of the material. Davey and Priestley’s textbook on lattices and

order theory [15] was also very helpful, and contains, among other things, the relevant

lattice-theoretic preliminaries.

2.1 Closure Operators

The notion of closure is ubiquitous in mathematics, and especially helpful in the context

of algebraic geometry, where several different notions of closure are often in play at the

same time. For this reason, it will be helpful to have a general framework available.

Definition 2.1.1. Given a poset P and a function f : P → P , we make the following

definitions.

(a) Elements x ∈ P satisfying f(x) = x are called fixed points of f. We write

fix(f) = {x ∈ P : f(x) = x}.
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(b) Elements x ∈ P satisfying f(x) ≤ x are said to be closed with respect to f. We

write

C(f) = {x ∈ P : f(x) ≤ x}.

(c) The function f is said to be inflative if and only if for all x ∈ P we have f(x) ≥ x.

(d) The function f is said to be idempotent if and only if for all x ∈ P we have

f(f(x)) = f(x), which can be written more tersely as img(f) ⊆ fix(f).

(e) The function f is said to be sub-idempotent if and only if for all x ∈ P we have

f(f(x)) ≤ f(x). More tersely, this can be written img(f) ⊆ C(f).

It’s clear that fix(f) ⊆ C(f). The following is a partial converse to this statement.

Proposition 2.1.2. If f : P → P is an inflative function, then C(f) ⊆ fix(f).

Proof. Assume f is inflative and consider x ∈ C(f). Our goal is to show that x ∈ fix(f).

Since x ∈ C(f), hence f(x) ≤ x. Since f is inflative, hence x ≤ f(x). Hence x = f(x).

We deduce that x ∈ fix(f), as desired.

Every idempotent function is clearly sub-idempotent. The next result is a partial

converse to this statement.

Proposition 2.1.3. Suppose f : P → P is inflative and monotone. Then if f is

sub-idempotent, then f is idempotent.

Proof. Consider x ∈ P. Our goal is to show that f(f(x)) = f(x). Since f is sub-

idempotent, we have f(f(x)) ≤ f(x). Since f is inflative, we have x ≤ f(x). Since f is

monotone, we deduce that f(x) ≤ f(f(x)). Thus f(f(x)) = f(x), as desired.

Definition 2.1.4. Let f : P → P denote a monotone mapping. Then the following

are equivalent:

(a) f is inflative and sub-idempotent

(b) f is inflative and idempotent

(c) For all x, y ∈ P we have x ≤ f(y) ⇐⇒ f(x) ≤ f(y).

We call a monotone mapping satisfying any (and hence all) of these conditions a closure

operator on X.
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Proof. The equivalence between the first two conditions follows from Proposition 2.1.3.

Hence we must show that the property defined by the first two conditions both implies

and is implied by the last condition. For the (⇐) direction, observe that by taking

y := x in (b) we obtain x ≤ cl(x) and thus deduce that cl is inflative. Taking x := cl(y)

in (b) we obtain cl(cl(y)) ≤ cl(y) and thus deduce that cl is sub-idempotent.

For the (⇒) direction, there are two parts. For the first part, assume x ≤ cl(y).

Our goal is to show that cl(x) ≤ cl(y). Applying cl to both sides of our premise, we

deduce cl(x) ≤ cl(cl(y)). By sub-idempotency, we infer that cl(x) ≤ cl(y), as desired.

For the second part, assume cl(x) ≤ cl(y). Our goal is to show that x ≤ cl(y). But from

inflativeness, we have x ≤ cl(x), and by transitivity the desired result follows.

There are many closure operators of relevance to the study of a ring R. One of the

most basic is the closure operator P(R) → P(R) that assigns to each X ∈ P(R) the

smallest subring that includes X. Even more fundamental is the closure operator that

assigns to each X ∈ P(R) the smallest ideal that includes X.

The above examples suggest a general way of obtaining closure operators. In partic-

ular, the closure of a thing with respect to a desirable property can usually be defined

as the smallest thing satisfying the desired property that includes the entity of interest.

This way of thinking leads to a completely general characterization of closure operators

that we now describe.

Definition 2.1.5. Given a poset P and a subset S ⊆ P, define that S induces a closure

operator if and only if for all p ∈ P, there is a smallest s ∈ S such that p ≤ s. In this

case, we write clS(p) for the smallest such s. We refer to clS as the closure operator

induced by S.

It remains to be shown that this is indeed a closure operator.

Proposition 2.1.6. For all s ∈ S, we have clS(s) = s.

Proof. This follows immediately from the definition.

Proposition 2.1.7. The function clS : P → P defined above is indeed a closure

operator.

Proof. Monotonicity is clear. For inflativeness, note that since clS(x) is the smallest

s ∈ S with x ≤ s, hence it’s clear that x ≤ clS(x). It remains to show that clS(clS(x)) ≤
clS(x). But since clS(x) ∈ S, this follows from Proposition 2.1.6.
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We can also go the other way, and obtain from any closure operator cl : P → P a

corresponding subset of P . Indeed, these are inverse processes, as the next Proposition

shows.

Proposition 2.1.8. Let P denote a poset. Then:

(a) For all S ∈ P(P ), if S induces a closure operator, then C(clS) = S.

(b) For all closure operators cl : P → P , we have clC(cl) = cl.

Proof. Part (a). Suppose S ∈ P(P ) induces a closure operator. Our goal is to show

that for all x ∈ P, we have

x ∈ S ⇐⇒ clS(x) ≤ x.

For the forward direction, assume x ∈ S. Then by Proposition 2.1.6, we have

clS(x) = x. So the weaker statement clS(x) ≤ x is immediate. For the backward

direction, assume clS(x) ≤ x. We wish to show that x ∈ S. Suppose toward a contra-

diction that x /∈ S. Then since clS(x) ∈ S, we deduce that clS(x) 6= x. Since clS is

a closure operator, this implies clS(x) > x. But this contradicts our hypothesis that

clS(x) ≤ x.

Part (b). Consider p ∈ P. We must show that clC(cl)(p) = cl(p). There are two

directions. To show that clC(cl)(p) ≤ cl(p), it suffices to show that clC(cl)(cl(p)) ≤ cl(p).

But by Proposition 2.1.6 is immediate. For the other direction, we must show that

clC(cl)(p) ≥ cl(p). Assume q ≥ p and q ∈ C(cl). Our goal is to show that q ≥ cl(p). Since

q ∈ C(cl), we have q ≥ cl(q). Since q ≥ p, we have cl(q) ≥ cl(p). Putting these two

inequalities together, we deduce q ≥ cl(p), as required.

We have established a bijective correspondence between closure operators on a poset

P and those subsets of P that induce closure operators. But recall that to prove that

each subset S of a ring R generates a subring, we usually take the intersection of all

subrings that include S, in order to establish existence. A similar technique is used in

topology; to show that every subset of a topological space has a closure, we take the

intersection of the closed sets that include it. This kind of thinking can be generalized

to yield an improved characterization of closure operators in the special case where P

is a complete lattice. The following lemma is helpful in this regard.

Proposition 2.1.9. Let f : P → Q denote an order-preserving map between complete

lattices. Then for all sets I and all functions I
ϕ−→ P, we have

f

(∧
i∈I

ϕi

)
≤
∧
i∈I

f(ϕi).
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Proof. Since ∀j ∈ I :
∧
i∈I ϕi ≤ ϕj, we deduce ∀j ∈ I : f

(∧
i∈I ϕi

)
≤ f(ϕj). It follows

that f
(∧

i∈I ϕi
)
≤
∧
j∈I f(ϕj), as desired.

Proposition 2.1.10. Let P denote a complete lattice and S ⊆ P denote a subset

thereof. Then S induces a closure operator if and only if S is closed under arbitrary

meets.

Proof. (⇒). Suppose S induces a closure operator. Consider a set I and a function

I
ϕ−→ S. Our goal is to show that

∧
i∈I ϕi ∈ S, where the meet above is taken in

P . Since C(clS) = S, it suffices to show that
∧
i∈I ϕi ∈ C(clS). Thus our goal is

to show that clS
(∧

i∈I ϕi
)
≤
∧
i∈I ϕi. By Proposition 2.1.9, it suffices to show that∧

i∈I clS(ϕi) ≤
∧
i∈I ϕi. But since ∀ ∈ I : ϕi ∈ S, we have ∀i ∈ I : clS(ϕi) = ϕi by

Proposition 2.1.6 above. This proves the above inequality.

(⇐). Suppose S is closed under meets. Our goal is to show that S induces a closure

operator. Consider p ∈ P. We seek to show that there is a smallest s ∈ S such that

p ≤ s. Define s :=
∧
q∈S:q≥p q. We must prove firstly that p ≤ s, and secondly that p ≤ t

and t ∈ S imply s ≤ t. To see that p ≤ s, we make the following computation:

p ≤ s

⇐⇒ p ≤
∧

q∈S:q≥p

q

⇐⇒ ∀q ∈ S(q ≥ p→ p ≤ q)

⇐⇒ True

So assume p ≤ t and t ∈ S. We must show that s ≤ t. That is, we must show that∧
q∈S:q≥p ≤ t. That is, we must show that t ≥ p and that t ∈ S. But these are precisely

our hypotheses.

2.2 Galois connections

There is another, quite different way of obtaining closure operators with special sig-

nificance for algebraic geometry. In particular, closure operators arise naturally from

Galois connections, defined below:

Definition 2.2.1. Given posets X and Y , a Galois connection (f, g) from X to Y

consists of order-reversing maps f : X → Y and g : Y → X such that either and hence

both of the following conditions hold:
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(a) f(x) ≥ y ⇐⇒ x ≤ g(y)

(b) y ≤ f(g(y)) and x ≤ g(f(x))

Proof. (⇒). We may take x := g(y) in (a). This yields f(g(y)) ≥ y ⇐⇒ g(y) ≥ g(y).

We thus conclude that y ≤ f(g(y)). Similarly, we may take y := f(x), thereby obtaining

x ≤ g(f(x)).

(⇐). Assume f(x) ≥ y. Our goal is to show that x ≤ g(y). Applying the order-

reversing function g to both sides of our premise, we deduce g(f(x)) ≤ g(y). Using (b)

we obtain x ≤ g(y), as desired. The other direction is similar.

The following definition gives us a general mechanism for obtaining Galois connec-

tions.

Definition 2.2.2. Given sets S and T and a relation R ∈ P(S×T ), we obtain a Galois

connection

(R∀, R
∀) : P(S)→ P(T )

given as follows:

R∀(X) = {y ∈ T : ∀x ∈ X,R(x, y)}, R∀(Y ) = {x ∈ S : ∀y ∈ Y,R(x, y)}.

Proof. The first part is to show that R∀ and R∀ are order-reversing. We’ll prove the

former, as the latter is similar. Consider X0, X1 ∈ P(S) satisfying X0 ⊆ X1. Our

goal is to show that R∀(X0) ⊇ R∀(X1). So consider y ∈ R∀(X1). We must show that

y ∈ R∀(X0). That is, we must show that ∀x ∈ X0, R(x, y). Since X0 ⊆ X1, it suffices to

show that ∀x ∈ X1, R(x, y). But this is precisely the statement that y ∈ R∀(X1), which

is true by hypothesis. We deduce that R∀ is order-reversing. In a similar way, one can

check that R∀ is order-reversing.

Let us now verify (a) from the definition of a Galois connection. Focusing on the

left-hand side, we obtain:

R∀(X) ⊇ Y

⇐⇒ {y ∈ T : ∀x ∈ X,R(x, y)} ⊇ Y

⇐⇒ ∀y ∈ Y, ∀x ∈ X,R(x, y)
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Focusing on the right-hand side, we obtain:

X ⊆ R∀(Y )

⇐⇒ X ⊆ {x ∈ S : ∀y ∈ Y,R(x, y)}
⇐⇒ ∀x ∈ X, ∀y ∈ Y,R(x, y)

But as these are equivalent, this completes the proof.

Let us now consider some examples. Let E/F denote a field extension. An auto-

morphism of E/F is a field automorphism ϕ of E such that for all x ∈ F we have

ϕ(x) = x. Recall that the group of field automorphisms of E/F is called its Galois

group, denoted GE/F . Define a relation as follows:

fix ∈ P(GE/F × E)

fix(ϕ, x) ⇐⇒ ϕ(x) = x.

The forward map fix∀ : P(GE/F ) → P(E) turns a set of automorphisms of E/F into

its set of fixed points and is usually denoted EH := fix∀(H). The backward map fix∀ :

P(E) → P(GE/F ) turns a set of elements of E into the set of automorphisms of E/F

that fixes every element; there is no special notation for this.

Proposition 2.2.3 (Fundamental Theorem of Galois Theory, General Version). If a

finite field extension E/F is normal and separable, then for all H ⊆ GE/F , we have

that (fix∀ ◦ fix∀)(H) is the smallest group that includes H, and for all sets S ⊆ E, we

have that (fix∀ ◦ fix∀)(S) is the smallest intermediate field of E/F that includes S.

We usually restrict the domains and codomains of the aforementioned functions

so that P(E) is replaced by the poset Sub(E/F ) of intermediate fields of E/F and

P(GE/F ) is replaced by the poset Sub(GE/F ) of subgroups of GE/F . Write f∀ and f∀ for

the restricted maps. We obtain a Galois connection

(f∀, f
∀) : Sub(GE/F )→ Sub(E/F ),

and a more traditional way to phrase the fundamental theorem of Galois theory is to

refer only to (f∀, f
∀). For example:

Proposition 2.2.4 (Fundamental Theorem of Galois Theory, Special Version). If a

finite field extension E/F is normal and separable, then for all H ⊆ GE/F , we have

that f∀ and f∀ are inverse functions.
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Another good example of a Galois connection, which is fundamental to classical

algebraic geometry, is obtained as follows: To each natural number n, let us assign a

relation given as follows:

R(n) ∈ P(K[π1, . . . , πn]×Kn
)

R(n) = {(f, P ) : f(P ) = 0}.

Classical algebraic geometry can largely be defined as the study the Galois connection

induced by each R(n). By convention, the corresponding forward map is denoted V n :=

R(n)∀. This notation is chosen because V n turns a set of polynomials (in n-many

variables) into the set of all points in K
n

causing those polynomials to V anish. An

explicit definition is given below:

P(K[π1, . . . , πn])
V n

−−→ P(K
n
)

X
V n

7−−→ {P ∈ Kn
: ∀f ∈ X, f(P ) = 0}.

The backward map is denoted In := R(n)∀. It’s chosen because In turns a set of points

(in n-dimensional space) into the Ideal of all polynomials that vanish on that set:

P(K
n
)

In−−→ P(K[π1, . . . , πn])

Y
In7−−→ {f ∈ K[π1, . . . , πn] : ∀P ∈ Y, f(P ) = 0}.

The proof that In(Y ) is always an ideal, for any set Y ⊆ K
n
, will come later. For

now, let us take these two examples as motivation for developing some general results

about Galois connections. For the rest of this subsection, let X and Y denote posets

and (f, g) : X → Y denote a Galois connection.

Proposition 2.2.5 (Ternary Law). We have:

f ◦ g ◦ f = f, g ◦ f ◦ g = g.

Proof. Let us verify the first identity, as the verification of the second is similar. Using

definition (b) of a Galois connection, we know that g ◦f ≥ id, and post-composing by f

(which is order-reversing) this tells us that f ◦g◦f ≤ f ◦id, which implies f ◦g◦f ≤ f , as

desired. On the other hand, from (b) we also know that f ◦ g ≥ id, and pre-composing

by f tells us that f ◦g ◦f ≥ id◦f, which implies that f ◦g ◦f ≥ f. Taking these results

together, we infer that f ◦ g ◦ f = f, which was our goal.

26



Proposition 2.2.6. Let X and Y denote posets and (f, g) : X → Y denote a Galois

connection. Then g ◦ f is a closure operator on X and f ◦ g is a closure operator on Y .

Proof. Let’s show that g ◦ f is a closure operator on X, since the proof that f ◦ g
is a closure operator on Y is similar. We must show that g ◦ f is order-preserving,

inflative and sub-idempotent. Observe that since f and g and order-reversing, hence

g ◦ f is order-preserving. Observe also that g ◦ f is inflative directly from (b) in the

definition of a Galois connection. Finally note that from Proposition 2.2.5, we know

that f ◦g◦f = f , and hence that g◦f ◦g◦f = g◦f. This shows that g◦f is idempotent,

and hence sub-idempotent.

Definition 2.2.7. An element x ∈ X is said to be closed if and only if x ∈ img(g).

Write C(X) for the set of closed elements of X.

Proposition 2.2.8. We have C(X) = C(g ◦ f).

Proof. For the (⊆) direction, assume x ∈ C(X). Then x ∈ img(g). So we can find y ∈ Y
with x = g(y). Thus g(f(x)) = g(f(g(y))). From the Proposition 2.2.5, we deduce

g(f(x)) = g(y). Hence g(f(x)) = x. So x ∈ C(g ◦ f). For the (⊇) direction, assume

x ∈ C(g ◦ f). Our goal is to show that x ∈ C(g). Hence x ∈ fix(g ◦ f) by Propositions

2.2.6 and 2.1.2. Thus x ∈ img(g ◦ f). Ergo x ∈ img(g), as desired.

Proposition 2.2.9. The closed elements of X induce a closure operator, and the

induced closure operator is g ◦ f.

Proof. Since g ◦ f is a closure operator by Proposition 2.2.6, we deduce that C(g ◦ f)

induces a closure operator. Thus C(X) induces a closure operator, by Proposition 2.2.8,

from which it also follows that clC(X) = clC(g◦f). Hence from Proposition 2.1.8 we have

clC(X) = g ◦ f.

Proposition 2.2.10. If X is a complete lattice, then an arbitrary meet of closed

elements of X is itself closed.

Proof. This is a consequence of the fact that C(X) induces a closure operator by Propo-

sition 2.1.8, and therefore Proposition 2.1.10 applies.

Proposition 2.2.11. Let X and Y denote complete lattice and (f, g) : X → Y denote

a Galois connection. Suppose I is a set and I
x−→ X is a function. Then

f

(∨
i∈I

xi

)
=
∧
i∈I

f(xi).

27



Proof. Consider y ∈ Y . We compute:

y ≤ f

(∨
i∈I

xi

)
⇐⇒ g(y) ≥

∨
i∈I

xi

⇐⇒ ∀(i ∈ I) g(y) ≥ xi

⇐⇒ ∀(i ∈ I) y ≤ f(xi)

⇐⇒ y ≤
∧
i∈I

f(xi)

This completes the proof.
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Chapter 3

Curves and varieties

The material in this chapter mainly comes from Silverman’s book on elliptic curves

[43], Milne’s notes on algebraic geometry [27], and Ash and Gross’s pedagogical book

on the notions of degree and multiplicity [1].

3.1 Affine space and the Zariski topology

Recall that given a collection of polynomials X ⊆ K[π1, . . . , πn], we define the vanishing

set of X as follows:

V n
K(F) = {P ∈ Kn

: ∀f ∈ F : f(P ) = 0}.

Recall also that given a collection of points Y ⊆ K
n
, we define the ideal of polyno-

mials that vanish on Y as follows:

InK(Y ) = {f ∈ K[π1, . . . , πn] : ∀P ∈ Y : f(P ) = 0}.

We’ll usually drop the subscripts (and sometimes superscripts) for brevity. Most of

the basic results about V n and In are special cases of the fact that the pair

(In, V n) : K
n → K[π1, . . . , πn]

is a Galois connection. In particular, from Proposition 2.2.5 we deduce:

V n ◦ In ◦ V n = V n In ◦ V n ◦ In = In.
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And from Proposition 2.2.11, we deduce

V n

(⋃
i∈I

Fi

)
=
⋂
i∈I

V (Fi), In

(⋃
i∈I

Xi

)
=
⋂
i∈I

In(Xi)

Some further facts that do not follow from the general theory of Galois connections

will now be demonstrated. They’re significant because they’ll allow us to obtain a

topology on K
n
.

Proposition 3.1.1. Defining R := K[π1, . . . , πn], we have that V n(R) = ∅.

Proof. Assume toward a contradiction that P ∈ V (R). Since R ⊇ {1}, thus V (R) ⊆
V ({1}). So P ∈ V ({1}). We deduce that 1(P ) = 0, from which it follows that 1 = 0, a

contradiction.

Definition 3.1.2. Given sets F ,G ⊆ K[x1, . . . , xn], define:

FG := {fg : f ∈ F , g ∈ G}.

Proposition 3.1.3. If F ,G ⊆ K[x1, . . . , xn] are collections of polynomials, then:

V (FG) = V (F) ∪ V (G).

Proof. (⊇). Consider x ∈ V (F) ∪ V (G). Our goal is to show that x ∈ V (FG). So

consider h ∈ FG. Our goal is to show that h(x) = 0. Since h ∈ FG, we know that

h = fg for some f ∈ F and g ∈ G. Since x ∈ V (F) ∪ V (G), there are two cases. In the

case x ∈ V (F), we have f(x) = 0 and hence f(x)g(x) = 0. Thus h(x) = 0. The case

where x ∈ V (G) is similar.

(⊆). We’ll show the contrapositive. Suppose x /∈ V (F)∪ V (G). Our goal is to show

that x /∈ V (FG). So consider h ∈ FG. Our goal is to show that h(x) 6= 0. Since h ∈ FG,

we know that h = fg for some f ∈ F and g ∈ G. It suffices to show that f(x)g(x) 6= 0.

Since x /∈ V (F) ∪ V (G), thus x /∈ V (F) and x /∈ V (G). Since x /∈ V (F) thus f(x) 6= 0.

Since x /∈ V (G) thus g(x) 6= 0. We deduce that f(x)g(x) 6= 0, as desired.

Definition 3.1.4. Given a natural number n, we write An
K for the set K

n
. We make

this into a topological space by declaring that A ⊆ An
K is (Zariski) closed if and only if

A ∈ img(V n
K).

Remark. The set An
K is called affine space over K and the topology defined above

is called the Zariski topology on affine space.
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Proof. We need to show that the closed sets endow An
K with a closed topology. Since

P(An
K) is a complete lattice in which meets are intersections, hence by Proposition 2.1.10

we deduce that an arbitrary intersection of Zariski-closed subsets of An
K is Zariski-closed.

This also implies that An
K is Zariski-closed in itself, due to the standard convention in

lattice theory that the empty meet is the maximum element of the ambient poset.

Hence it remains to to show (a) that ∅ is Zariski-closed, and (b) that the union of two

Zariski-closed sets is Zariski-closed.

For part (a), it suffices to show that ∅ = V (K[π1, . . . , πn]). But this is Proposition

3.1.1. For part (b), suppose we’re given Zariski-closed sets A,B ⊆ K
n
. We want to

show that A∪B is Zariski-closed. We know that A = V n(F) and B = V n(G) for some

F ,G ⊆ K[π1, . . . , πn]. Thus we wish to show that V (F)∪V (G) is Zariski-closed. Hence

it suffices to show that V (F) ∪ V (G) = V (FG). But this is the result of Proposition

3.1.3.

Proposition 3.1.5. Given A ⊆ An
K , the set A is closed if and only if V (I(A)) = A.

Proof. This is a consequence of Proposition 2.2.9.

Having looked at the function V that builds vanishing sets, let us now take a look

at the function I which builds ideals. The following is trivial, but we include it for the

sake of completeness.

Proposition 3.1.6. For all A ⊆ An
K , the set I(A) ⊆ K[π1, . . . , πn] is a radical ideal.

Proof. We must show the following:

(a) If f, g ∈ I(A), then f − g ∈ I(A).

(b) If a ∈ K and f ∈ I(A), then af ∈ I(A).

(c) If fn ∈ I(A) then f ∈ I(A).

For (a), assume f, g ∈ I(A). Consider P ∈ A. Our goal is to show that (f−g)(P ) =

0. It’s enough to show that f(P ) = 0 and that g(P ) = 0. But these are true by

hypothesis. For (b), assume f ∈ I(A). Our goal is to show that af ∈ I(A). So consider

P ∈ A. Our goal is to show that (af)(P ) = 0. It is enough to show that f(P ) = 0. But

this is true by hypothesis. For (c), assume fn ∈ I(A). Our goal is to show that f ∈ I(A).

Consider P ∈ A. It is enough to show that f(P ) = 0 We know that (f(P ))n = 0. But

since K is a field, it is an integral domain, hence a reduced ring, and hence has no

nilpotent elements. We deduce that f(P ) = 0, as desired.
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The converse to the above result is also true, but much harder to prove.

Proposition 3.1.7 (Semirational Nullstellensatz). For all ideals a ⊆ K[π1, . . . , πn], we

have I(V (a)) =
√
a.

Proof. This is Theorem 11.9 in Pete L. Clarke’s notes [11, p.210].

Remark. The above theorem would fail if we were to look for solutions in Kn instead

of K
n
. For example, define f ∈ R[π1] by writing f(x) = x2 + 1.. Then V (f) ∩ R is

empty. Hence I(V (f) ∩ R) is R[x], but
√

(f) is (f).

Proposition 3.1.8. For all radical ideals a ⊆ K[π1, . . . , πn], there exists A ⊆ An
K such

that the set I(A) = a.

Proof. Define A = V (a). Our goal is to show that I(V (a)) = a. By Proposition 3.1.7,

it is enough to show that
√
a = a. But since a is a radical ideal, this follows from

Proposition 2.1.6.

We’ve seen abstractly that radical ideals and Zariski-closed sets are somehow the

same, but let’s take a moment to look at this correspondence more concretely. Consider

the polynomial f ∈ R[π1, π2] given by f(x, y) = x2−y2. To see that this is a radical ideal,

assume toward a contradiction that there exist a, b, c ∈ R such that f = (ax+ by+ c)2.

Equating coefficient, we see immediately that a2 = 1 and that b2 = 1 and that c2 = 0.

Hence f = (x + y)2 or f = (x − y)2, and both possibilities lead to a contradiction.

Hence it’s a radical ideal.

Let’s now compute the vanishing set, writing {Φ} as shorthand for {(x, y) ∈ C2 : Φ}.

V (f) = {x2 − y2 = 0}
= {(x− y)(x+ y) = 0}
= {x− y = 0} ∪ {x+ y = 0}.

So the radical ideal (π2
1 − π2

2) corresponds to two lines crossing at the origin un-

der the above correspondence. The two lines are in some sense ‘irreducible’ pieces,

where irreducibility ought to be a condition like connectedness, but stronger (since the

aforementioned V (f) consisting of two lines crossing ought not to be irreducible). The

question naturally arises of whether there’s a good definition of irreducibility in this

context, and if so, whether any Zariski-closed set can be decomposed as a union of

irreducible piece like this. The answer to both questions is ‘yes.’
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3.2 Noetherian spaces and Irreducibility

Definition 3.2.1. Given a topological space X, we say that X is irreducible if and

only if it is non-empty, and for all proper closed sets A,B ⊆ X, from X = A ∪ B we

can infer X = A or X = B.

Proposition 3.2.2. Given a Zariski-closed subset A of An
K , the following are equivalent:

1. A is irreducible in the Zariski topology

2. A = V (p) for some prime ideal p

3. I(A) is a prime ideal

Proof. (1) ⇒ (3). Assume A is irreducible. Our goal is to show that I(A) is prime.

Consider f, g ∈ K[π1, . . . , πn]. Assume fg ∈ I(A). Our goal is to show that f ∈ I(A)

or g ∈ I(A). Since fg ∈ I(A), hence {fg} ⊆ I(A). Hence we deduce that V ({fg}) ⊇ A

by the equivalence proved in Definition 2.2.1, because (In, V n) is a Galois connection.

Hence we may argue as follows:

A = A ∩ V (fg)

= A ∩ (V (f) ∪ V (g)) by Proposition 3.1.3

= (A ∩ V (f)) ∪ (A ∩ V (g))

Since A is irreducible, we deduce that A = A∩V (f) or A = A∩V (g). Hence A ⊆ V (f)

or A ⊆ V (g). Again exploiting Definition 2.2.1, we infer that {f} ⊆ I(A) or {g} ⊆ I(A),

as desired. Hence f ∈ I(A) or g ∈ I(A), as desired.

(3) ⇒ (1). Assume I(A) is a prime ideal. Assume toward a contradiction that

A is not irreducible in the Zariski topology. Then there exist Zariski-closed proper

subsets of A, call them X and Y , such that A = X ∪ Y. Hence I(A) = I(X ∪ Y ).

Thus I(A) = I(X) ∩ I(Y ). Thus I(A) ⊇ I(X) · I(Y ). Since I(A) is prime, we deduce

I(A) ⊇ I(X) or I(A) ⊇ I(Y ). Hence A ⊆ X or A ⊆ Y. In the first case, we obtain a

contradiction because, since X is a proper subset of A, hence A ) X. The second case

is similar.

(2) ⇒ (3). If A = V (p) for some prime ideal p, then I(A) = I(V (p)). But by

Proposition 3.1.7, this means I(A) =
√
p. But since every prime is a radical ideal,

hence I(A) = p, which means that I(A) is a prime ideal.
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(3)⇒ (2). Assume I(A) is a prime ideal. Since A is Zariski-closed, hence A = V (i)

for ideal i. Hence I(A) = I(V (i)). Thus I(A) =
√
i. Hence

√
i is prime. But this implies

that i is prime. Hence A = V (p) for some prime ideal p, namely p := i.

Given a ring R, write Ideal(R) for the set of ideals of R. Given a topological space

X, write C(X) for the closed subsets of X. To show that Zariski-closed sets can be

decomposed as unions of irreducible Zariski-closed sets, the concepts Noetherian ring /

Noetherian space are helpful.

Definition 3.2.3. Let P denote a poset. Then:

(a) P satisfies the ascending chain condition if and only if there are no order-preserving

injections N→ P.

(b) P satisfies the descending chain condition if and only if there are no order-

reversing injections N→ P.

Definition 3.2.4. The meaning of the word ‘Noetherian’ for both rings and topological

spaces is defined below.

(a) A ring R is said to be Noetherian iff the poset Ideal(R) satisfies the ascending

chain condition.

(b) A topological space X is said to be Noetherian iff the poset C(X) satisfies the

descending chain condition.

Proposition 3.2.5 (Hilbert’s Basis Theorem). If a ring R is Noetherian, then so too

is the polynomial ring R[x].

Proof. This Theorem 2.7 in [27, p.37].

Proposition 3.2.6. For each natural number n, the space, the ring K[π1, . . . , πn] is

Noetherian.

Proof. This can be proved by induction, using Proposition 3.2.5 for the inductive step.

Proposition 3.2.7. For each natural number n, the space An
K is Noetherian.

Proof. Assume toward a contradiction that An
K were non-Noetherian. Then there ex-

ists an injective order-reversing mapping j : N → C(An
K). Hence the injection I ◦ j :

N → Ideal(K[π1, . . . , πn]) is order-preserving. Hence the ring K[π1, . . . , πn] is non-

Noetherian. But this contradicts Proposition 3.2.6.
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Proposition 3.2.8. Let X denote a Noetherian topological space. Then there is a

unique finite subset F ⊆ C(X) such that the following hold.

(a) Every C ∈ F is irreducible.

(b) F is an antichain, meaning that if A,B ∈ F, then from A 6= B we can deduce

A 6⊆ B and B 6⊆ A.

Proof. This is Proposition 2.31 in Milne [27, p.45].

For example, letting X = V2(π
2
1 − π2

2) denote the space we looked at previously

(with the subspace topology coming from A2
K), the F in the above theorem is

{V (π1 − π2), V (π1 + π2)}.

It’s worth noting that although the above set appears to have two elements, in charac-

teristic 2 it only has one element.

3.3 Affine varieties and regular mappings

Now that we know vanishing sets can be expressed as a finite union of certain ba-

sic building blocks, it makes sense to focus attention on this building blocks. This is

what the notion of an affine varieties does for us. However, if we wish to follow Sil-

verman’s approach, a further issue needs to be addressed. Under our definitions, the

set V 2
Q(π2

2 − 2π2
1) is irreducible. Geometrically, this is because, although it consists of

two lines crossing at the origin, since those lines have irrational slope, the set cannot

be decomposed as a union of the two lines, because those lines aren’t the vanishing

sets of any polynomials with coefficients in Q. Hence from our point of view, this set

is irreducible. However, Silverman defines things a little differently see [43, p.3], for

example. Therefore, in order to ensure our approach better coincides with Silverman’s,

need to introduce the notion of geometric irreducibility.

Definition 3.3.1. Given a subset of affine space S ⊆ An
K , we write S for exactly the

same set, but regarded as a subset of the space An
K

, which has the same elements but

a different topology.

Definition 3.3.2. A set S ⊆ An
K is geometrically irreducible if and only if S ⊆ An

K
is

irreducible.
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Remark. Our terminology above follows Poonen [36, p.7]. In general, a set S ⊆ An
K

is sometimes said to be geometrically whatever if and only if S is whatever, and the

above definition is the special case where the ‘whatever’ is irreducibility.

For example, the irreducible set V 2
Q(π2

2−2π2
1) considered earlier is not geometrically

reducible, because:

V 2
Q(π2

2 − 2π2
1) = V 2

Q(π2
2 − 2π2

1) = V 2
Q(π2 −

√
2π1) ∪ V 2

Q(π2 +
√

2π1).

An interesting question, not pursued in this thesis, is: ‘To what extent does the

theory of elliptic curves generalize to curves that are merely assumed irreducible, not

geometrically irreducible?’ We will not pursue this question much in this thesis, but it

could easily be used as a springboard for further learning.

Definition 3.3.3. An affine variety X is a geometrically-irreducible subset of An
K .

Every affine variety X ⊆ An
K can be regarded as a topological space with the

subspace topology. Sometimes it’s helpful to move to the algebraic closure; given X ⊆
An
K , we’ll write X for exactly the same set, but regarded as a subspace of An

K
, and

equipped with the subspace topology induced by this latter inclusion.

Affine varieties can be regarded up to equality, but it is usually more interesting to

regard them up to isomorphism. To define a useful notion of morphism between affine

varieties, a reasonable first attempt would be to try using continuous mappings. We

quickly realize, however, that these are far too general. For example, the closed subsets

of A1
C are precisely the finite subsets of C and C itself. But this means that for every

function f : C → C, if every z ∈ C has the property that f−1(z) is finite, then f is

continuous when viewed as a mapping A1
C → A1

C. This is far too general to be useful.

Instead, we define morphisms of affine varieties as lists of formal polynomials.

Definition 3.3.4. If A ⊆ K
a

and B ⊆ K
b

are affine varieties, then a regular mapping

f : A→ B is a sequence (f1, . . . , fb) of elements of K[π1, . . . , πa] such that for all a ∈ A
we have (f1(a), . . . , fb(a)) ∈ B.

To reduce the notational overhead, we’ll identify f and (f1) whenever b = 1 in the

above definition. For an example of a regular mapping, let A = {x, y ∈ C2 : x2+y2 = 1}.
Then we get a regular mapping (f1, f2) from A to itself by defining f1(x, y) = x2 − y2

and f2(x, y) = 2xy. However, the above definition is somehow incomplete, because it

doesn’t specify what it means for two regular mappings to be equal. Let’s rectify that:
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Definition 3.3.5. Two regular mappings

f, g : A→ B

are equal if and only if for all a ∈ A, we have f(a) = g(a). We write Hom(A,B) for the

set of regular mappings from A to B modulo the aforementioned equality relation.

Returning to the previous example, we see that the regular mapping (f 1, f2) from

A to itself given by f 1(x, y) = 2x2− 1 is equal to the mapping (f1, f2) described above.

The important thing, then, is that two regular functions f1, f
1 ∈ Hom(A,A1

K) are equal

if and only if the function f 1 − f1 ∈ Hom(A,A1
K) equals the zero function. Equality

of regular functions A → B can then be reduced to an entrywise application of this

observation. This motivates the following definition:

Definition 3.3.6. Given affine variety A, the coordinate ring K[A] is defined as follows:

K[A] := Hom(A,A1
K).

Remark. We’ll write K[A] as shorthand for K[A], since the meaning is clear. Ex-

plicitly:

K[A] := Hom(A,A1
K

).

Proposition 3.3.7. If A ⊆ An
K is an affine variety, then

K[A] ∼=
K[π1, . . . , πn]

I(A)
.

Proof. Define a surjective homomorphism as follows:

K[π1, . . . , πn]
ρA−−→ K[A]

f
ρA7−−→ f.

Our goal is to use the definition of equality of regular mappings an affine variety A show

that the kernel of ρ is precisely I(A). Consider fixed but arbitrary f ∈ K[π1, . . . , πn].

Our goal is to show that

f ∈ ker(ρA) ⇐⇒ f ∈ I(A).
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We have:

LHS ⇐⇒ f ∈ ker(ρA)

⇐⇒ ρA(f) = 0

⇐⇒ V (f) ⊇ A

⇐⇒ f ∈ I(A) by Definition 2.2.1

⇐⇒ RHS.

We deduce that ker(ρA) = I(A), as desired.

As a special case, we obtain:

Corollary 3.3.8. For each natural number n, we have:

K[An
K ] = K[π1, . . . , πn].

It’s also worth noting that we have a fairly explicit description of Hom(A,Ab
K) in

terms of coordinate rings. In particular:

Proposition 3.3.9. For each natural number b,

Hom(A,Ab
K) = K[A]b.

Proof. Both Hom(A,Ab
K) = Hom(A,A1

K)b and Hom(A,A1
K) = K[A] are true by defini-

tion.

3.3.1 Localization and multiplicity

Sometimes polynomials aren’t general enough, and we want to allow functions to ‘blow

up’ everywhere except the point P ∈ A that we’re considering. This can be achieved

by localizing at the relevant prime ideal.

Definition 3.3.10. Let P ∈ A denote a point in an affine variety. Then the local ring

at P , denoted K[A]P , is the localization of the ring K[A] at the prime ideal I(P ) of all

polynomials that vanish at P .

In other words, the denominators are required to not vanish at P . In symbols:

K[A]P = {f/g : f ∈ K[A], g ∈ K[A], g(P ) 6= 0}
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We’ll also write K(A) for the field of fractions of K[A], which can be defined as the

localization of K[A] at the prime ideal {0K[A]}. Thus:

K[A]P = {f/g : f ∈ K[A], g ∈ K[A], g 6= 0}

Note that, since A is an affine variety, thus I(A) is prime ideal, and hence K[A] is

an integral domain, and thus the function

K[A] −→ K(A)

f 7−→ f

1

is injective. We’ll tend to regard K[A] and K[A]P as subsets of K(A) for this reason.

Definition 3.3.11. Let P ∈ A denote a point in an affine variety. Then MP denotes

the set of all polynomials on A that vanish at P . Explicitly:

MP = {f ∈ K[A] : f(P ) = 0}.

Given a point P ∈ A ⊆ An
K , we’ll write P ∈ A for the same point, but regarded as

a subset of A ⊆ An
K
. This means, in particular, that MP = {f ∈ K[A] : f(P ) = 0}.

Proposition 3.3.12. Let P ∈ A denote a point in an affine variety. Then K[A]P is a

Noetherian local ring with maximal ideal MP .

Proof. See [4] for, example.

This allows us to apply Krull’s intersection theorem to understanding the structure

of K[A]P .

Proposition 3.3.13 (Krull’s Intersection Theorem). Let R be a noetherian local ring

with maximal ideal M . Then for all non-zero f ∈ R, there exists an n ∈ N such that

f /∈Mn.

Proof. This is Theorem 1.8 in Milne [27, p.15].

This motivates the following definition:

Definition 3.3.14. Let C be an affine variety and suppose P ∈ C is a smooth point.

Then we obtain a function ordP defined as follows:

K[C]P
ordP−−−→ N ∪ {∞}

f
ordP7−−−→ sup{d ∈ N : f ∈Md

P}.
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We extend this to negative values as follows, whenever such a function exists:

K(C)
ordP−−−→ Z ∪ {∞}

f/g
ordP7−−−→ ordP (f)− ordP (g).

Note that by the Krull Intersection Theorem, the condition ordP (f) =∞ is equiv-

alent to f = 0 for all f ∈ K[C]P . This means that, for non-zero f , we get an integral

value for ordP (f).

3.4 Dimension of an affine variety

Finding a purely topological definition of the dimension of a space that gives the right

answer with respect to the standard topology is, in general, a non-trivial task. The

interested reader is directed to Alan Pear’s authoritative work on the subject [34].

However when the spaces under consideration have the Zariski topology, the notion of

Krull dimension provides a straightforward topological definition.

Definition 3.4.1. Let P denote a poset. Then the length of P is the supremum of all

n ∈ N∪ {∞} such that there exists an injective monotone function η : {0, . . . , n} → P.

Definition 3.4.2. We make the following definitions pertaining to Krull dimension.

(a) Let X denote a Noetherian topological space. Then I(X) denotes the poset of

all irreducible closed subsets of X. The Krull dimension of the space X is the

length of the poset I(X).

(b) Let R denote a ring. Then Spec(R) denotes the poset of all prime ideals of R.

The Krull dimension of R is the length of the poset Spec(R).

For example, the Krull dimension of the space A2
K is easily seen to be at least 2, as

seen by taking η0 equal to a point, η1 equal to a line containing that point, and η2 equal

to A2
K . Similarly, the Krull dimension of the ring K[π1, π2] is easily seen to be at least

2, by taking η0 equal to (0), η1 to equal (π1), and η2 to equal (π1, π2). Of course, by the

correspondence between prime ideals in K[π1, . . . , πn] and irreducible subsets of An
K ,

both viewpoints will always give the same answer. What remains to show is that the

Krull dimension of An
K is no greater than n. This follows from the strong form of Krull’s

principal ideal theorem; the interested reader is directed to Mel Hochester’s notes on

the subject [21]. We’ll take a different approach however, and exploit the connections

between Krull dimension and transcendence degree.
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Proposition 3.4.3. A K-ring R is said to be of finite type if and only if there exists

a finite set {r1, . . . , rn} ⊆ R such that for all r ∈ R, there exists a polynomial f ∈
K[π1, . . . , πn] such that r = f(r1, . . . , rn).

Proposition 3.4.4. Let R denote a K-ring of finite type that is also an integral domain.

Then the transcendence degree of the field of fractions of R over K equals the Krull

dimension of K.

Proof. See Theorem 5.6.7 in Chapter 5 of Robert Ash’s Commutative Algebra text [2,

p.15].

We’re now in a position to prove:

Corollary 3.4.5. The Krull dimension of An
K is precisely n.

Proof. This is equivalent to showing that the Krull dimension of the ring K[π1, . . . , πn]

is exactly n. Hence by Proposition 3.4.4, it is enough to show that the transcendence

degree of K(π1, . . . , πn) over K is exactly n. But this is Corollary 1.5.4.

Having thus (at least partially) justified Krull dimension as a sensible notion of

dimension for the purposes of algebraic geometry, let us hereafter simply refer to this

as the dimension of an affine variety.

Definition 3.4.6. Given an affine variety X, write dim(X) for the dimension of X.

3.5 Smoothness

Following Silverman [43, p.4], we define smoothness via partial derivatives as follows:

Definition 3.5.1. Given an affine variety X ⊆ An
K , we say that X is smooth at P ∈ X

if and only if there exists a sequence f = (f1, . . . , fr) of elements of K[π1, . . . , πn] such

that firstly, the ideal generated by {f1, . . . , fr} equals IK(X), and secondly, the matrix

of partial derivatives of f evaluated at P has rank n− dim(X).

There are many equivalent characterizations of this property. For example:

Definition 3.5.2. Let X be a variety. A point P ∈ X is smooth if and only if

dimK(MP/M
2
P

) = dim(X).

Proof. This is Proposition 1.7 in Silverman [43, p.5].

Definition 3.5.3. An affine variety A is said to be smooth if and only if every point

P ∈ A is smooth.

41



3.6 Affine curves

Definition 3.6.1. An affine curve is a 1-dimensional affine variety.

For example, the hyperbola V 2
K(π2

1 − π2
2 − 1) is an affine curve. So too is the curve

V 2
K(π2

1 − π3
2) displayed in Figure 4.1; notice this curve has a cusp as the origin, and

is thus an example of a non-smooth curve (the notion of a cusp can be made precise,

though we will not do so here). Another example is the line

V 3(π1, π2) = V 3(π1) ∩ V 3(π2) = {(x, y, z) ∈ K3 : x = 0 ∧ y = 0} = {(0, 0, z) : z ∈ K},

which indicates that affine curves needn’t be a subset of affine 2-space.

Definition 3.6.2. An affine plane curve (or planar affine curve) is an affine curve

that’s a subset of A2
K .

We’ve already seen a few examples; a simple non-example is the set V 2
K(π2

1 − π2
2),

which, being a union of two distinct lines, is not affine variety. The set V 2
Q(π2− 2π2) is

also a non-example; though irreducible, it decomposes into two lines over Q.

3.7 Projective space, projective varieties and pro-

jective curves

Many constructions in geometry become simpler when moved from affine space to pro-

jective space, defined as follows:

Definition 3.7.1. For each natural number n, projective n-space, denoted PnK , is de-

fined as the following quotient

Pn(K) =
{P ∈ Kn+1

: P 6= 0}
(P,Q) 7→ ∃k ∈ K∗ : kP = Q

.

Projective space is a fundamental object of study in algebraic geometry, but a proper

development is out of the scope of this thesis due to time constraints. The interested

reader is directed to Elliptic Tales by Avner Ash and Robert Gross [1], which includes,

among other things, a remarkably pedagogical account of the basics of projective space.

We proceed quickly but informally. A graded ideal of K[π0, . . . , πn] is an ideal

generated by homogeneous polynomials. Given a graded ideal a of K[π0, . . . , πn], we
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write V n
K(a) for the projective vanishing set of a. This allows us to equip projective space

with a topology that is also called the Zariski topology. The geometrically irreducible

sets in this topology are called projective varieties, and those with Krull dimension 1

are called projective curves. A planar projective curve is a projective curve that is also

a subset of P2.

Projective n-space can be covered by charts that are isomorphic to affine n-space. In

this way, we can apply most of what was developed for affine varieties to the projective

world. For example, if given P ∈ X is a point of a projective variety, we say that

P is smooth if and only if there exists a chart containing P such that P is smooth

when regarded as an element of the corresponding affine variety. The reader is directed

to Silverman [43, p.9] for a definition of the basic charts. We can define ordf (P ) in

essentially the same way. We’ll tend to distinguish one of these charts and regard it as

an inclusion to ease the notation. In particular, we regard AnK as a subset of PnK via

the function

K
n −→ Pn

(P1, . . . , Pn) 7−→ [P1 : · · · : Pn : 1].

Given a projective variety X, we follow Silverman [43, p.10] in defining the field of

rational functions on X as K(X) := K(X ∩ An
K). The following result will be helpful:

Proposition 3.7.2. Let f : X \ {P} → Y denote a regular function, where X is

a projective curve and Y is a projective variety. Then there exists a unique regular

function f̃ : X → Y such that f̃ �X\{P}= f.

Proof. See Proposition 6.8 in Hartshorne [20, p.137]

3.8 Regular functions between projective curves

Proposition 3.8.1. Let f : C1 → C2 denote a regular function between projective

curves. Then either f is constant, or f is surjective.

Proof. This is Theorem 2.3 in Silverman [43, p.20].

This allows us to make the following definition.

Definition 3.8.2. Let ϕ : C1 → C2 denote a non-constant regular function between

projective curves. Then we obtain a K-algebra homomorphism K(ϕ) : K(Y )→ K(X)
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by defining

K(ϕ)(f) = f ◦ ϕ

for all f ∈ K(Y ∩Kn
).

Definition 3.8.3. Let ϕ : X → Y denote a regular function between projective curves.

Then ϕ is separable if and only if K(ϕ) is separable.

Proposition 3.8.4. Given two morphisms of projective curves

C1
ϕ−→ C2

ψ−→ C3,

if ϕ and ψ are non-constant, then so too is their composite ψ ◦ ϕ.

Proof. Then they’re both surjective by Proposition 3.8.1, and hence ψ ◦ϕ is surjective.

Thus since C3 is a curve, it strictly more than 1 point, and we deduce that ψ ◦ ϕ is

non-constant.

Proposition 3.8.5. Let ϕ : C1 → C2 denote a morphism of projective curves. If ϕ is

non-constant, then the corresponding morphism of fields K(ϕ) : K(C2) → K(C1) has

finite degree.

Proof. This is Theorem 2.4 in Silverman [43, p.20].

Definition 3.8.6. Let ϕ : C1 → C2 denote a regular function between projective curves.

If ϕ is non-constant, we define the degree, the separable degree and the inseparable

degree of ϕ as follows:

If ϕ is non-constant:

deg(ϕ) := deg(K(ϕ))

degs(ϕ) := degs(K(ϕ))

degi(ϕ) := degi(K(ϕ))

If ϕ is constant:

deg(ϕ) := 0

degs(ϕ) := 0

degi(ϕ) := 0

Remark. By Proposition 3.8.5, these are always natural numbers.

The separable degree of morphism ϕ : C1 → C2 of projective curves is especially

interesting, due to its close connection with the number of points in preimage ϕ−1(Q)

for most Q ∈ C2. In particular:

Proposition 3.8.7. Let ϕ : C1 → C2 denote a nonconstant morphism of projective

curves. Then for all but finitely many Q ∈ C2, we have #ϕ−1(Q) = degs(ϕ).
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Proof. This is Part (b) of Proposition 2.6 in Silverman [43, p.24].

Proposition 3.8.8. Given two morphisms of projective curves

G
ϕ−→ H

ψ−→ I,

the degree function behaves as follows:

deg(ψ ◦ ϕ) = deg(ϕ) · deg(ψ).

Proof. There are two cases. If at least one of ϕ or ψ is constant, then so too is ψ ◦ ϕ,
and hence both sides of the formula are 0 and the equality holds. So assume neither ϕ

nor ψ is constant. Then neither is ψ ◦ ϕ by Proposition 3.8.4. Hence we may argue as

follows:

LHS = deg(ψ ◦ ϕ)

= deg(K(ψ ◦ ϕ)) because ψ ◦ ϕ is non-constant

= deg(K(ϕ) ◦K(ψ))

= deg(K(ϕ)) · deg(K(ψ)) by Proposition 1.4.2

= deg(ϕ) · deg(ψ) because ϕ and ψ are non-constant

= RHS

3.9 Regular differential forms and genus

The material in this section is taken from Andries E. Brouwer’s notes on the subject

[8].

Definition 3.9.1. Let C denote a smooth projective curve. Then a candidate for Ω[C]

is a pair (X, d) such that X is a K[C]-module and d : K[C]→ X is a function satisfying

the following axioms:

1. d(f + g) = df + dg

2. d(fg) = df · g + f · df

3. da = 0 if a ∈ K

Candidates for Ω[C] form a category by defining that a morphism

f : (X, dX)→ (Y, dY )
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is a K[C]-linear map f : X → Y satisfying dY ◦ f = dX .

Remark. The above axioms imply that d : K[C]→ X is K-linear. To see this, note

that since we already know that d is additive, it suffices to show that d(af) = adf for

all a ∈ K. We compute d(af) = da · f + a · df = 0 · f + a · df = adf, as desired.

Definition 3.9.2. The notation Ω[C] is used for the initial object of the resulting

category. Elements of Ω[C] are called regular differential forms on C, the vector space

Ω[C] itself is referred to as the module of regular differential forms on C.

Definition 3.9.3. The genus of a smooth projective curve C is defined as

gc := dimKΩ[C].

In this case where K = C, this agrees with the usual notion of genus used in low-

dimensional topology.

3.10 Divisors and Picard groups

The idea behind the Picard group of an algebraic variety is as follows. Given an

algebraic variety V , we may speak of the vector bundles on V , which can be defined as

locally-free coherent sheaves on V . The one-dimensional vector bundles are called the

line bundles on V , and can be characterized among the vector bundles as follows. We

firstly observe that the category of vector bundles over V is naturally equipped with

a notion of tensor product which makes it into a monoidal category. The unit in the

aforementioned monoidal category is the trivial line bundle, and it can be shown that

an object of this category has an inverse with respect to the tensor product if and only

if it is a line bundle. So in some sense, ‘line bundle’ means ‘invertible element,’ and

the set of isomorphism classes of line bundles over V becomes a group, with the law

of composition taken as the (decategorified) tensor product. This group is called the

Picard group of V , and denoted Pic(V ).

However, although the above viewpoint is conceptually clean, it is also unnecessarily

sophisticated for our purposes here. In particular, it can be shown that for smooth

algebraic curves, the Picard group is naturally isomorphic to the set of all formal Z-

linear combinations of points on the curve, modulo a particular equivalence relations.

We’ll follow Silverman [43, p.28] in taking this approach, as it is simpler to define,

easier to compute with, and for smooth curves, yields exactly the same group. Our

basic definitions are therefore as follows.
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Definition 3.10.1. Let C denote a smooth projective curve. Then:

• A divisor of C is a formal Z-linear combination of elements of C. These form an

abelian group denoted Z〈C〉.

• Given f ∈ K(C)∗, we define div(f) ∈ Z〈C〉 as follows:

div(f) =
∑
c∈C

ordc(f)(c).

• The notion principal divisor on C is the image of the function div : K(C)∗ → Z〈C〉
defined above. In other words, a divisor D ∈ Z〈C〉 is said to be principal if and

only if there exists f ∈ K(C)∗ such that D = div(f).

• The Picard group of C, denoted Pic(C) is the quotient of Z〈C〉 by the subgroup

of principle divisors. The elements of Pic(C) can be thought of as isomorphism

classes of line bundles on C, or equivalently, as divisors of C modulo principal

divisors.

Definition 3.10.2. Given a projective curve C, each divisor D of C gives rise to a

K-module called Riemann-Roch space associated to D, defined as follows:

L(D) = {f ∈ K(C)∗ : div(f) +D ≥ 0} ∪ {0}.

Proposition 3.10.3. Given a projective curve C and a divisor D, the space L(D) is

finite-dimensional K-vector space.

Proposition 3.10.4. See Proposition 5.2 in Silverman [43, p.34].

A deep principle called the Riemann-Roch theorem controls the dimension of Riemann-

Roch space. For our purposes here, we’ll just focus on the following corollary of the full

theorem. Define that the degree of a divisor D, denoted deg(D), is the sum of all the

coefficients of D. In this notation, we have:

Proposition 3.10.5 (Weak form of Riemann-Roch theorem). If C is a projective curve

and D is a divisor satisfying deg(D) > 2gC − 2, then

dimKL(D) = degD − gC + 1.

Proof. See Corollary 5.5 in Silverman [43, p.35].
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Corollary 3.10.6. If C is a projective curve of genus 1 and D is a divisor satisfying

deg(D) ≥ 1, then

dimKL(D) = degD.

Proposition 3.10.7. Let C denote a smooth projective curve. Then every principal

divisor D on C has degree exactly 0.

Proof. Let D denote a principal divisor. Our goal is to show that deg(D) = 0. Let

f ∈ K(C) satisfy div(f) = D, so that our goal becomes showing that deg(div(f)) = 0.

Since f ∈ K(C), there is a natural number n together with regular functions g, h ∈
K[C]n such that f = g

h
Thus:

div(f) = div
(g
h

)
= div(g)− div(h).

It follows that

deg(div(f)) = deg(div(g))− deg(div(f)) = n− n = 0.

Corollary 3.10.8. If C is a smooth projective curve, then the degree function deg :

Z〈C〉 → Z descends to a function

deg : Pic(C)→ Z.

Definition 3.10.9. Let C denote a smooth projective curve. Then the Picard-0 group

of C is the group

Pic0(C) := {D ∈ Pic(C) : deg(D) = 0}.
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Chapter 4

Elliptic Curves

The material in this chapter mainly comes from Silverman’s book on elliptic curves

[43].

Definition 4.0.1. An elliptic curve over a field K is a smooth projective curve of genus

1 with a distinguished K-rational point.

The purpose of including a distinguished point in the definition is that it will be

used to endow each elliptic curve with a group structure via the Picard group.

Proposition 4.0.2. Suppose C is a smooth projective curve of genus 1. Then from

[(P )] = [(Q)] we may deduce P = Q.

Proof. Since [(P )] = [(Q)], thus [(P )− (Q)] = 0. So there exists f ∈ K(C)∗ such that

div(f) = (P ) − (Q). Since f ∈ L((Q)), hence f is a constant function by Corollary

3.10.6. It follows that div(f) = 0. Thus 0 = (P ) − (Q). So (P ) = (Q), from which we

deduce P = Q.

Now given a pointed projective curve (C,O), we get a corresponding map

C
κC−−→ Pic0(C)

P
κC7−−→ [(P )− (O)]

where [�] : Z〈C〉 → Pic(C) is the relevant quotient map.

Proposition 4.0.3. Let E := (E,O) denote an elliptic curve. Then the function κE

defined above is bijective.
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Proof. (Surjectivity.) Consider D ∈ Z〈E〉 such that deg(D) = 0. Our goal is to find

P ∈ E such that [κE(P )] = [D]. By definition, this equation reads [(P ) − (O)] = [D],

which reads

[(P )] = [D + (O)].

Since deg(D + (O)) = 1 thus by Proposition 3.10.6, we deduce that

dim(L(D + (O))) = deg(D + (O)) = deg(D) + deg(O) = 0 + 1 = 1.

So let f ∈ L(D+(O)) have the property that {f} is a basis. Then from the definition

of Riemann-Roch space, we have

div(f) +D + (O) ≥ 0.

Now compute

deg(div(f) +D + (O)) = 0 + 0 + 1 = 1.

Hence there exists P ∈ E such that

div(f) +D + (O) = (P ).

Hence [(P )] = [D + (O)], as desired.

(Injectivity.) Consider points P,Q ∈ E. Assume κE(P ) = κE(Q). Our goal is to

show that P = Q. Since κE(P ) = κE(Q), thus [(P ) − (O)] = [(Q) − (O)]. Hence

[P ] = [Q]. But by Proposition 4.0.2 this implies P = Q, as desired.

The above result allows us to put a group structure on each elliptic curve by trans-

porting the group structure from Pic0(E) to E. Explicitly:

Definition 4.0.4. Let (E,O) denote an elliptic curve. Then we define functions on E

as follows:

E × E �⊕�−−−→ E

(P,Q)
�⊕�7−−−→ κ−1E (κE(P ) + κE(Q))

E
−�−−→ E

P
−�7−−→ κ−1E (−κE(P ))

Proposition 4.0.5. If (E,O) is an elliptic curve, then (E,⊕, O,−�) is an abelian

group.

Proof. This follows from some elementary computations.
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It’s not immediately obvious, but the above functions are in fact regular; this means,

in particular, that elliptic curves are abelian varieties:

Definition 4.0.6. An abelian variety is an abelian group object in the category of

projective varieties; that is, it’s a projective variety X together with a point O ∈ X

and regular mappings

X ×X �⊕�−−−→ X X
−�−−→ X

satisfying the equational abelian group axioms, namely:

(P +Q) +R = P + (Q+R)

O + P = P, P +O = P

P +−P = O, −P + P = O

P +Q = Q+ P

Remark. The reader may prefer to omit some of the above axioms to prevent

redundancy.

To see that the functions defined above make each elliptic curve into an abelian

variety, there are a couple of ways to proceed. In order to avoid unnecessary abstraction,

in this thesis we’ll take the most direct approach. In particular, our strategy is to show

that every elliptic curve can be put into a particular normal form called Weierstrass

form. The group law on a Weierstrass curve can be written down directly and is

immediately seen to be given by regular functions. In this way, we’ll deduce that every

elliptic curve is an abelian variety.

4.1 Isogenies

Elliptic curves form a category in which the morphisms are referred to as isogenies.

Definition 4.1.1. Let (E0, O0) and (E1, O1) denote elliptic curve. Then an isogeny

ϕ : (E0, O0)→ (E1, O1)

is a regular mapping ϕ : E0 → E1 such that ϕ(O0) = O1.
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Being an isogeny may not look like a very restrictive condition upon first glance,

but many results follow from the definition. We collect the most important such results

here below.

Proposition 4.1.2. Let ϕ : (E0, O0)→ (E1, O1) denote an isogeny. Then ϕ is a group

homomorphism (E0,⊕)→ (E1,⊕).

Proof. I claim firstly that the following diagram commutes

E0 Pic0(E0)

E1 Pic0(E1).

κE0

ϕ Pic0(ϕ)

κE1

Our goal is to show that Pic0(ϕ) ◦κE0 = κE1 ◦ϕ. Consider P ∈ E0. Then the left-hand-

side can be reduced as follows.

LHS = (Pic0(ϕ) ◦ κE0)(P )

= Pic0(ϕ)(κE0(P ))

= Pic0(ϕ)((P )− (O))

= (ϕ(P ))− (ϕ(O))

= (ϕ(P ))− (O)

The right-hand-side is similarly reduced.

RHS = (κE1 ◦ ϕ)(P )

= κE1(ϕ(P ))

= (ϕ(P ))− (O)

Since LHS = RHS, hence the above diagram commutes. We deduce that

ϕ = κ−1E1
◦ Pic0(ϕ) ◦ κ.E0

Hence ϕ, being a composite of group homomorphisms, is itself a group homomor-

phism.
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Definition 4.1.3. If E0 and E1 are elliptic curves, the zero isogeny is the function

E0
0em−−−→ E1

P
0em7−−−→ O.

Proposition 4.1.4. If E0 and E1 are elliptic curves, every non-zero isogeny from E0

to E1 is surjective.

Proof. This follows from Proposition 3.8.1.

The above observation suggests that there is no interesting notion of sub-elliptic

curve. In particular, suppose hypothetically that we distinguished certain subsets of E

as sub-elliptic curves. Suppose our definition designed so that each sub-elliptic curve

becomes equipped with the structure of an elliptic curve (inherited from E) in a deter-

ministic way, such that the inclusion to E becomes an isogeny. Then, in this case, there

can be no sub-elliptic curves other than E and {O}. For suppose S is a sub-elliptic

curve of E with a point distinct from O. Then the inclusion S ↪→ E is a non-constant

isogeny, and hence surjective, and hence S = E. This argument suggests that no at-

tempts at defining the phrase ‘sub-elliptic curve’ will succeed at producing a useful and

non-trivial notion.

4.2 Planar elliptic curves

In general, we can get elliptic curves in the following way. Recall that for a projective

plane curve, the genus-degree formula relates the degree of the defining polynomial with

the curve’s genus. In particular, the formula says that given a projective plane curve

C, if d is the degree of C and g is its (arithmetical) genus, then

g =
1

2
(d− 1)(d− 2).

Note that our definition of curve includes an assumption of irreducibility, and that the

above formula requires this assumption.

Note also that, in general, the g must be regarded as the arithmetical genus. How-

ever, for smooth curves this coincides with the geometric genus, and hence there is no

ambiguity in the meaning of the word ‘genus.’ What this means is that for smooth

projective plane curves of degree d, being of genus 1 is equivalent to 2 = (d− 1)(d− 2).

Since d := 2 is too small for this to be true, and d := 4 is too large, hence the only
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(a) An elliptic curve {y2 = x3 + x} (b) An elliptic curve {y2 = x3 − x}

(c) A non-smooth cubic planar curve {y2 = x3} (d) The set {(x+ y)(x2 + y2 − 1) = 0}

Figure 4.1: The affine portion of some cubic algebraic subsets of P2

solution is d := 3. We deduce that if we’re dealing with projective plane curves, the

only elliptic curves are those of degree exactly 3.

Therefore, to get examples of elliptic curves, one approach is to choose a cubic

polynomial in three variables satisfying certain requirements. That is, we look for a

non-zero K-linear combination f of the monomials

x3, x2y, xy2, y3, x2z, xyz, y2z, xz2, yz2, z3.

To obtain an elliptic curve, we need to make sure that f is irreducible, to avoid examples

like (d) in Figure 4.1. We also need to make sure that the vanishing set of f is smooth,

to avoid examples like (c) in Figure 4.1. Once these conditions are satisfied, the genus-

degree formula takes care of the rest and ensures that the vanishing set of f becomes

an elliptic curve upon choosing a basepoint.

In the special case where the elliptic curve (E,O) we’re interested in is a cubic

planar curve, the group law defined in the previous section can be described explicitly

via a geometric construction involving lines and points of intersection.

Definition 4.2.1. Given a homogeneous cubic polynomial f ∈ K[x, y, z], if f is ir-
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reducible and V (f) is smooth, then given P,Q ∈ V (f), we obtain a corresponding

line

P ∗Q ⊆ P2

in the following way.

• If P 6= Q, then P ∗Q is the unique line that contains both P and Q.

• If P = Q, then P ∗Q is the tangent line to V (f) at P .

Definition 4.2.2. Given a homogeneous cubic polynomial f ∈ K[x, y, z], if f is irre-

ducible and V (f) is smooth, then given P,Q ∈ V (f), the notation P ? Q refers to the

unique element of V (f) satisfying

(P ? Q) = divE(P ∗Q)− (P )− (Q).

Remark. The rearranged from divE(P ∗Q) = (P ) + (Q) + (P ?Q) will be helpful in

what follows.

Proposition 4.2.3. Let E denote a smooth cubic subset of P2 and assume O ∈ E is a

K-rational point. Then for all P,Q ∈ E, we have:

P ⊕Q = (P ? Q) ? O

Proof. Recall that each elliptic curve E is associated with a bijection κ : E → Pic0(E)

defined by κ(P ) = (P )−(O). Recall also that ⊕ is defined by P⊕Q = κ−1(κ(P )+κ(Q)).

By the definition of ⊕, we wish to show that

κ(P ) + κ(Q) = κ((P ? Q) ? O).

That is, we’re trying to show that

[(P )− (O)] + [(Q)− (O)] = [((P ? Q) ? O)− (O)].

Define α to to be the RHS of the above expression minus the LHS. Then

α = (O) + ((P ? Q) ? O)− (P )− (Q).

We’re trying to show that α is principal. Define

β := div((P ? Q) ∗O))− div(P ∗Q).
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Then β is principal (since principal divisors form an abelian group). Hence it is

enough to show that α = β. We compute:

β = div((P ? Q) ∗O))− div(P ∗Q)

= ((P ? Q) + (O) + ((P ? Q) ? O))− ((P ) + (Q) + (P ? Q))

= (O) + ((P ? Q) ? O)− (P )− (Q)

= α

This shows that P ⊕Q = ((P ? Q) ? O), as desired.

Remark. The formula P ⊕ Q = (P ? Q) ? O may look a bit opaque, but in fact

it arises in any situation where the goal is to define an abelian group (A,⊕), but the

binary operation ? on A given by the formula x ? y = −x⊕−y is easier to define than

the actual group law. In particular, note that if x, y ∈ A,, then:

(x ? y) ? 0 = −(x ? y)⊕ 0 = −(x ? y) = −(−x⊕−y) = x⊕ y.

4.3 Weierstrass elliptic curves

A special case of the planar elliptic curves considered in the previous section are the

Weierstrass elliptic curves.

Definition 4.3.1. Given an element ã ∈ K5, the Weierstrass cubic associated to ã is

defined as follows:

wã = (y2z + a1xyz + a3yz
2)− (x3 + a2x

2z + a4xz
2 + a6z

3),

and the Weierstrass curve associated to ã, denoted W (ã) is the projective vanishing

set of this cubic. Explicitly:

W (ã) := {[x : y : z] ∈ P2 : y2z + a1xyz + a3yz
2 = x3 + a2x

2z + a4xz
2 + a6z

3}.

We’ll sometimes refer to the elements of K5 as Weierstrass coefficient sequences for

emphasis.

Remark. One possible justification for the apparently strange numbering of the ai’s

is this: the notation is chosen such that if we apply the homomorphism

x 7→ x2, y 7→ y3, z 7→ 1
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to the Weierstrass cubic wã and then re-homogenize it (causing all monomials to have

a total degree of 6), then exponent of z ends up being equal to the subscript of ai like

so:

(y6 + a1x
2y3z + a3y

3z3)− (x6 + a2x
4z2 + a4x

2z4 + a6z
6)

Proposition 4.3.2. Given a Weierstrass coefficient sequence ã ∈ K5
, the curve W (ã)

intersects the line at infinity at O := [0 : 1 : 0] and only at this point.

Proof. Let P = [x : y : z] ∈ P2 be a point at infinity. Then z = 0. So P = [x : y : 0].

Thus:

P ∈ E ⇐⇒ [x : y : 0] ∈ E ⇐⇒ 0 = x3 ⇐⇒ x = 0.

Hence the points at infinity that lie on E are precisely those of the form [0 : y : 0].

But since O = [0 : y : 0], hence this is the only point at infinity where an intersection

occurs.

Since the only place where a Weierstrass curve intersects the line at infinity is at

O, hence the study of Weierstrass curves can largely proceed by looking at the affine

portion

W (ã) ∩K2
= {(x, y) ∈ K2

: y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6},

which is obtained by taking z = 1. The following definitions are consequently helpful.

Definition 4.3.3. Given a Weierstrass coefficient sequence ã ∈ K5, we have:

wã(x, y) := wã(x, y, 1)

wxã(x, y) :=
∂

∂x
wã(x, y)

wyã(x, y) :=
∂

∂y
wã(x, y)

Proposition 4.3.4. Given a Weierstrass coefficient sequence ã ∈ K5, we have:

wã(x, y) = (y2 + a1xy + a3y)− (x3 + a2x
2 + a4x+ a6)

wxã(x, y) = a1y − (3x2 + 2a2x+ a4)

wyã(x, y) = 2y + a1x+ a3

Similarly, isogenies are usually defined between affine portions of Weierstrass curves

only. By Proposition 3.7.2, this uniquely determines the corresponding morphisms of
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projective curves. However, actually homogenizing the formula for the affine portion

of an isogeny to obtain the formula for a genuine isogeny between the corresponding

projective curves seems to be non-trivial as far as I know.

Definition 4.3.5. A elliptic Weierstrass curve is a pair (E,O) where E is a smooth

Weierstrass curve and O = [0 : 1 : 0].

It’s clear that if E is a smooth Weierstrass curve, then (E, [0 : 1 : 0]) is an elliptic

Weierstrass curve. However, the question remains of how best to check smoothness.

Showing that a Weierstrass curve is smooth by studying wxã and wyã, is, in general,

a non-trivial task. For this reason, it is helpful to have a notion of discriminant for

a Weierstrass curve. It turns out that smoothness of the curve is equivalent to the

discriminant being non-zero.

To define the discriminant, let us regard each ai as function K5 → K. Further

functions of interest with the same domain and codomain are specified below:

b2 = a21 + 4a2, b4 = 2a4 + a1a3, b6 = a23 + 4a6

b8 = a21a6 + 4a2a6 − a1a3a4 + a2a
2
3 − a24

∆ = −b22b8 − 8b34 − 27b26 + 9b2b4b6

Definition 4.3.6. The discriminant of associated to a Weierstrass coefficient sequence

ã ∈ K5 is the quantity ∆(ã) where ∆ is defined above.

Proposition 4.3.7. Given a Weierstrass coefficient sequence ã ∈ K5, the curve W (ã)

is smooth if and only if the discriminant ∆(ã) is non-zero.

Proof. See [43, p.46].

It turns out that every elliptic curve is isomorphic to an elliptic Weierstrass curve.

Proposition 4.3.8. Let (E,O) denote an elliptic curve. Then there exists a Weierstrass

coefficient sequence ã ∈ K5 together with an isomorphism

ϕ̃ : (E,O)→ W (ã).

Proof. This is Proposition 3.1 in Silverman [43].

We’re now in a position to show that elliptic curves are abelian varieties with the

group structure given in Definition 4.0.4. In particular:
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Proposition 4.3.9. If (E,O) is an elliptic curve, then (E,⊕, O,−�) is an abelian

variety.

Proof. Let ϕ : (E,O)→ W (ã) denote Weierstrass coordinates for (E,O). Since ϕ(P ⊕
Q) = ϕ(P )⊕ ϕ(Q) by Proposition 4.1.2, hence P ⊕Q = ϕ−1(ϕ(P )⊕ ϕ(Q)). Thus the

addition law on (E,O) is given as ϕ−1 ◦ σ ◦ (ϕ × ϕ) where σ : W (ã) ×W (ã) → W (ã)

is the group law on W (ã). But the group operations on a Weierstrass curve are given

explicitly in Silverman under the heading of Group Law Algorithm 2.3 [43, p.53] and

hence these are regular. So in particular, σ is regular. Hence the group law on (E,O),

being a composite of regular maps, is regular. The proof that taking inverses is a regular

map is similar.

There’s an issue with the discriminant, which is that it’s unstable under isomor-

phisms of elliptic curves. To address this issue, we define the following further quantities

associated with Weierstrass coefficient sequences.

c4 = b22 − 24b4, c6 = −b32 + 36b2b4 − 216b6, j = c34/∆

The quantity j defined above is called the j-invariant of the curve. Unlike the dis-

criminant, it’s stable under isomorphism. This allows us to talk about the j-invariant

j(E) of an arbitrary elliptic curve E (whereas the discriminant only applies to a Weier-

strass curve.) In fact, the j-invariant provides a complete characterization of elliptic

curves up to K-isomorphism.

Proposition 4.3.10. (a) Let E0 and E1 denote elliptic curves. Then E0 and E1 are

isomorphic over K if and only if j(E0) = j(E1).

(b) For all t ∈ K, there exists a Weierstrass coefficient sequence ã ∈ K
5

such that

j(W (ã)) = t.

Proof. This is a consequence of Proposition 1.4 in Silverman [43, p.45].

4.4 Other normal forms for Elliptic curves

The Weierstrass form is not the only way of describing elliptic curves. Especially

relevant for the purposes of cryptography are Montgomery curves, which are degree

3 projective plane curves that are general enough to encompass many elliptic curves

of interest (up to isomorphism), and twisted Edwards curves, which are degree 4 affine
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plane curves that are birationally equivalent to certain elliptic curves. It should be noted

that twisted Edwards curves, being non-smooth plane curves, are not actually elliptic

curves according to our definition (except when regarded up to birational equivalence).

Definition 4.4.1. Given a pair (A,B) ∈ K2, the affine Montgomery cubic associated

to (A,B) is defined as follows:

mA,B = By2 − (x3 + Ax2 + x),

and the affine Montgomery curve associated to (A,B), denoted M(A,B) is the affine

vanishing set of this cubic. Explicitly:

M(A,B) := {(x, y) ∈ A2
K : By2 = x3 + Ax2 + x}.

The above definition can be moved to projective space in the obvious way to obtain

an actual projective curve, called a projective Montgomery curve. When this curve is

smooth, it’s an elliptic curve as a consequence of the genus-degree formula. However, not

every elliptic curve is isomorphic to a smooth Montgomery curve with a distinguished

basepoint, as explained by Okeya et. al. [33], citing Montgomery [29]. For those

that are, the addition and doubling formulas presented by Montgomery allow for faster

arithmetic operations. Further efficiency benefits can be obtained by recasting into

twisted Edwards form:

Definition 4.4.2. Given a pair (a, b) ∈ K2, the affine twisted Edwards quartic associ-

ated to (a, b) is defined as follows:

ea,b = ax2 + y2 − (1 + dx2y2),

and the affine twisted Edwards curve associated to (a, b), denoted E(a, b) is the projec-

tive vanishing set of this quartic. Explicitly:

E(a, b) := {(x, y) ∈ A2
K : ax2 + y2 = 1 + dx2y2}.

Arithmetic on twisted Edwards curves is especially straightforward. With some

caveats, the group law is given by:

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2
,
y1y2 − ax1x2
1− dx1x2y1y2

)
.
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The identity element is (0, 1) and negation is given by

−(x, y) = (x,−y).

Note the resemblance to the group law on a Pell conic discussed later in the thesis; I’m

not sure if this leads to any further insights, but the comparison seems interesting. The

interested reader is directed to the 2008 article in which twisted Edwards curves were

originally proposed [6].

4.5 Separable and inseparable degree of isogenies

Let us now consider the separable and inseparable degrees of isogenies between elliptic

curves. The following result will be helpful later.

Proposition 4.5.1. For all elliptic curves E, the set E(K) has infinitely many points.

Proof. Since every elliptic curve is isomorphic to a Weierstrass curve, it is enough to

show that every Weierstrass curve has infinitely many points. Hence it suffices to show

that the affine part of any Weierstrass curve has infinitely many points. Let ã ∈ K5

denote a sequence of Weierstrass coordinates. Define a function p as follows

W (ã) ∩K2 p−→ K

(x, y)
p7−→ x.

It suffices to show that p is surjective. Consider x ∈ K. Our goal is to show that there

exists y ∈ K such that (x, y) ∈ W (ã) ∩K2
. That is, we’re trying to show that

∃y ∈ K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Rearranging to make this into a polynomial equation in the variable y, it becomes

∃y ∈ K : y2 + (a1x+ a3)y + (−x3 − a2x2 − a4x− a6),

which is true because K is algebraically closed.

Some basic results about homomorphisms of groups will also be useful.

Proposition 4.5.2. Let ϕ : G → H denote a surjective morphism of abelian groups.

Then for all h ∈ H, we have #ϕ−1(h) = #ker(ϕ).

61



Remark. The above theorem is true even if one or both of the relevant kernels is

infinite, as long as the function #� is interpreted as returning a cardinal number.

Proof. Since ϕ is surjective, we can find g ∈ G satisfying ϕ(g) = h. Define functions

G
�+g−−−→ G

x
�+g7−−−→ x+ g

G
�−g−−−→ G

x
�−g7−−−→ x− g

It is easy to see that these restrict to inverse functions

ker(ϕ)
�+g−−−→ ϕ−1(h)

x
�+g7−−−→ x+ g

ϕ−1(h)
�−g−−−→ ker(ϕ)

x
�−g7−−−→ x− g

Thus #ker(ϕ) = #ϕ−1(h), as desired.

Proposition 4.5.3. Let ϕ : E1 → E2 denote a non-zero isogeny between elliptic curves.

Then degs(ϕ) = #ker(ϕ).

Proof. Since ϕ is non-zero, hence it’s non-constant. Hence by Proposition 3.8.7, for all

but finitely many Q ∈ E2 we have #ϕ−1(Q) = degs(ϕ). Since E2 has infinitely many

points by Proposition 4.5.1, hence there exists Q ∈ E2 such that #ϕ−1(Q) = degs(ϕ).

Since ϕ is a morphism of groups, hence by Proposition 4.5.2, we have that #ϕ−1(Q) =

#ϕ−1(O). Hence degs(ϕ) = #ϕ−1(O), as desired.

Proposition 4.5.4. Consider two morphisms of abelian groups

G
ϕ−→ H

ψ−→ I.

If ϕ is surjective, then #ker(ψ ◦ ϕ) = #ker(ϕ) ·#ker(ψ).

Remark. The above theorem is true even if one or both of the relevant kernels is

infinite.
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Proof. Begin by computing

ker(ψ ◦ ϕ) = ϕ−1(ψ−1(0))

= ϕ−1

 ⋃
h∈ψ−1(0)

{h}


=

⋃
h∈ψ−1(0)

(
ϕ−1(h)

)
It can be checked that this union is a disjoint union. Hence

#ker(ψ ◦ ϕ) =
∑

h∈ψ−1(0)

#
(
ϕ−1(h)

)
=

∑
h∈ψ−1(0)

#
(
ϕ−1(h)

)
=

∑
h∈ψ−1(0)

#ker(ϕ) by surjectivity of ϕ and Proposition 4.5.2

= #ker(ϕ) ·
∑

h∈ψ−1(0)

1

= #ker(ϕ) ·#ker(ψ)

This completes the proof.

Proposition 4.5.5. Given two isogenies of elliptic curves

G
ϕ−→ H

ψ−→ I,

the separable and inseparable degree functions behave as follows:

degs(ψ ◦ ϕ) = degs(ϕ) · degs(ψ), degi(ψ ◦ ϕ) = degi(ϕ) · degi(ψ)

Proof. Let’s first address the separable degree. There are two cases. If at least one of

ϕ or ψ is constant, then so too is ψ ◦ ϕ, and hence both sides of the formula are 0 and

the equality holds. So assume neither ϕ nor ψ is constant. Then ψ is surjective by

Proposition 3.8.1, and ψ ◦ϕ is non-constant by Proposition 3.8.4. Hence we may argue
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as follows:

LHS = degs(ψ ◦ ϕ)

= #ker(ψ ◦ ϕ) by Proposition 4.5.3

= #ker(ϕ) ·#ker(ψ) by Proposition 4.5.4

= degs(ϕ) · degs(ψ) by Proposition 3.8.7

= RHS

This establish the formula. Let’s now address the inseparable degree. Once again

if at least one of ϕ or ψ is constant, it’s trivial. So assume neither ϕ nor ψ is constant,

and infer that ψ ◦ ϕ is non-constant. Then by Proposition 1.4.4, we obtain:

deg(ψ ◦ ϕ) = degs(ψ ◦ ϕ)degi(ψ ◦ ϕ).

Hence using Proposition 3.8.8, we infer:

deg(ϕ) · deg(ψ) = degs(ϕ)degs(ψ)degi(ψ ◦ ϕ).

Using Proposition 1.4.4 again, we obtain:

degs(ϕ)degi(ϕ) · degs(ψ)degi(ψ) = degs(ϕ)degs(ψ)degi(ψ ◦ ϕ).

Cancelling, it follows that:

degi(ϕ)degi(ψ) = degi(ψ ◦ ϕ).

4.6 Ordinary versus supersingular elliptic curves

For each elliptic curve E, the isogenies E → E form an algebra called the endomorphism

algebra of E, denoted End(E). (This is usually called the endomorphism ring of E,

but recall that, for us, rings are always commutative.) The zero element is the zero

isogeny, and the multiplicative unit is the identity function. By the initiality of Z in

the category of algebras, there is a unique algebra morphism Z→ End(E) denoted [�].

It can be computed as follows:

[n](P ) = [1 + · · ·+ 1︸ ︷︷ ︸
n

](P ) = [1](P ) + · · ·+ [1](P )︸ ︷︷ ︸
n

= P + · · ·+ P︸ ︷︷ ︸
n
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The kernel of this map is denoted E[n]. Explicitly:

E[n] = {P ∈ E : [n]P = 0}.

The following proposition shows that in positive characteristic, there are two very

different kinds of elliptic curves, called ordinary and supersingular elliptic curves re-

spectively.

Proposition 4.6.1. Assume the ground field K has characteristic p > 0. For all elliptic

curves (E,O), either

(a) (ordinary) for all positive integers r we have E[pr] = Z/pr, or

(b) (supersingular) for all positive integers r we have E[pr] = 0.

Proof. This is a consequence of Theorem 3.1 in Silverman [43, p.144], whom cites

Duering [16].

Proposition 4.6.2. Assume the ground field K has characteristic p > 0. For all elliptic

curves (E,O), we have

(a) E is ordinary if and only if End(E) is an order in an imaginary quadratic algebra

(b) E is supersingular if and only if End(E) an order in a quaternion algebra.

Proof. This is a consequence of Theorem 3.1 in Silverman [43, p.144] combined with

the conclusion of Exercise 5.8 [43, p.154].

Hence the distinction between ordinary and supersingular amounts to whether the

corresponding endomorphism ring is commutative:

Corollary 4.6.3. Assume the ground field K has characteristic p > 0. For all elliptic

curves (E,O), we have

(a) E is ordinary if and only if End(E) is commutative.

(b) E is supersingular if and only if End(E) is non-commutative.

Non-commutativity of the endomorphism algebra of E when E is non-singular will

play a role in our discussion of the SIDH protocol in the cryptography portion of the

thesis.
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4.7 Velu’s Formula

Recall that elliptic curves don’t have useful notion of sub-elliptic curve. One might be

tempted to conclude that there is no meaningful notion of quotient elliptic curve, since

for abelian groups, there’s a natural bijective correspondence between subgroups and

quotient groups. However, this conclusion would be overly hasty, and in particular, it

is possible to take a quotient of an elliptic curve by a finite subgroup to obtain a new

elliptic curve.

A very general comment is that quotients in algebraic geometry are typically non-

trivial to construct, and their study leads to an involved body of knowledge called

geometric invariant theory [31]. However, taking the quotient of a variety by the action

of a finite group is simpler than the general problem. In particular, the quotient of a

variety by a finite group of automorphisms is again a variety, according to Silverman

[43, p.74], whom cites Mumford [32, §7]. A special case of this is the quotient of an

elliptic curve by a finite subgroup, which turns out to be amenable to an especially

elementary analysis.

We have shown that every elliptic curve E is isomorphic to an elliptic Weierstrass

curve. Velu’s formula [45] tells us how to take quotients of Weierstrass curves. In

particular, it tells us how to construct, for any Weierstrass coefficient sequence ã ∈ K5

such that W (ã) is smooth, and any finite subgroup F ⊆ W (ã), a Weierstrass coefficient

sequence Ã ∈ K5 such that W (Ã) is smooth, together with a separable isogeny ϕ :

W (ã) → W (Ã) whose kernel is precisely F. It makes sense to define ã/F to mean the

coefficient sequence Ã, though this is not a standard notation.

A couple of remarks are in order. Firstly, it should be noted that Velu’s formula only

gives us the formula for the affine portion of the isogeny ϕ. By Proposition 3.7.2, this

is enough to uniquely specify an isogeny between the full projective curves. Secondly,

the actual presentation of Velu’s article will differ slightly from our description here,

the main difference being that Velu works with the function gã(x, y) := −wã(x, y). We

make the necessary changes here to accommodate this difference, ensuring that our t

and u functions agree with Velu’s and that the final coefficients are unchanged.

For the remainder of this subsection, let ã ∈ K5 denote a Weierstrass coefficient

sequence, and let x and y denote the projection maps W (ã) ∩ K2 → K acting on

the affine portion of the corresponding curve. Now recall the following formulae from

Proposition 4.3.4 for the derivatives of wã, which can also be viewed as functions on

W (ã)∩K2 → K, and define a further function tã with this same domain and codomain
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as follows:

wxã = a1y − (3x2 + 2a2x+ a4)

wyã = 2y + a1x+ a3

tã =

−wxã Q ∈ W (ã)[2]

−2wxã + a1w
y
ã = 6x2 + b2x+ b4 Q /∈ W (ã)[2]

uã = (wyã)
2 = 4x3 + b2x

2 + 2b4x+ b6

Now proceed as follows:

• Let F ⊆ W (ã) denote the finite subgroup that we wish to quotient out by, and

note that F \ {O} is the affine portion F ; that is, F \ {O} = F ∩K2
.

• Define F2 := F [2] \ {O} to consist of all elements of F \ {O} of order 2.

• Fix a set R ⊆ F \ F [2] satisfying R ∪ −R = F \ F [2] and R ∩ −R = ∅.

• Define scalars as follows:

Tã,F =
∑

Q∈R∪F2

tã(Q), Wã,F =
∑

Q∈R∪F2

(uã + xãtã)(Q)

Remarkably, the scalars Tã,F and Wã,F depend only only on the subgroup F and not

on the decomposition R that was chosen. Essentially, Velu’s formula is the statement

that:

(ã/F )1 = a1, (ã/F )3 = a3

(ã/F )2 = a2, (ã/F )4 = a4 − 5Tα,F , (ã/F )6 = a6 − b2Tα,F − 7Wα,F .

His article also gives us (the affine portion of) an isogeny (X, Y ) : W (ã)→ W (ã/F )

to the quotient curve. The isogeny (X, Y ) turns out to be separable and its kernel is

F . Explicitly, it’s given by

X= x+
∑

Q∈R∪F2

(
tã(Q)

x− x(Q)
+

uã(Q)

(x− x(Q))2

)
Y = y −

∑
Q∈R∪F2

(
uã(Q)

2y+a1x+a3
(x−x(Q))3

+tã(Q)
a1(x−x(Q))+y−y(Q)

(x−x(Q))2
+
a1uã(Q)−wx(Q)wy(Q)

(x−x(Q))2

)
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Consider the elliptic curve

W (ã) : y2 + xy + y = x3 − x2 − 3x+ 3.

This has Weierstrass coordinates given by he projection functions

W (ã) ∩K2 x−→ K

(P0, P1)
x7−→ P0

W (ã) ∩K2 y−→ K

(P0, P1)
y7−→ P1

Let F denote the finite subgroup of E with 7 elements generated by Q = (1, 0).

Explicitly, its elements are:

0Q = O Q = (1, 0) 2Q = (−1,−2)

3Q = (3,−6) 4Q = (3, 2) 5Q = (−1, 2) 6Q = (1,−2).

Then F [2] = {O}, so F2 = ∅. We choose a decomposition R = {Q, 2Q, 3Q}. The

resulting numbers are displayed below.

wx(Q) = 2, wx(2Q) = −4, wx(3Q) = −24

wy(Q) = 2, wy(2Q) = −4, wy(3Q) = −8

t(Q) = −2, t(2Q) = 4, t(3Q) = 40

u(Q) = 4, t(2Q) = 16, t(3Q) = 64

T = 42, W = 198

Note that our value of wx(Q) is different from (the negative of) Velu’s answer; this

is a misprint in Velu’s article. We find that:

(ã/F )1 = 1, (ã/F )3 = 1

(ã/F )2 = −1, (ã/F )4 = −213, (ã/F )6 = −1257.

So the (affine portion) of the quotient curve W (ã/F ) is

y2 + xy + y = x3 − x2 − 213x− 1257.

The code used to perform the above computations can be found in Appendix A.
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4.8 The group of Q-rational points of an elliptic

curve

The following group-theoretic preliminaries will be helpful.

Definition 4.8.1. Whenever X is an abelian group, write X[n] for the subgroup of

n-torsion elements

X[n] = {x ∈ X : nx = 0},

and write TX for the subgroup of torsion elements:

TX =
⋃
n∈N

X[n].

Proposition 4.8.2 (Structure Theorem For Finitely-Generated Abelian Groups). If

X is a finitely-generated abelian group, then there is a unique natural number r such

that X ∼= TX ⊕ Zr.

Proof. Here’s a sketch of the proof. It is easy to show that for all abelian groups

X, the group X/TX is torsion-free. Much harder to prove is that for each finitely-

generated abelian group X, there exists an isomorphism X → TX ⊕ X/TX , but this

is also true. Now recall that over a principal ideal domain, every finitely-generated

torsion-free module is free. Hence noting that Z is a PID, we deduce that if X is

finitely-generated, then X/TX is free.

Definition 4.8.3. The number r in the above result is called the rank of X.

Returning to the topic of elliptic curves, Mordell’s Theorem (below) allows us to

apply the above analysis to the group E(Q) for any elliptic curve E defined over Q.

Proposition 4.8.4 (Mordell’s Theorem; 1922). Let E denote an elliptic curve defined

over the rational numbers. Then the group E(Q) is finitely-generated, and the group

TE(Q) is finite.

Proof. This is proved in [30].

More than fifty years later, the possible torsion subgroups of E(Q) were classified:

Proposition 4.8.5 (Mazur’s Theorem; 1977). Let E denote an elliptic curve defined

over the rational numbers. Then either there exists n ∈ {1, . . . , 12} \ {11} such that

TE(Q)
∼= Z/n, or there exists m ∈ {1, . . . , 4} such that TE(Q)

∼= Z/2Z⊕ Z/2mZ.
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Proof. This is proved in [25].

In contrast, the rank of E(Q) is not well-understood; however, some interesting

asymptotic results have recently been discovered. Particularly noteworthy is:

Proposition 4.8.6 (Bhargava, Shankar; 2010-2012). The average rank of all elliptic

curves over Q is less than 1.

Proof. This is proved in [7].

Manjul Bhargava received the 2014 Fields Medal for the work leading up to this

result.

4.9 The cardinality of E(Fq)

For the remainder of this section, assume that p is a prime number and that q = pn

is a prime power. If E is an elliptic curve defined over Fq, the group E(Fq), being a

subset of P2(Fq), is clearly finite, and the question arises of how to find it’s cardinality.

Hasse’s theorem doesn’t give us a direct answer, but provides instead a relatively tight

bound. Given a, b ∈ R and r ∈ R≥0, let’s a
r

== b to mean |a − b| ≤ r, i.e. the distance

between a and b is at most r. In this notation, we have:

Proposition 4.9.1 (Hasse; 1933). For any elliptic curve E defined over Fq, we have

#E(Fq)
2
√
q

==== q + 1.

Proof. This is Theorem 1.1 in Silverman [43, p.138].

To get an exact value for the cardinality of #E(Fq), one can use Schoof’s algorithm.

The ideas behind the algorithm are non-trivial, but the interested reader is directed

Schoof’s original article [38] and to a more recent survey by the same author [39].

A good preparatory exercise is to solve Exercise 3.7 in Silverman [43, p.105] which

covers many of the needed preliminaries. The algorithm presented in the original article

has O(log9 q) time-complexity [38], making it infeasible for large values of q, however

the complexity but can be improved by e.g. using efficient integer and polynomial

multiplication algorithms. Building on Schoof’s work, the SEA (Schoof-Elkies-Atkin)

algorithm provides a feasible solution to the problem finding the number of points on

elliptic curves defined over Fq for very large values of q. A good introduction is Atkin’s

original article [3].
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Chapter 5

Pointed Conics

The material in this chapter is largely an elaboration on the ideas put forward in

Shirali’s article Groups associated with conics [41], and the comparison with elliptic

curves described in Lemmermeyer’s survey article on the similarities between Pell conics

and elliptic curves [23].

In this chapter, assume K is a field, not necessarily perfect, of characteristic distinct

from 2. In what follows, we’ll identify the sequence (x1, . . . , xn) with the column vectorx1...
xn

 .
Let’s also agree that if a and b are elements of the same K-module, then we’ll write

a ∼ b to mean that there exists a non-zero scalar k ∈ K such that ak = b.

5.1 Conics and the large matrix

Definition 5.1.1. Given a sequence ã = (A,B,C,D,E, F ) ∈ K6, the bivariate quadratic

polynomial associated to ã is defined as follows:

Qã = Ax2 +Bxy + Cy2 +Dx+ Ey + F.

The bivariate quadratic form associated to ã is

qã = Ax2 +Bxy + Cy2.
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The large matrix associated to ã is

Mã =

2A B D

B 2C E

D E 2F

 .
The small matrix associated to ã is

mã =

[
2A B

B 2C

]
.

The relationship between the polynomials and the matrices defined above is sum-

marized in the next result.

Proposition 5.1.2. Given a sequence ã = (A,B,C,D,E, F ) ∈ K6, we have:

Qã(x, y) =
1

2
(x, y, 1)TMã(x, y, 1), qã(x, y) =

1

2
(x, y)Tmã(x, y).

Proof. This is readily verified by hand or using a computer algebra package.

It is helpful to have explicit formulae for the determinants of the above matrices:

Proposition 5.1.3. Given a sequence ã = (A,B,C,D,E, F ) ∈ K6, we have:

det(Mã) = 2(4ACF − AE2 −B2F +BDE − CD2), det(mã) = 4AC −B2.

Proof. The computation is most easily performed by cofactor expansion. The details

are left to the reader.

Proposition 5.1.4. Given a coefficient sequence ã ∈ K6, if the corresponding large

matrix Mã has non-zero determinant, then the ideal (Qã) ⊆ K[π1, π2] is prime.

Proof. Assume toward a contradiction that (Qã) is non-prime. Then Qã is reducible.

So there exist scalars a, b, c, d, e, f ∈ K satisfying

(ax+ by + c)(dx+ ey + f) = Ax2 +Bxy + Cy2 +Dx+ Ey + F.

Expanding the left-hand-side and equating coefficients, we deduce that:

ad = A, ae+ bd = B, be = C,
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af + cd = D, bf + ce = E, cf = F.

We compute:

det(Mã) ∼ 4ACF − AE2 −B2F +BDE − CD2

= 4adbecf−ad(bf+ce)2−(ae+bd)2cf+(ae+bd)(af+cd)(bf+ce)−be(af+cd)2

= 0

Hence det(Mã) = 0. But this contradicts that det(Mã) is non-zero.

Definition 5.1.5. A set X ⊆ A2
K is said to be a conic if and only if there exists a

coefficient sequence ã ∈ K6 such that X = V (Qã) and Mã is a nonsingular matrix.

Corollary 5.1.6. Every conic is an affine variety.

Proposition 5.1.7. Given coefficient sequences ã, b̃ ∈ K6 such that det(Mã), det(Mb̃) 6=
0, from V (Qã) = V (Qb̃) we can infer the following:

Qã ∼ Qb̃, qã ∼ qb̃

Mã ∼Mb̃, mã ∼ mb̃

Proof. From V (Qã) = V (Qb̃) we infer I(V (Qã)) = I(V (Qb̃)). By Proposition 3.1.7, we

deduce
√

(Qã) =
√

(Qb̃). But by Proposition 5.1.4 this means that (Qã) = (Qb̃). Since

the only units in K[x, y] are the elements of K∗, it follows that Qã ∼ Qb̃. Equating

coefficients, we find that ã ∼ b̃. From this all four identities easily follow.

Unlike with elliptic curves, where geometric irreducibility and smoothness had to

be checked separately, for conics the situation is simpler.

Proposition 5.1.8. Every conic is smooth.

Proof. Consider fixed but arbitrary ã = (A,B,C,D,E, F ) ∈ K6 and assume that

det(Mã) is non-zero. Assume toward a contradiction that there exists (x, y) ∈ A2
K

satisfying

Qã(x, y) = 0, Qx
ã(x, y) = 0, Qy

ã(x, y).

This means that:

2Ax+By +D = 0

Bx+ 2Cy + E = 0

qã(x, y) +Dx+ Ey + F = 0
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Substituting the values of D and E we obtain from the two linear equations above

into the quadratic equation, we obtain:

Ax2 +Bxy + Cy2 + (−2Ax−By)x+ (−Bx− 2Cy)y + F = 0,

which can be rearranged to

Ax2 +Bxy + Cy2 = F.

In other words, qã(x, y) = F. Hence our system of equations becomes

2Ax+By +D = 0

Bx+ 2Cy + E = 0

Dx+ Ey + 2F = 0

Or in other words, Mã(x, y, 1) = 0. But since the determinant of Mã is non-zero, we

deduce that (x, y, 1) = M−1
ã (0, 0, 0) Thus 1 = 0, a contradiction.

5.2 The group law on a pointed conic

Definition 5.2.1. A pointed conic is a pair (X,N) such that X is a conic and N ∈ X
is a K-rational point.

Just like elliptic curves come naturally equipped with a group law, so too does each

pointed conic become a group in a natural way.

Definition 5.2.2. Let (X,N) denote a pointed conic. Given P,Q ∈ C, we define a line

P ∗Q as follows:

(a) If P 6= Q, then P ∗Q is the unique line that contains both P and Q

(b) If P = Q, then P ∗Q is the tangent line to C at P .

Definition 5.2.3. Let (X,N) denote a pointed conic. Given P,Q ∈ X, we define P⊕Q
by the formula:

divC(P ∗Q) = (N) + (P ⊕Q).

Geometrically, this involves drawing a line through P and Q, then translating it so

as to go through the distinguished point N . The reader is directed to Shirali’s recent
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Figure 5.1: The group law on a pointed conic

article [41] for a proof that the group axioms are satisfied. Shirali goes further, using

the classification of (non-degenerate) conics over the real line to describe the possible

groups obtained this way (over R) explicitly. In particular, since the group law is defined

by drawing lines and translating them around, it’s preserved under affine isomorphism,

and thus problem can be simplified.

Definition 5.2.4. LetX ⊆ A2
K denote a conic and let ã ∈ K6 satisfyX = V (Qã). Then

X is parabolic if and only if det(mã) = 0 and non-parabolic if and only if det(mã) 6= 0.

If the ground field K is an ordered field, then we define that X is elliptic if and only if

det(mã) > 0 and that X is a hyperbolic if and only if det(mã) < 0.

Remark. By Proposition 5.1.7, the small matrix of a conic is determined up to

multiplication by an element of K∗. This tells us that the determinant of the small

matrix is determined up to multiplication by a non-zero perfect square, and hence that

the above definitions make sense.

It is a simple algebra check to see that affine isomorphisms preserve the above

classification. Shirali’s article exploits the classical result that, over the real line, every

(non-degenerate) conic is affinely isomorphic to one of

x2 + y2 = 1, y = x2, xy = 1,

depending on whether it’s elliptic, parabolic, or hyperbolic, in order to find the groups

75



explicitly in each of these cases. He concludes that, over the real line, we have:

Ellipse ≈ S1 ≈ R/Z

Parabola ≈ (R,+)

Hyperbola ≈ (R∗,×) ∼= (R,+)× Z/2

5.3 Arrows between pointed conics

In light of Shirali’s results, a natural question to ask is: ‘what is the correct notion of

morphism between pointed conics?’ Three possibilities suggest themselves, listed below

in order of increasing generality:

affine homomorphism basepoint preserving affine transformation

regular homomorphism group-structure preserving regular mapping

isogeny basepoint preserving regular map

Over the real line, all three notions listed above are distinct notions. To see that

not every regular homomorphism is affine, consider the function:

x2 + y2 = 1, (1, 0)
[2]−−→ x2 + y2 = 1, (1, 0)

(x, y)
[2]7−−→ (x2 − y2, 2xy).

This is not an affine homomorphism because [2](1, 0) = [2](−1, 0). To see that not

every isogeny is a regular homomorphism, consider the function

y2 = x2 + 1, (0, 1)
γ−→ y = x2 + 1, (0, 1)

(x, y)
γ7−→ (x, y2).

Figure 5.2 shows by way of example that γ is not a homomorphism of groups.

Nonetheless, it turns out that for certain kinds of conics, every isogeny is automat-

ically a regular homomorphism, mirroring the situation with elliptic curves.

Proposition 5.3.1. Let K be a field of characteristic not 2. Then every isogeny

between non-parabolic pointed conics is a regular homomorphism.

As far as I know, this is a new result. To prove it, let us first note that since isogenies

are regular mappings, hence it only needs to be shown that every isogeny is a group
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Figure 5.2: The isogeny γ : (x, y) 7→ (x, y2) is not a group homomorphism

homomorphism. Our strategy will be to prove this for self-isogenies of the hyperbola

{(x, y) ∈ K2
: xy = 1}, and then reduce the general case to this special case.

Proposition 5.3.2. Let K be a field of characteristic not 2. Then every self-isogeny

of the pointed conic (V (π1π2 − 1), (1, 1)) is a group homomorphism.

Proof. We’ll give a somewhat informal proof; a more rigorous approach would require

the development of a theory of quasi-affine varieties, which is beyond the scope of this

thesis. Elementary algebra shows that the functions

K∗
α−→ V (π1π2 − 1)

x
α7−→ (x, x−1)

V (π1π2 − 1)
β−→ K∗

(x, y)
β7−→ x

are inverses. I claim that they are group homomorphisms. It suffices to show

that α is a group homomorphism. Consider x, y ∈ K∗. Our goal is to show that

α(xy) = α(x) ⊕ α(y). There are two cases. The first case is where α(x) 6= α(y). It

suffices to show that the line through α(x) and α(y) is parallel to the line through (1, 1)

and α(xy). That is, it is enough to shos that

α(y)− α(x) ∼ α(xy)− (1, 1).

In other words, we’re trying to show that

(y − x, y−1 − x−1) ∼ (xy − 1, x−1y−1 − 1).

But this is equivalent to

(x−1 − y−1, y − x) • (xy − 1, x−1y−1 − 1) = 0.
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But this is easily verified by elementary algebra. The second case is where α(x) = α(y).

The goal is to show that the normal to the curve at α(x) is perpendicular to the line

through (1, 1) and α(x2). That is, we’re trying to show

(y, x) • (x2 − 1, x−2 − 1) = 0.

This is equivalent to showing that

((x2 − 1)(xy − 1))/x = 0

as can be seen by expanding out both left-hand-sides. But since (x, y) ∈ V (π1π2 − 1),

the above statement is clearly true. Hence α is a homomorphism of groups, and thus

so too is β.

Now consider an isogeny ϕ : V (π1π2−1)→ V (π1π2−1). The mapping ψ := β ◦ϕα :

K∗ → K∗ is a self-map of the quasi-affine variety K∗ = A1 \ {0}. Hence ψ is of the

form ψ(x) = Axn for appropriate choices of A ∈ K and n ∈ Z. Now compute:

ψ(1) = β(ϕ(α(1)))

= β(ϕ(1, 1))

= β(1, 1) because ϕ is an isogeny

= 1

Thus ψ(1) = 1. In other words, A · 1n = 1. Hence A = 1. Hence ψ is given by the

formula ψ(x) = xn. It follows that ψ is a group homomorphism. Thus α ◦ ψ ◦ β is a

group homomorphism. But since α and β are inverse functions, this composite equals

ϕ. We deduce that ϕ is a group homomorphism, as desired.

Next, we’ll reduce the general case to the special case.

Proposition 5.3.3. Let K be a field of characteristic not 2 in which every element has

a square root. Then any non-parabolic conic over K is affinely isomorphic to xy = 1.

Proof. Consider the conic Ax2 + Bxy + Cy2 + Dx + Ey + F = 0. Without loss of

generality, assume A 6= 0. Complete the square on the homogeneous part by treating

A, By and Cy2 as the coefficients. The coefficient of x is unchanged; by hypothesis,

the new coefficient of y (call it C ′) is non-zero (otherwise the small matrix would have

determinant 0). Now complete the square two more times, once with x, once with

y, to get the quadratic into the form Ax2 − C ′y2 + F ′ = 0 for some F ′ ∈ K. We
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know F ′ is non-zero (otherwise the large matrix would have determinant 0). So divide

through by F ′ to get into the form αx2 − βy2 = 1. Now use the affine isomorphism

αx2 − βy2 → xy = 1 given by (x, y) 7→ (
√
αx +

√
βy,
√
αx −

√
βy) to complete the

proof.

Putting these results together demonstrates Proposition 5.3.1 for any field of charac-

teristic distinct from 2. Note that the base field does not have to be algebraically closed,

since we can move to the algebraic closure to show that the isogeny is a homomorphism,

and thereby conclude that it’s a homomorphism over the ground field.

It should be noted that considering vanishing sets in an algebraic-closure is essential

for Proposition 5.3.1. For instance, note that the function

R \ {0} ϕ−→ R \ {0}
x

ϕ7−→ x2 − x+ 1

satisfies ϕ(1) = 1, but is not a group homomorphism. For instance, we have ϕ(2·2) = 13,

but ϕ(2)ϕ(2) = 9. This illustrates the importance of working over an algebraically-

closed field, for the proof above would fail without this assumption. Indeed, the function

V 2(π1π2 − 1)
δ−→ V 2(π1π2 − 1)

(x, y)
δ7−→ (x2 − x+ 1, (x2 − x+ 1)−1)

is easily seen to preserve (1, 1), yet is not a group homomorphism; see Figure 5.3.

Figure 5.3: Failure of the ‘isogeny’ δ : (x, y) 7→ (x2 − x+ 1, (x2 − x+ 1)−1) to preserve
the group law on the hyperbola.
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5.4 Pell conics

Definition 5.4.1. Given a scalar d ∈ K∗ the Pell conic associated to d is the affine

curve

C(d) = V 2(π2
1 − dπ2

2 − 1) = {(x, y) ∈ K2
: x2 − dy2 = 1}.

Since the determinant of the corresponding large matrix is d, which is non-zero,

we deduce that every Pell conic is indeed a conic. Since the determinant of the corre-

sponding small matrix is −d, which is also non-zero, we deduce that every Pell conic is

non-parabolic. It’s also easy to see that the point (1, 0) lies on C(d) for all d. Taking

this as our identity element, it follows that every Pell conic becomes a group. The law

can be described explicitly as follows:

Proposition 5.4.2. For all d ∈ K∗, the group law on the Pell conic C(d) is given by

(x1, y1)⊕ (x2, y2) = (x1x2 + dy1y2, x1y2 + y1x2).

Proof. Let us begin by checking well-definedness of the law. Assume:

x21 − dy21 = 1, x22 − dy22 = 1.

The goal is to show that

(x1x2 + dy1y2)
2 − d(x1y2 + y1x2)

2 = 1,

which is equivalent to proving

(dy21 − x21)(dy22 − x22) = 1,

as can be seen by expanding out both left-hand sides and noting that they’re equal.

Hence it’s enough to prove that (−1)(−1) = 1, which is clearly true.

It remains to show that the line (x1, y1) ∗ (x2, y2) given in Definition 5.2.2 contains

the point (x1x2 +dy1y2, x1y2 +y1x2). There are two cases. For the first case, we assume

(x1, y1) 6= (x2, y2). To show that the relevant lines are parallel, it’s enough to show that

(x2 − x1, y2 − y1) ∼ (x1x2 + dy1y2 − 1, x1y2 + y1x2).
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But this is equivalent to the statement

(y1 − y2, x2 − x1) • (x1x2 + dy1y2 − 1, x1y2 + y1x2) = 0.

Expanding this out and using the formulae x21 − dy21 = 1 and x22 − dy22 = 1 proves the

claim. For the other case, assume (x1, y1) = (x2, y2). Define (x, y) := (x1, y1) = (x2, y2).

We must show that the tangent to Cd at (x, y) is parallel to the line (x, y) ∗ (x, y). It’s

enough to show that

(2dy, 2x) ∼ (x2 + dy2 − 1, 2xy).

But this is equivalent to the statement that

(2x,−2dy) • (x2 + dy2 − 1, 2xy) = 0.

So it’s enough to show that 2x(x2 − dy2 − 1) = 0. But using that (x, y) ∈ C(d), this

follows easily.

Unsurprisingly, under certain conditions on d, the Pell conic C(d) is isomorphic to

the group of units of K.

Proposition 5.4.3. Suppose d ∈ K has a square root in K. Then the function

C(d)(K)
ϕd−−→ K∗

(x, y)
ϕd7−−→ x− y

√
d

is a morphism of groups.

Proof. Let’s show that ϕd is well-defined. Suppose x2 − dy2 = 1. Our goal is to prove

that x−y
√
d is a unit. It suffices to show that (x−y

√
d)(x+y

√
d) = 1. But this is clear.

Let us now show that ϕd is a morphism of groups. Assume

x21 − dy21 = 1, x22 − dy22 = 1.

Our goal is to show that

ϕ(x1x2 + dy1y2, x1y2 + y1x2) = ϕ(x1, y1)ϕ(x2, y2).
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That is, we’re trying to show that

(x1x2 + dy1y2)− (x1y2 + y1x2)
√
d = (x1 − y1

√
d)(x2 − y2

√
d).

But this can be seen immediately by expanding out the right-hand side.

Proposition 5.4.4. If K is not of characteristic 2, and if d ∈ K has the property that

1/
√
d exists, then the function

K∗
ψd−−→ C(d)(K)

t
ψd7−−→

(
t−1 + t

2
,
t−1 − t
2
√
d

)
is an inverse to ϕd, and these are both consequently isomorphisms of groups.

Proof. Consider t ∈ K∗. We have:

ϕd(ψd(t))

= ϕd

(
t−1 + t

2
,
t−1 − t
2
√
d

)
=
t−1 + t

2
− t−1 − t

2
√
d

√
d

=
t−1 + t

2
− t−1 − t

2

= t

Consider (x, y) ∈ C(d)(K). Observe that

(x− y
√
d)−1 =

1

x− y
√
d

=
x+ y

√
d

x2 − y2d
= x+ y

√
d
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Thus, we have:

ψd(ϕd(x, y))

= ψd(x− y
√
d)

=

(
(x− y

√
d)−1 + (x− y

√
d)

2
,
(x− y

√
d)−1 − (x− y

√
d)

2
√
d

)

=

(
(x+ y

√
d) + (x− y

√
d)

2
,
(x+ y

√
d)− (x− y

√
d)

2
√
d

)
= (x, y)

This completes the proof. �

5.5 The rational unit circle

By Proposition 5.4.4, the rational unit hyperbola

C(1)(Q) = {(x, y) ∈ Q2 : x2 − y2 = 1}

is isomorphic to Q∗.
On the other hand, since −1 has no square root in Q, the rational unit circle

C(−1)(Q) = {(x, y) ∈ Q2 : x2 + y2 = 1}

is not subject to Proposition 5.4.4. Note that the set C(−1)(Q) is closely related to

the Pythogorean triples. In particular, given a Pythagorean triple (a, b, c), we can

divide through the equation a2 + b2 = c2 by c2 to show that (a/c, b/c) is an element of

C(−1)(Q) Conversely, if (x, y) ∈ C(−1)(Q), then if λ ∈ Z is a common multiple of the

denominators of x and y, we find that (λx, λy, λ) is a Pythagorean triple. The group

structure of the rational unit circle is known explicitly.

Proposition 5.5.1 (Tan, 1996). Letting P denote the set of prime numbers, we have:

C(−1)(Q) ∼= Z/2⊕
⊕

p∈P:p≡1(mod4)

Z/p

Proof. The details are in Tan’s article [44].
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This shows that Mordell’s theorem for elliptic curves, which says that if E is an

elliptic curve, then E(Q) is finitely generated and has finitely many torsion elements,

fails for conics. In particular, the rational unit circle C(−1)(Q) is not finitely generated,

and yet consists entirely of torsion elements. Nonetheless the analogy can be salvaged

by looking at rings of integers [23, p.4]. Given an algebraic number field K, write OK for

its ring of integers and let r2 equal half the number of complex imbeddings of K. Shastri

[40, p.68] has shown that if K is an algebraic number field in which −1 does not have a

square root, then C(−1)(OK) ∼= Z/4×Zr2−1, and that if K is an algebraic number field

in which −1 does have a square root, then C(−1)(OK) ∼= Z/4 × Zr2 . The interested

reader is directed to Lemmermeyer [23], in which the author systematically looks at the

similarities and differences between the theory of Pell conics and that of elliptic curves.

In addition to the comparisons made there, the observation that there’s a meaningful

notion of isogeny between pointed conics, which is in particular a group homomorphism

as long as the domain and codomain are non-parabolic, further strengthens the system

of analogies developed by Lemmermeyer and suggests that further connections remain

to be discovered.
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Chapter 6

Applications to Cryptography

In this chapter we’ll give a brief outline of how number-theoretic methods based on cyclic

groups, elliptic curves and even conics can be used to facilitate secure communication

over insecure channels.

Early cryptography presupposed that the communicating agents possessed a secret

key that allowed them to encrypt their messages in a manner that (hopefully) only the

other party could decrypt. An early example of this is the Caesar cipher, in which each

letter is shifted a fixed number of places. For example, if that number is 2, then each

copy of A is replaced by C, each copy of B is replaced by D, etc. In this way, entire

messages can be translated from human-readable plaintext into apparently unintelligible

ciphertext using a systematic process that the receiving party can easily reverse.

Of course, the Caesar cipher isn’t too hard to break. There are only 25 possibilities,

so if one knows ahead of time that a message has been encoded using a Caesar cipher,

the message is readily decrypted. In modern language, there are only 25 possible keys

for the Caesar cipher.

Contemporary information systems make use of much more sophisticated encryp-

tion with much larger keys. A popular algorithm is the Advanced Encryption Standard

(AES). When your computer wishes to communicate with another computer securely

over the internet, it is likely using AES to encrypt the data it’s sending and decrypt

the data it’s receiving. The history is quite interesting: AES was chosen by the Na-

tional Institute of Standards and Technology (NIST) after a rather lengthy competition

between different teams. The AES was chosen to replace the increasingly unpopular

Data Encryption Standard (DES), whose secureness had come under question due to

the possibility of the existence of backdoors in the framework.

Like the Caesar cipher, AES is a symmetric cipher. What this means is that for two
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parties to communicate securely using AES (or a similar technology), they must both

be in possession of a shared secret to use as the encryption and decryption key. Once

upon time, spies would meet to exchange secret keys in order to solve this problem.

But with the development of modern information technology, and in particular, the

invention of public-key cryptography, this all changed.

If two parties can only communicate over an insecure channel (like the internet),

it was once believed that these parties could not establish a shared secret. After all,

if this secret was sent in cleartext over the channel, then it could be viewed by an

eavesdropper, who would then be able to decrypt all further communications. And the

secret couldn’t possibly be sent in anything other than plaintext, since a shared secret

had yet to be established. Thus it is easy to sympathize with the prevalence of this

belief.

It was eventually realized, however, that the existence of one-way functions provides

a solution. A one-way function is a function f : X → Y such that there exist currently-

known efficient algorithms for computing f(x) ∈ Y given x ∈ X, but no currently-

known efficient algorithms for finding an x ∈ X satisfying f(x) = y. Of course, since

the definition is based on the current state of knowledge, it’s difficult to give a fully

mathematical account of this notion, and what once was a one-way function might no

longer be cryptographically secure once better algorithms have been developed. Yet

whatever the theoretical difficulties might be, one-way functions exist in practice, and

thus exchanging secret keys in a public channel is possible in practice. It should be

noted that although the establishment of a shared secret (called a key-exchange) is not

the only application of one-way functions, it is the only one that will be considered in

this thesis.

6.1 The Diffie-Hellman Key Exchange

Diffie–Hellman key exchange is a protocol that allows two parties whom have never

met each other to establish a shared secret over insecure channel. It historically one of

the first examples of public-key cryptography, and was invented by Ralph Merkle [26],

whom decided to name it after Whitfield Diffie and Martin Hellman as a result of their

contributions to the idea, especially as described in [17].

Given an abelian group G and an element g ∈ G, the function g� can often be

regarded as a one way function, and the classical Diffie-Hellman protocol exploits this.

Not every group will work, of course. For example, if G is the set R>0 viewed as a group

with respect to multiplication, then given g ∈ R>0, the associated inverse problem is
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to find n ∈ Z satisfying gn = h, when both g and h are known. But this is easy!

The base-g logarithm of h can be computed efficiently using standard methods, quickly

revealing the integer n.

However, in the classical Diffie-Hellman protocol, the group G is taken to be the

group of units of Z/p. The inverse problem is called the discrete logarithm problem,

and for a carefully chosen G tends to be very hard.

In cryptography, certain names are used with fairly consistent meaning to illustrate

hypothetical agents with largely fixed abilities or goals. In particular, we’ll make use of

Alice and Bob, which are the standard names of two parties who wish to communicate

securely. We’ll also make use of Eve, a hypothetical eavesdropper with the power to

read the messages that Alice and Bob send to each other, but no power to alter or

modify those messages. With that in mind, the classical Diffie-Hellman protocol can

be described as follows:

• Alice and Bob wish to establish a shared secret.

• Public parameters: large prime p ∈ N and non-unit g ∈ (Z/p)∗.

• Alice generates a random natural number a and discloses ga ∈ (Z/p)∗.

• Bob generates a random natural number b and discloses gb ∈ (Z/p)∗.

• Bob takes the received value of ga and raises it to the power of his secret number

b, obtaining (ga)b which equals the shared secret gab.

• Alice takes the received value of gb and raises it to the power of her secret number

a, obtaining (gb)a, which equals the shared secret gab.

Figure 6.1: The Diffie-Helman key exchange protocol

The above protocol is believed to be secure for sufficiently large primes p ∈ N, as

long as p− 1 has a very large factor. It works because an attacker (Eve) is faced with
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the problem of using ga and gb to find gab. The easiest way would be to find either a or

b. For example, if Eve gains knowledge of a, she can raise the publicly disclosed value

of gb to the power of a to obtain the shared secret.

(gb)a = gab

More generally, if Eve can find any natural number A satisfying gA = ga, then she can

raise gb to the power of A to obtain the shared secret:

(gb)A = (gA)b = (ga)b = gab.

But given ga, the problem of finding a natural number A satisfying gA = ga is the

discrete logarithm problem in (Z/p)∗, which is potentially hard.

To ensure the discrete logarithm problem is sufficiently hard that Alice and Bob can

be sure no other parties can deduce their shared secret and consequently become privy

to their communications, we need to impose certain conditions on p. In particular, we

require that p − 1 be ”non-smooth”, meaning that it has a very large prime factor. If

this condition is not met, the Pohlig-Hellman algorithm (described in the next section)

can be used to break the encryption.

6.2 Why does p have to be non-smooth?

Hereafter the discrete logarithm problem will be abbreviated DLP. The bruteforce ap-

proach to solving the DLP equation gn = h is to iteratively compute the powers

1, g, g2, g3, . . .

until h is found. For appropriately chosen g ∈ (Z/p)∗, this is quite a slow process, be-

cause we’re forced to go through about half the elements of (Z/p)∗ on average. Therefore

the process takes O(p)-time on average, which is great, because p could be huge. More

formally, recall that to store a number p in binary, we only need about p̂ ≈ log2(p)-many

bits. Rearranging, we find that p is approximately 2p̂. Thus the bruteforce approach

to the DLP takes O(2p̂) time. Since this is exponential in the amount of space p̂ it

takes to store the prime p, this plan of attack is too slow for even the most well-funded

attackers.

Before proceeding, let us spend a moment dissecting the informal metaprinciple

that exponential-time algorithms provide unusable attack vectors against cryptographic
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systems. Suppose that Alice and Bob establish a shared secret via a protocol that takes

C · 2k time to break, where k ∈ N is the key size (i.e. the number of bits necessary to

store the shared secret) and C ∈ R>0 is a constant of proportionality. Then for each

bit Alice and Bob include in their shared secret, the amount of resources an attacker

needs to uncover their secret approximately doubles. Thus if a key size of k costs $1

to break, then a key size of k + 32 costs $(232) to break, which is about 4.2 billion

dollars. Adding 8 bits to that puts the cost at about 1 trillion dollars, which is just

under Australia’s current GDP. Another 8 bits gets you to about 281 trillion dollars,

which is about three times the entire Earth’s current GDP. And we’ve only added 48

bits to our original key size! This thought experiment reassures us that the heuristic

idea that exponential timescales reflect fundamentally intractable problems is reliable.

One might object that the above analysis is invalid, since it fails to account for

Moore’s Law, which states (in one form) that the amount computing power that a

dollar can buy will roughly will double every 18 months. But even from this viewpoint,

each bit added to the key size will stall potential attackers by about 18 months, and

it becomes easy to stall them into failure. To make things worse for the would-be

attackers, Moore’s law is unrealistic over the long run, and since there are only about

2260 atoms in the universe, keys of size around 260 + k would require more dollars than

are atoms in the universe. We’re once again led therefore to believe in the intractability

of exponential problems.

There are better methods for solving DLP than the bruteforce attack. Whereas

bruteforce runs inO(p)-time, an algorithm called baby-step giant-step solves the problem

in O(
√
p)-time in the average case, a considerable improvement. However, even with

this speedup, the problem remains intractably difficult. In particular, note that if

p ≈ 2p̂ where p̂ is the number of bits necessary to store p, using the baby-step giant-

step algorithm takes O(
√

2p̂)-time, which equals O(2p̂/2). Ergo this speedup does not

represent a subexponential attack and consequently does not preclude the function

g� : N → (Z/p)∗ from being used as a one-way function. It does, however, double the

key sizes necessary for the same level of security.

A more severe issue occurs when p − 1 is a smooth integer. During the course of

the development of what is now known as the Diffie-Hellman protocol, Stephen Pohlig

and Martin Hellman collaborated to develop an algorithm that would break the system

when p − 1 has many small factors [35]. Now called the Pohlig-Hellman algorithm, it

has two parts.

The first part is an algorithm for solving the DLP in cyclic groups of prime-power

order. The algorithm proceeds to compute each base-p digit of the desired number one
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at a time, using the baby-step giant-step algorithm in an appropriate quotient group to

obtain the next digit. It then uses an efficient implementation of the Chinese Remainder

Theorem to piece together the prime-power solutions and give the final answer. If we

agree to write u := p− 1 in its prime-factorized form with ei as the exponents, as in

u = pe11 . . . penn ,

then the worst-case time-complexity of the Pohlig-Hellman algorithm is

n∑
i=1

ei(log n+
√
pi).

Note that for smooth u, this is catastrophically subexponential. For example, suppose u

equals 2e1 . Then the Pohlig-Hellman algorithm takes O(e1 log u)-time in the worst case,

which is O(e21). Since e1 is a good approximation to û, the amount of space needed

to store u, this means the Pohlig-Hellman algorithm represents an O(û2)-time attack

on the DLP in Z/uZ, suggesting that such choices of u are cryptographically insecure.

This justifies the stipulation that p− 1 needs to be non-smooth for the DLP in (Z/p)∗

to be hard.

6.3 The Diffie-Hellman key-exchange protocol over

elliptic curves

Since each elliptic curve carries the structure of an abelian group in a natural way,

hence elliptic curves can be used in place of the group (Z/p)∗ in the Diffie-Hellman

key-exchange protocol. Aside from a change from multiplicative to additive notation,

the protocol remains largely unchanged, and can be described roughly as follows.

• Alice and Bob wish to establish a shared secret.

• Public parameters: a large finite field Fq ∈ N, an elliptic curve E defined over Fq,
and a non-zero element P ∈ E that generates a sufficiently large group.

• Alice generates a random natural number a and discloses [a]P.

• Bob generates a random natural number b and discloses [b]P.

• Bob takes the received value of [a]P and computes [b]([a]P ), which equals the

shared secret [ab]P.
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• Alice takes the received value of [b]P and computes [a]([b]P ), which equals the

shared secret [ab]P.

The actual representation of elliptic curves can vary between implementations. For

example, Curve25519, which offers 128 bits of security, is a Montgomery curve defined

over a quadratic extension of the field F2255−19 and has equation

y2 = x3 + 486662x2 + x.

On the other hand, NIST P-224 is in Weierstrass form, and Ed25519 is a twisted Ed-

wards curve. A similar approach can be used to perform a Diffie-Hellman-like key

exchange using pointed conics in place of elliptic curves, see Lemmermeyer [24] for ex-

ample. Unfortunately, naive implementations seem to perform no better than classical

Diffie-Hellman insofar as key sizes are concerned. Nonetheless, conics have been used

with some level of success in cryptography; see Chen [9], for example.

6.4 The need for post-quantum cryptosystems

With the development of quantum computers, the need for quantum-resistant one-

way functions and protocols is growing. For instance, cryptosystems based on the

difficulty of factoring integers are broken by quantum computers armed with Shor’s

algorithm, which can factor an integer n of with space-complexity u = log2(n) in

O(u2 log(u) log(log(u)))-time when fast multiplication algorithms are used [5].

Shor has also produced algorithms for solving the discrete logarithm problem in

polynomial time on a quantum computer [42]. Putting these results together, one sees

that almost all of the public-key cryptosystems currently in use is hopelessly inadequate

against a quantum-empowered adversary.

This prompted NIST in 2012 to launch the Post-Quantum Cryptography (PQC)

project. Submissions for the first round closed in 2017, and of particular interest for

our purposes is the SIDH protocol, on which one of the submissions to the PQC was

based [12].
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6.5 Supersingular isogeny-based Diffie-Helman (SIDH)

key exchange

SIDH is a key-exchange algorithm that is believed to be quantum-resistant. The germ

of the idea was described in a 1997 talk [14] entitled “Hard homogenous spaces,” and

in 2006 the first cryptosystem based on this idea is published [37], which now called

OIDH. In 2010, a subexponential quantum algorithm for breaking OIDH is submitted

to the Arxiv [10] that exploits the commutativity of the endomorphism ring of ordinary

elliptic curves. Just a year later, a supersingular variant is published [22] that thwarts

the aforementioned attack as a consequence non-commutativity of the endomorphism

ring in the supersingular case. It is this variant, termed SIDH, that we will concern

ourselves with here.

Although the basic idea behind SIDH can be explained in elementary terms, nonethe-

less the technical details are fairly demanding. Consequently this will be a somewhat

brief explanation of the protocol. The difference between elliptic curve Diffie-Hellman

and SIDH can be summarized by contrasting the hard problems on which they’re based.

In elliptic curve Diffie-Hellman, Eve is privy to the public point P on the curve and

Alice’s disclosure of [a]P, and is faced with the task of using this information to dis-

cover a. In SIDH, on the other hand, Eve is privy to a public supersingular curve E

and to its image qA(E) under an isogeny qA, and is faced with the task of finding qA.

The commutativity relation [a]([b]P ) = [b]([a]P ) which in elliptic curve Diffie-Hellman

ensures that both Alice and Bob arrive at the same shared secret is replaced by the

commutativity of the diagram

E E/B

E/A E/(A+B).

qB

qA q′A

q′B

With that in mind, the protocol can be described (roughly) as follows:

• Alice and Bob wish to establish a shared secret.

• Public parameters:

– natural numbers eA and eB whose size is related to the key size

– a natural number f with the property that the quantity p := f · 2eA3eB − 1

is prime.
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– an elliptic curve E defined over Fp2 with (p+ 1)2 elements

– a two-element generating set {PA, QA} for the group E[2eA ] of all P ∈ E

such that [2eA ]P = 0

– a two-element generating set {PB, QB} for the group E[2eB ] of all P ∈ E

such that [2eB ]P = 0

• Alice generates a pair of random natural numbers (mA, nA) that she keeps secret,

and computesRA := [mA]PA+[nA]QA. She computes the isogeny ϕA : E → E/RA

and discloses the coefficients of the curve E/RA while keeping ϕA secret.

• Bob generates a pair of random natural numbers (mB, nB) that she keeps secret,

and computes RB := [mB]PB + [nB]QB. He discloses the coefficients of the curve

E/RB. He computes the isogeny ϕB : E → E/RB and discloses the coefficients of

the curve E/RB while keeping ϕB secret.

• Bob helps Alice out by also disclosing ϕB(PA) and ϕB(QA).

• Alice helps Bob out by disclosing ϕA(PB) and ϕB(QA).

• Alice takes the curve E/RB that she received from Bob, and using the points

ϕB(PA) and ϕB(QA) on this curve which she also received, computes the linear

combination ϕB(RA) := [mA]ϕB(PA) + [nA]ϕB(QA). She uses this to build the

quotient

(E/RB)/(R′A).

The j-invariant of this curve is the shared-secret.

• Bob takes the curve E/RA that he received from Alice, and using the points

ϕA(PB) and ϕA(QB) on this curve which he also received, computes the linear

combination ϕA(RB) := [mB]ϕB(PB) + [nB]ϕA(QB). He uses this to build the

quotient

(E/RB)/(R′A).

The j-invariant of this curve is the shared-secret.

The SIDH key exchange protocol has a major advantage over other post-quantum

key exchange protocols insofar as the key sizes are smaller for the same security level;

however, the computational time needed to execute the protocol is much higher than for

the major competing protocols [13]. This does not matter too much on the client-side,
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but for a server that needs to service hundreds of requests each second, the current

slowness of SIDH implementations makes it a less attractive contender. In light of

the existence of a meaningful notion of isogenies between conics, and the comparative

simplicity of conic arithmetic, it seems reasonable to investigate the possibility of using

‘higher-dimensional conics’ in place of elliptic curves in an SIDH-like scheme. If it’s

possible to find higher-dimensional degree 2 varieties with useful group structures and

a good theory of isogenies and quotients, they could offer a means of improving the

efficiency of the protocol.
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Appendix A

Python code for Velu’s Formula

#### Parameters

# Define the elliptic curve by its "a" coefficients

a = dict()

a[1] = 1

a[3] = 1

a[2] = -1

a[4] = -3

a[6] = 3

# A special subset S of the subgroup of interest that contains half the elements that aren’t 2-torsion. n.b. S never contains the identity, so the affine formulae are enough to obtain the numbers we need.

s = [[1,-2],[-1,-2],[3,-6]]

#### Code

# Define a function w whose vanishing set is the curve. This is not used in the formula, but can be used for membership checking

def w(P):

x = P[0]

y = P[1]

return (y**2 + a[1] * x*y+a[3]*y)-(x**3 + a[2]*x**2 + a[4]*x + a[6])
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# Compute the corresponding "b" coefficients

b = dict()

b[2] = a[1]**2 + 4*a[2]

b[4] = a[1]*a[3] + 2*a[4]

b[6] = a[3]**2+4*a[6]

b[8] = (a[1]**2)*a[6] - a[1]*a[3]*a[4]+4*a[2]*a[6]+a[2]*(a[3]**3)-a[4]**2

# Define the two partial derivatives of the defining function of the curve, as well as the t and u functions

def wx(P):

x = P[0]

y = P[1]

return -3*(x**2) - 2*a[2]*x - a[4] + a[1]*y

def wy(P):

x = P[0]

y = P[1]

return 2*y + a[1]*x + a[3]

def t(P):

x = P[0]

y = P[1]

return 6*(x**2) + b[2]*x + b[4]

def u(P):

return wy(P)**2

# Compute the constants T and W

T = sum([t(P) for P in s])

W = sum([u(P)+P[0]*t(P) for P in s])

# Compute the coefficients of the quotient curve
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A = [None for _ in range(1,8)]

A[1] = a[1]

A[3] = a[3]

A[2] = a[2]

A[4] = a[4]-5*T

A[6] = a[6]-b[2]*T-7*W

# Print the relevant information

print("wx:",[wx(P) for P in s])

print("wy:",[wy(P) for P in s])

print("t:",[t(P) for P in s])

print("u:",[u(P) for P in s])

print("T:",T,"W:",W)

print("A[1,3,2,4,6] = ",end = "")

print(A[1],A[3],A[2],A[4],A[6], sep = ", ")

98



Bibliography

[1] Avner Ash and Robert Gross. Elliptic tales: curves, counting, and number theory.

Princeton University Press, 2014.

[2] Robert B Ash. A course in commutative algebra, chapter 5. https://faculty.

math.illinois.edu/~r-ash/ComAlg/ComAlg5.pdf.

[3] Arthur OL Atkin. The number of points on an elliptic curve modulo a prime.

preprint, 1988.

[4] azimut (https://math.stackexchange.com/users/61691/azimut). Why is the local-

ization at a prime ideal a local ring? Mathematics Stack Exchange. https:

//math.stackexchange.com/q/300459(version:2013-02-11).

[5] David Beckman, Amalavoyal N Chari, Srikrishna Devabhaktuni, and John Preskill.

Efficient networks for quantum factoring. Physical Review A, 54(2):1034, 1996.

[6] Daniel J Bernstein, Peter Birkner, Marc Joye, Tanja Lange, and Christiane Peters.

Twisted edwards curves. In International Conference on Cryptology in Africa,

pages 389–405. Springer, 2008.

[7] Manjul Bhargava and Arul Shankar. Binary quartic forms having bounded in-

variants, and the boundedness of the average rank of elliptic curves. Annals of

Mathematics, pages 191–242, 2015.

[8] Andries E Brouwer. Regular differential forms. https://www.win.tue.nl/~aeb/

2WF02/difffm.pdf.

[9] Zhi-Gang Chen and Xin-Xia Song. A public-key cryptosystem scheme on conic

curves over z n. In Machine Learning and Cybernetics, 2007 International Con-

ference on, volume 4, pages 2183–2187. IEEE, 2007.

99



[10] A. M. Childs, D. Jao, and V. Soukharev. Constructing elliptic curve isogenies in

quantum subexponential time. ArXiv e-prints, December 2010.

[11] Pete L Clark. Commutative algebra, 2015. http://math.uga.edu/~pete/

integral2015.pdf.

[12] Sike Contributors. Sike resources page. https://sike.org/#resources.

[13] Craig Costello, Patrick Longa, and Michael Naehrig. Efficient algorithms for super-

singular isogeny diffie-hellman. In Annual Cryptology Conference, pages 572–601.

Springer, 2016.

[14] Jean Marc Couveignes. Hard homogeneous spaces. IACR Cryptology ePrint

Archive, 2006:291, 2006.

[15] Brian A Davey and Hilary A Priestley. Introduction to lattices and order. Cam-

bridge university press, 2002.

[16] Max Deuring. Die typen der multiplikatorenringe elliptischer funktionenkörper.

In Abhandlungen aus dem mathematischen Seminar der Universität Hamburg, vol-

ume 14, pages 197–272. Springer, 1941.

[17] Whitfield Diffie and Martin Hellman. New directions in cryptography. IEEE

transactions on Information Theory, 22(6):644–654, 1976.
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Manin. Abelian varieties, volume 108. Oxford university press Oxford, 1974.

[33] Katsuyuki Okeya, Hiroyuki Kurumatani, and Kouichi Sakurai. Elliptic curves with

the montgomery-form and their cryptographic applications. In Hideki Imai and

Yuliang Zheng, editors, Public Key Cryptography, pages 238–257, Berlin, Heidel-

berg, 2000. Springer Berlin Heidelberg.

[34] Alan R Pears. Dimension theory of general spaces, volume 222. Cambridge Uni-

versity Press London, 1975.

[35] Stephen Pohlig and Martin Hellman. An improved algorithm for computing loga-

rithms over gf (p) and its cryptographic significance (corresp.). IEEE Transactions

on information Theory, 24(1):106–110, 1978.

[36] Bjorn Poonen. Lectures on rational points on curves, 2006. https://math.mit.

edu/~poonen/papers/curves.pdf.

101



[37] Alexander Rostovtsev and Anton Stolbunov. Public-key cryptosystem based on

isogenies. IACR Cryptology ePrint Archive, 2006:145, 2006.

[38] Rene Schoof. Elliptic curves over finite fields and the computation of square roots

mod p. Mathematics of Computation, 44(170):483, 1985.
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