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Abstract

Using new results on the bounds of the prime-counting function, we are able to

improve on the bounds of a constant that appears in the asymptotic expansion of

the sum of the reciprocal of the prime-counting function.
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Chapter 1

Introduction

The prime-counting function, denoted by π(x), counts the number of prime numbers

up to a given number. A well-known result, referred to as the Prime Number

Theorem, states that π(x) ∼ x
log x

, or equivalently, π(x) ∼ li(x) where li(x), the

logarithmic integral function, is given by

li(x) = PV

∫ x

0

dt

log t
= lim

ε→0

(∫ 1−ε

0

dt

log t
+

∫ x

1+ε

dt

log t

)
The Prime Number Theorem was proven in 1896 independently by Hadamard [8] and

de la Vallée Poussin [4]. They both used properties of the Riemann zeta function,

ζ(s), which is the analytic continuation of
∑∞

n=1 n
−s.

Related to π(x) are two functions referred to as the Chebyshev functions; the first

Chebyshev function, ϑ(x), and the second Chebyshev function, ψ(x), are defined as

ϑ(x) =
∑
p≤x

log p ψ(x) =
∑
pk≤x

log p

One direct relation between π(x) and ϑ(x) is the identity

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt

The Prime Number Theorem is equivalent to the Chebyshev functions being asymp-

totic to x.

One problem related to π(x) that has been explored relatively recently is re-

garding the asymptotic behaviour of the sum of the reciprocal of π(x). In 1980, de

1



2 CHAPTER 1. INTRODUCTION

Koninck and Ivić [11] showed that

∑
2≤n≤N

1

π(n)
=

1

2
log2N +O(logN)

In 2000, Panaitopol [12] used an improved formula for π(x) to show that

∑
2≤n≤N

1

π(n)
=

1

2
log2N − logN − log logN +O(1)

Then, in 2002, Ivić [10] found that

∑
2≤n≤N

1

π(n)
=

1

2
log2N − logN − log logN + C

+
k2

logN
+ · · ·+ km

(m− 1) logm−1N
+O

(
1

logmN

)
where C is an absolute constant and {km}m is the integer sequence defined by the

recurrence relation

k1 = 1, km + 1!km−1 + · · ·+ (n− 1)!k1 = n · n!

In 2008, Hassani and Moshtagh [9] showed that, for x ≥ 2,

α(x) ≤
∑

2≤n≤x

1

π(n)
− 1

2
log2 x+ log x ≤ β(x)

where α(x) = −1.51 log log x + 0.8994 and β(x) = −0.79 log log x + 6.4888, and

concluded that C ≈ 6.9.

In 2016, Berkane and Dusart [2] further improved upon this. Letting

S(x) =
∑

2≤n≤x

1

π(n)
− 1

2
log2 x+ log x+ log log x

they found that, for x ≥ 150721071,

6.68400420 +
6

10
√

log11 x
≤ S(x) ≤ 2

log x
+ 6.78291066

with the upper bound holding also for x ≥ 25555987, giving the bounds 6.6840 ≤

C ≤ 6.7830.

Since then, improved bounds on π(x) have been found by Axler [1]. His results

rely on work by Büthe [3], whose bounds on ϑ(x) and ψ(x) come from numerical
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computation and uses the zeroes of ζ(s) with imaginary part up to 1011, and Dusart

[5][6], who obtains bounds on ϑ(x) and ψ(x) using various results on the location

and density of the zeroes of ζ(s), including the numerical verification of the Riemann

hypothesis for the first 1013 non-trivial zeroes by Gourdon [7].

Based on the method used by Berkane and Dusart, and applying the results

found by Axler, we have managed to improve on the bounds of the constant C.

Theorem 1.1. S(x)→ C as x→∞ where 6.71433 < C < 6.74328.

This is a consequence of Theorem 4.1 proven in Chapter 4. The proof of the

theorem starts by using bounds on π(x) proven in Chapter 3, based on the work of

Axler [1], to express
∑

2≤n≤x
1

π(n)
as the sum of quotients involving logarithms and

the harmonic series. These are then compared to their integrals and Euler’s constant

respectively via results proven in Chapter 2. From there, the bound is rearranged

into the form
1

2
log2 x− log x− log log x+ C +R(x)

where C contains all terms independent of x. After calculating the value of C, it

is then shown that R(x) log x and R(x) 10
√

log11 x for the upper and lower bounds

respectively are bounded by constants for large enough x. Theorem 1.1 then follows

from the fact that R(x)→ 0 as x→∞ for both the upper and lower bounds.
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Chapter 2

Preliminary Results

2.1 Bounds on sums of quotients involving loga-

rithms

We define the Bernoulli numbers bn by the exponential generating function

x

ex − 1
=
∞∑
n=0

bnx
n

n!

In particular, this gives b0 = 1, b1 = −1
2
, b2 = 1

6
, b3 = 0, and so on. We denote by

b+n the sequence of Bernoulli numbers with b+1 = +1
2
. We also define the Bernoulli

polynomials

Bn(x) =
n∑
k=0

(
n

k

)
bn−kx

k

In particular, Bn(0) = bn and Bn(1) = b+n . Additionally, these polynomials have the

property that ∫ b

a

Bn(x)dx =
Bn+1(b)−Bn+1(a)

n+ 1

Next we state the Euler-MacLaurin summation formula.

Theorem 2.1 (Euler-MacLaurin). If a ≤ N are integers and f ∈ Cm ([a,N ]), then

N∑
n=a+1

f(n)−
∫ N

a

f(t)dt =
m∑
k=1

b+k
k!

(
f (k−1)(N)− f (k−1)(a)

)
+Rm(a,N)

where Rm(a,N) is given by

Rm(a,N) =
(−1)m+1

m!

∫ N

a

f (m)(x)Bm({x})dx

5
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where {x} denotes the fractional part of x.

For fixed integers m ≥ 0 and a ≥ 10, we define the operator

Bm(f)(N) = f(a) +
m∑
k=0

b+k+1

(k + 1)!

(
f (k)(N)− f (k)(a)

)
We also define the functions

f1(x) =
log x

x
, f2(x) =

1

x log x
, f3(x) =

1

x log2 x

We will use the following lemma to get bounds of sums over these functions:

Lemma 2.1. For integers N ≥ a ≥ 10 and i ∈ {1, 2, 3}, the following hold

B0(fi)(N) +
N − a

12
f
(2)
i (N) ≤

N∑
n=a

fi(n)−
∫ N

a

fi(t)dt

≤ B1(fi)(N)− N − a
720

f
(4)
i (N)

Proof. Starting with the lower bound, using the Euler-MacLaurin summation for-

mula with m = 1, we get that

N∑
n=a

fi(n)−
∫ N

a

fi(t)dt = B0(fi)(N) +

∫ N

a

f ′i(t)B1 ({t}) dt

Focusing on the integral on the right-hand side, we get that∫ N

a

f ′i(t)B1 ({t}) dt =
N−1∑
k=a

∫ k+1

k

f ′i(t)B1(t− k)dt

=
1

2

N−1∑
k=a

([
f ′i(t)

(
B2(t− k)− 1

6

)]k+1

k

−
∫ k+1

k

f
(2)
i (t)

(
B2(t− k)− 1

6

)
dt

)
=

1

2

N−1∑
k=a

(
f ′i(k + 1)

(
B2(1)− 1

6

)
− f ′i(k)

(
B2(0)− 1

6

))
− 1

2

∫ N

a

f
(2)
i (t)

(
B2 ({t})− 1

6

)
dt

=
1

2

∫ N

a

f
(2)
i

(
{t} − {t}2

)
dt
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since B2(x) = x2 − x + 1
6
. By the mean value theorem for definite integrals, there

exists ξ ∈ (a,N) such that

1

2

∫ N

a

f
(2)
i

(
{t} − {t}2

)
dt =

1

2
f
(2)
i (ξ)

∫ N

a

{t} − {t}2dt

=
1

2
f
(2)
i (ξ)(N − a)

∫ 1

0

t− t2dt

=
N − a

2
f
(2)
i (ξ)

[
1

2
t2 − 1

3
t3
]1
0

=
N − a

12
f
(2)
i (ξ)

Since f
(2)
i (x) is a decreasing function for x ≥ 10 for each i, f

(2)
i (ξ) ≥ f

(2)
i (N) and

thus we get the lower bound.

For the upper bound, we use the Euler-MacLaurin summation formula again

with m = 2 to get

N∑
n=a

fi(n)−
∫ N

a

fi(t)dt = B1(fi)(N)− 1

2

∫ N

a

f
(2)
i (t)B2 ({t}) dt

Focusing on the integral on the right-hand side, we get that

∫ N

a

f
(2)
i (t)B2 ({t}) dt =

1

3

N−1∑
k=a

([
f
(2)
i (t)B3(t− k)

]k+1

k
−
∫ k+1

k

f
(3)
i (t)B3(t− k)dt

)
= −1

3

∫ N

a

f
(3)
i (t)

(
{t}3 − 3

2
{t}2 +

1

2
{t}
)
dt

=
1

12

∫ N

a

f
(4)
i (t)

(
{t}4 − 2{t}3 + {t}2

)
dt

By the mean value theorem for definite integrals, there exists ξ ∈ (a,N) such that∫ N

a

f
(4)
i (t)

(
{t}4 − 2{t}3 + {t}2

)
dt = f

(4)
i (ξ)

∫ N

a

{t}4 − 2{t}3 + {t}2dt

= (N − a)f
(4)
i (ξ)

∫ 1

0

t4 − 2t3 + t2dt

=
N − a

30
f
(4)
i (ξ)

Since f
(4)
i (x) is a decreasing function for x ≥ 10 for each i, f

(4)
i (ξ) ≥ f

(4)
i (N) and

thus we get the upper bound.
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2.2 Bounds on the partial sums of the harmonic

series

Lemma 2.2. For all x ≥ 1, we have that

1

2(x+ 1)
≤
∑

1≤k≤x

1

k
− log x− γ ≤ 1

2x

where γ = limn→∞
(∑n

k=1
1
k
− log n

)
is Euler’s constant.

Proof. First we will show that each of the following functions is positive for x ≥ 1

Q1(x) =
1

2x
+

1

2(x+ 1)
− log

(
1 +

1

x

)

Q2(x) = log

(
1 +

1

x

)
− 1

x+ 1
2

Q3(x) =
1

x+ 1
2

− 2x+ 5

2(x+ 1)(x+ 2)

For Q1(x), we first note that Q1(1) = 3
4
− log 2 > 0. Additionally, if we try to find

the zeroes of Q1(x), we get that

Q1(x) = 0 ⇐⇒ 1

2x
+

1

2(x+ 1)
= log

(
1 +

1

x

)
⇐⇒ exp

(
1

2x
+

1

2(x+ 1)

)
= 1 +

1

x

⇐⇒
∞∑
k=0

1

k!

(
1

2x
+

1

2(x+ 1)

)k
= 1 +

1

x

⇐⇒ 1

8x2(x+ 1)2
+
∞∑
k=3

1

k!

(
1

2x
+

1

2(x+ 1)

)k
= 0

However, since all terms on the left-hand side of the last expression are strictly

positive when x ≥ 1, Q1(x) 6= 0 for any x ≥ 1. In addition, the singularities of

Q1(x) are x = 0 and x = −1, neither of which are ≥ 1. Thus, since Q1(x) is

continuous for x ≥ 1, Q1(x) > 0 for all x ≥ 1.

For Q2(x), first note that Q2(x) → 0 as x → ∞. Now we take the derivative of
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Q2(x) and get

d

dx
Q2(x) =

− 1
x2

1 + 1
x

+
1(

x+ 1
2

)2
= − 1

x2 + x
+

1(
x+ 1

2

)2
=
−
(
x+ 1

2

)2
+ x2 + x

x(x+ 1)
(
x+ 1

2

)2
= − 1

4x(x+ 1)
(
x+ 1

2

)2 < 0

for x ≥ 1. Finally we observe that Q2(1) = log 2 − 2
3
> 0. Thus we conclude that

Q2(x) > 0 for all x ≥ 1.

For Q3(x), we first note that Q3(1) = 1
12
> 0. Additionally, if we try to find the

zeroes of Q3(x), we get that

Q3(x) = 0 ⇐⇒ 1

x+ 1
2

=
2x+ 5

2x2 + 6x+ 4

⇐⇒ (2x+ 5)

(
x+

1

2

)
= 2x2 + 6x+ 4

⇐⇒ 2x2 + 6x+
5

2
= 2x2 + 6x+ 4

Thus Q3(x) 6= 0 for any x. In addition, all singularities of Q3(x) are in the range

x < 0. Thus, since Q3(x) is continuous for x ≥ 1, Q3(x) > 0 for all x ≥ 1.

For our next step, we define

L(x) =
∑

1≤k≤x

1

k
− log x− 1

2x
, U(x) =

∑
1≤k≤x

1

k
− log x− 1

2(x+ 1)

We will use these to bound γ, giving the required result. For the lower bound, let

n ∈ N. Then

L(n+ 1) =
n+1∑
k=1

1

k
− log(n+ 1)− 1

2(n+ 1)

=
n∑
k=1

1

k
− log n− 1

2n
+

1

n+ 1
− log

(
1 +

1

n

)
+

1

2n
− 1

2(n+ 1)

= L(n) +Q1(n) > L(n)

So the sequence {L(n)}n∈N is strictly increasing and limits to γ. Additionally, if

x ∈ [n, n+ 1), then
d

dx
L(x) = −1

x
+

1

2x2
< 0
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and thus L(x) is strictly decreasing between each integer. Thus we get that

L(x) ≤ sup
x≥1
L(x) ≤ sup

n≥1
L(n) = γ

For the upper bound, let n ∈ N. Then

U(n+ 1) =
n+1∑
k=1

1

k
− log(n+ 1)− 1

2(n+ 2)

= U(n) +
1

n+ 1
− log

(
1 +

1

n

)
+

1

2(n+ 1)
− 1

2(n+ 2)

= U(n)− log

(
1 +

1

n

)
+

2n+ 5

2(n+ 1)(n+ 2)

= U(n)−Q2(n)−Q3(n) < U(n)

So the sequence {U(n)}n∈N is strictly decreasing and limits to γ. Additionally, if

x ∈ [n, n+ 1), then
d

dx
U(x) = −1

x
+

1

2(x+ 1)2
< 0

and thus U(x) is strictly decreasing between each integer. Thus we get that

U(x) ≥ inf
x≥1
U(x) ≥ inf

n≥1
U(n) = γ



Chapter 3

Bounding the prime-counting

function

3.1 Bounds on the first Chebyshev function

Lemma 3.1. We have, for all x ≥ 19 035 709 163, that

ϑ(x) > x− 0.15x

log3 x

and, for all x > 1, that

ϑ(x) < x+
0.15x

log3 x

Proof. We will start by showing that, for all x ≥ e35, that

|ϑ(x)− x| < 0.15x

log3 x

From Corollary 1.2 of [5], letting R = 5.69693, we have, for x ≥ 3, that

|ϑ(x)− x| <
√

8√
π
√
R
x (log x)

1
4 e−
√

log x
R

Now define the function

g(x) = (log x)
13
4 e−
√

log x
R

Differentiating, we get that

g′(x) =
13

4x
(log x)

9
4 e−
√

log x
R − 1

2x
√
R

(log x)
11
4 e−
√

log x
R

11
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We note that g′(x) ≥ 0 for x ≥ e
169R

4 , so g(x) is monotonically decreasing for

x ≥ e
169R

4 . Thus, we get, for all x ≥ e5000, that

|ϑ(x)− x| <
√

8√
π
√
R
g(e5000)

x

log3 x
<

0.148x

log3 x

Next, from Corollary 4.5 from [6], we have, for x > 0, that

ψ(x)− ϑ(x) <
(
1 + 1.47× 10−7

)√
x+ 1.78x

1
3

This also holds in absolute value since ϑ(x) < ψ(x). Additionally, from Proposition

3.2 in [6], we have, for x ≥ ebi , that

|ψ(x)− x| < εix

where for each bi the corresponding value of εi is given in Table 1 of [6]. If we

assume, in addition, that x ≤ ebi+1 , then we get that

|ϑ(x)− x| ≤ |ϑ(x)− ψ(x)|+ |ψ(x)− x|

< (1 + 1.47× 10−7)
√
x+ 1.78x

1
3 + εix

=

(
(1 + 1.47× 10−7) log3 x√

x
+

1.78 log3 x
3
√
x2

+ εi log3 x

)
x

log3 x

≤
(

(1 + 1.47× 10−7)b3i+1√
ebi

+
1.78bi+1

3
√
e2bi

+ εib
3
i+1

)
x

log3 x

By going from b8 = 35 to b37 = 4500 and substituting the corresponding values of

εi, we find that the expression in brackets above is less than 0.15 for all values of

i ∈ {8, . . . , 37}. Thus we conclude that |ϑ(x)− x| < 0.15x
log3 x

for all x ≥ e35.

Next we will show that ϑ(x) < x + 0.15x
log3 x

for 1 < x < e35. From Theorem 2 in

[3], we have that ϑ(x) < x − 0.05
√
x for 1 ≤ x ≤ 1019. Since e35 < 1019, the result

immediately follows.

Finally, we will show that ϑ(x) > x − 0.15x
log3 x

for 19 035 709 163 ≤ x < e35. Again

from Theorem 2 in [3], we have that ϑ(x) ≥ x− 1.95
√
x for 1423 ≤ x ≤ 1019. Now,

define the function

g(x) =
0.15
√
x

log3 x

Taking the derivative, we get that

g′(x) =
0.075 log x− 0.45
√
x log4 x
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which is strictly positive for x > e6. Additionally, we note that g(34 485 879 392) >

1.95. Thus we conclude that 1.95 < 0.15
√
x

log3 x
for x ≥ 34 485 879 392. Thus we conclude

that ϑ(x) > x− 0.15x
log3 x

for 34 485 879 392 ≤ x < e35.

Next, equation (6.2) on page 2004 of [3] tells us that, for 100 ≤ x ≤ 5× 1010,

−0.8 ≤ x− ψ(x)√
x

≤ 0.81

Thus, from Lemma 1 of [3], we get that, for 10 000 ≤ x ≤ 5× 1010,

ϑ(x) ≥ x− 1.81
√
x− 0.8x

1
4 − 1.03883

(
x

1
3 + x

1
5 + 2x

1
13 log x

)
Now let

h1(x) =
100

4 563
x

2
15 − 64

21 125

We observe that h1(x) > 0 for all x ≥ 1. Next let

h2(x) =
10

117
x

10
39 − 8

325
x

8
65 − 2

13

We note that h2(23) > 0 and h′2(x) = h1(x)

x57/65
, and thus h2(x) > 0 for x ≥ 23. Now let

h3(x) =
1

3
x

10
39 − 1

5
x

8
65 − 2

13
log x− 2

We note that h3(19 449) > 0 and h′3(x) = h2(x)
x

, and thus h3(x) > 0 for x ≥ 19 449.

Finally, we let

h4(x) = x
1
3 − x

1
5 − 2x

1
13 log x

We note that h4(783 674) > 0 and h′4(x) = h3(x)

x12/13
, and thus h4(x) > 0 for x ≥ 783 674.

Thus, for 783 674 ≤ x ≤ 5× 1010,

ϑ(x) ≥ x− 1.81
√
x− 0.8x

1
4 − 2× 1.03883x

1
3

Now let

g1(z) = 432z3 − 540z2 + 288z − 60

We observe that g1 has only one real root at z ≈ 0.45593 and that g1(1) = 120 > 0,

and thus g1(z) > 0 for all z ≥ 1. Next let

g2(w) =
w7

160 log3w
− 3w7

640 log4w
+

w7

960 log5w
− 10.86w
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We note that g2(5) > 0 and that

d

dw

(
g2(w)

w

)
=

w5g1(logw)

11 520 log6w

and thus g2(w) > 0 for w ≥ 5. Next let

g3(w) =
w8

1 280 log3w
− w8

3 840 log4w
− 5.43w2 − 2.07766

We note that g3(7) > 0 and g′3(w) = g2(w), and thus g3(w) > 0 for w ≥ 7. Finally,

we let

g4(w) =
w9

11 520 log3w
− 1.81w3 + 2.07766w + 0.8

We note that g4(7.46497465501) > 0 and g′4(w) = g3(w), and thus g4(w) > 0 for

w ≥ 7.46497466501. If we then consider w3g4(w) and make the substitution x = w12,

then we get that
0.15x

log3 x
≥ 1.81

√
x+ 0.8x

1
4 + 2.07766x

1
3

for x ≥ 29 946 085 320. Thus we conclude that ϑ(x) > x− 0.15x
log3 x

for 29 946 085 320 ≤

x ≤ 34 485 879 392.

Finally, for 19 035 709 163 ≤ x < 29 946 085 320, set f(x) = x(1− 0.15
log3 x

). Setting

h(z) = z4−0.15z+ 0.45, we observe that h(z) has no real roots and h(0) = 0.45 > 0

and thus h(z) > 0 for all real z. Since f ′(x) = h(log x)

log4 x
, f(x) is strictly increasing for

x > 0. Next, letting pn denote the nth prime number, we note that, for pn ≤ x <

pn+1, ϑ(x) = ϑ(pn) while f(x) < f(pn+1) since f is strictly increasing. Thus we only

need to check that ϑ(pn) > f(pn+1) for π(19 035 709 163) ≤ n ≤ π(29 946 085 320),

which we do by computer.

3.2 Bounds on π(x)

Lemma 3.2. We have, for all x ≥ 10 031 975 087, that

π(x) <
x

log x− 1− 1
log x
− 3.69

log2 x

and, for all x ≥ 38 099 531, that

π(x) >
x

log x− 1− 1
log x
− 2.85

log2 x
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Proof. First we define the function

Jη,x0(x) = π(x0)−
ϑ(x0)

log x0
+

x

log x
+

ηx

log4 x
+

∫ x

x0

(
1

log2 t
+

η

log5 t

)
dt

If we assume that |ϑ(x)− x| < ηx
log3 x

for x ≥ x0, then using the identity

π(x) =
ϑ(x)

log x
+

∫ x

2

ϑ(t)

t log2 t
dt

we get, for all x ≥ x0, that

J−η,x0(x) < π(x) < Jη,x0(x)

We know from Lemma 3.1, for x ≥ 19 035 709 163, that

|ϑ(x)− x| < 0.15x

log3 x

and thus if x1 ≥ 19 035 709 163, then for all x ≥ x1 we get that

J−0.15,x1(x) < π(x) < J0.15,x1(x)

To prove the upper bound of π(x), let x1 = 7× 1012 and define the functions

r(x) = log x− 1− 1

log x
− 3.69

log2 x
, f(x) =

x

r(x)
, g(x) = f(x)− J0.15,x1(x)

We note that ϑ(x1) = 6 999 996 936 360.165729 (from [6] Table 2) and π(x1) =

245 277 688 804, and thus we calculate g(x1) ≈ 60 189 > 0. Next, we set

h1(z) = 0.54z7 − 15.01z6 − 8.13z5 − 13.26z4 − 3.68z3 + 2.66z2 + 1.27z + 6.12

The largest real root of h1 is z ≈ 28.358, and since the leading coefficient of h1 is

positive, we conclude that h1(z) > 0 for z > 28.36. Calculating the derivative of

g(x), we get that

g′(x) >
h1(log x)

r2(x) log9 x

and thus g′(x) > 0 for x > e28.36 ≈ 2.07 × 1012. Thus g(x) > 0 for x ≥ x1, and

therefore π(x) < f(x) for x ≥ 7× 1012.

Next, setting x2 = 5.05 × 1010, we observe that f(x2) > li(x2). Additionally,

setting

h2(z) = 0.69z3 − 15.76z2 − 7.38z − 13.6161
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we note that h2 has only one real root at z ≈ 22.3352, and since the leading coefficient

of h2 is positive, we conclude that h2(z) > 0 for z > 23.34. Now we take the

derivative of f(x)− li(x) to get

f ′(x)− li′(x) =
h2(log x)

r2(x) log5 x

and thus f ′(x)− li′(x) > 0 for x > e22.34 ≈ 1.37×1010. Thus f(x) > li(x) for x ≥ x2.

Using Theorem 2 of [3], we have that π(x) < li(x) for 2 ≤ x ≤ 1019, and therefore

π(x) < f(x) for g ≥ 5.05× 1010.

For 10 031 975 087 ≤ x ≤ 5.05× 1010, first we let

h3(z) = z4 − 2z3 − z2 − 4.69− 7.38

Since h3 has only one real root at z ≈ 3.07501 and the leading coefficient of h3 is

positive, we conclude that h3(z) > 0 for z > 3.0751. Now we take the derivative of

f(x) to get that

f ′(x) =
h3(log x)

r2(x) log3 x

and thus f ′(x) > 0 for x > e3.0751 ≈ 21.65, and hence f(x) is strictly increasing for

x ≥ 22. Therefore we only need to check that π(x) < f(x) for prime values of x,

and we check this by computer.

For the lower bound, let x1 = 1010 and define the functions

r(x) = log x− 1− 1

log x
− 2.85

log2 x
, f(x) =

x

r(x)
, g(x) = J−0.15,x1(x)− f(x)

We note that ϑ(x1) = 9 999 939 830.657757 (from [6] Table 2) and π(x1) = 455 052 511,

and thus we calculate g(x1) ≈ 29 583 > 0. Next we set

h4(z) = 13.15z6 + 4.95z5 + 8.2275z4 − 2.67z3 + 2.16z2 + 1.34663z + 3.65513

Since h4 has no real roots and h4(0) = 3.65513 > 0, h4(z) > 0 for all real z.

Calculating the derivative of g(x), we get that

g′(x) >
h4(log x)

r2(x) log9 x

and thus g′(x) > 0 for all x > 0. Thus g(x) > 0 for x ≥ 1010, and therefore

π(x) > f(x) for x ≥ 19 035 709 163.
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For 38 099 331 ≤ x ≤ 19 035 709 163, first we let

h5(z) = z4 − 2z3 − z2 − 3.85z − 5.7

Since h5 has only one real root at z ≈ 2.98278 and the leading coefficient of h5 is

positive, we conclude that h5(z) > 0 for z > 2.9828. Now we take the derivative of

f(x) to get that

f ′(x) =
h5(log x)

r2(x) log3 x

and thus f ′(x) > 0 for x > e2.9828 ≈ 19.74, and hence f(x) is strictly increasing for

x ≥ 20. Now, for pn ≤ x < pn+1, π(x) = π(pn) while f(x) < f(pn+1) since f is

strictly increasing for x ≥ 20. Thus we only need to check that π(pn) > f(pn+1) for

π(38 099 331) ≤ n ≤ π(19 035 709 163), which we do by computer.
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Chapter 4

Estimating the constant

Let σ(x) =
∑

1<n≤x
1

π(n)
.

Theorem 4.1. For all x ≥ 4 · 1012, we have that

6.714330921 +
5.16

10
√

log11 x
≤ σ(x)− 1

2
log2 x+ log x+ log log x ≤ 6.74327915 +

2.86

log x

4.1 The upper bound

If we take a ≥ 38 099 531, then Lemma 3.2 gives us that

σ(x) ≤ σ(a− 1) +
∑
a≤n≤x

(
f1(n)− 1

n
− f2(n)− 2.85f3(n)

)

Using the lemmas in Chapter 2, we then get that

σ(x) ≤ 1

2
log2 x− log x− log log x+ Cup(a) +Rup(x, a)

where

Cup(a) = σ(a− 1)− 1

2
log2 a+ log log a− 2.85

log a
− γ +

∑
n≤a−1

1

n

and

Rup(x, a) = B1(f1)(x)−B0(f2)(x)− 2.85B0(f3)(x) +
2.85

log x

− x− a
720

f
(4)
1 (x)− x− a

12
f
(2)
2 (x)− 2.85

x− a
12

f
(2)
3 (x)− 1

2(x+ 1)

19
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If we include in Cup(a) all terms independent of x in Rup(x, a), we get that

Cup(a) = σ(a− 1)− 1

2
log2 a+ log log a− 2.85

log a
+

log a

2a

− 1

12a2
+

log a

12a2
− 1

2a log a
− 2.85

2a log2 a
− γ +

∑
n≤a−1

1

n

Setting a = 4 · 1012, this gives us that Cup(4 · 1012) ≈ 6.74327915, and

Rup(x, 4 · 1012) =
log x

2x
+

1

12x2
− log x

12x2
− 1

2x log x
− 2.85

2x log2 x
+

2.85

log x
− 1

2x+ 2

− (x− 4 · 1012)(24 log x− 50)

720x5

− (x− 4 · 1012)(2 log2 x+ 3 log x+ 2)

12x3 log3 x

− 2.85
(x− 4 · 1012)(2 log2 x+ 6 log x+ 6)

12x3 log4 x

Multiplying this by log x and only taking terms that are positive for x ≥ 4 · 1012, we

get a function

F (x) =
log2

2x
+

log x

12x2
+ 2.85

Differentiating, we get that

F ′(x) =
1

12x3
(
12x log x− 6x log2 x+ 1− 2 log x

)
Differentiating only the part inside the brackets, we get that

d

dx

(
12x3F ′(x)

)
= 12− 6 log2 x− 2

x

which is clearly negative for all x ≥ 5, and since F ′(8) < 0, F ′(x) < 0 for all

x ≥ 8. Additionally, since F (3 276) < 2.86, F (x) < 2.86 for all x ≥ 3 276. Thus

Rup(x, 4 · 1012)× log x < 2.86 for all x ≥ 4 · 1012. This gives us the upper bound

σ(x) ≤ 1

2
log2 x− log x− log log x+

2.86

log x
+ 6.74327915

4.2 The lower bound

Lemma 3.2 and the lemmas in Chapter 2 give us that for a ≥ 10 031 975 087

σ(x) ≥ σ(a− 1) +
∑
a≤n≤x

(
f1(n)− 1

n
− f2(n)− 3.69f3(n)

)
≥ 1

2
log2 x− log x− log log x+ Clw(a) +Rlw(x, a)
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where

Clw(a) = σ(a− 1)− 1

2
log2 a+ log log a− 3.69

log a
− γ +

∑
n≤a−1

1

n

and

Rlw(x, a) = B0(f1)(x)−B1(f2)(x)− 3.69B1(f3)(x) +
3.69

log x

+
x− a

12
f
(2)
1 (x)− x− a

720
f
(4)
2 (x)− 3.69

x− a
720

f
(4)
3 (x)− 1

2x

Including in Clw(a) all the terms independent of x in Rlw(x, a) gives us

Clw(a) = σ(a− 1)− 1

2
log2 a+ log log a− 3.69

log a
+

log a

2a

− 1

2a log a
− 1

12a2 log a
− 4.69

12a2 log2 a
− 3.69

6a2 log3 a
− γ +

∑
n≤a−1

1

n

Setting a = 4 · 1012 gives us that Clw(4 · 1012) ≈ 6.714330921, and

Rlw(x, 4 · 1012)

=
log x

2x
− 1

2x log x
+

1

12x2 log x
+

4.69

12x2 log2 x
− 3.69

2x log2 x

+
3.69

6x2 log3 x
+

3.69

log x
− 1

2x
+

(x− 4 · 1012)(2 log x− 3)

12x3

+
(x− 4 · 1012)(24 log4 x+ 50 log3 x+ 70 log2 x+ 60 log x+ 24)

720x5 log5 x

+ 3.69
(x− 4 · 1012)(24 log4 x+ 100 log3 x+ 210 log2 x+ 240 log x+ 120)

720x5 log6 x

Multiplying this by 10
√

log11 x and taking only the 7th term and the terms that

are negative for x ≥ 4 · 1012, we get the function

G(x) = 3.69 10
√

log x−
10
√

log x

2x
− 3.69

2x 10
√

log9 x
−

10
√

log11 x

2x

=
1

2x 10
√

log9 x

(
7.38x log x− log x− 3.69− log2 x

)
Differentiating only the part inside the brackets, we get

d

dx

(
2x

10

√
log9 xG(x)

)
= 7.38 log x+ 7.38− 1

x
− 2 log x

x

=
1

x
((7.38x− 2) log x+ 7.38x− 1)
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which is clearly positive when x ≥ 1. Additionally, since G(4 · 1012) > 5.16, we have

that G(x) > 5.16 for all x ≥ 4 · 1012. Thus Rlw(x, 4 · 1012)× 10
√

log11 x > 5.16 for all

x ≥ 4 · 1012. This gives us the lower bound

σ(x) ≥ 1

2
log2 x− log x− log log x+

5.16
10
√

log11 x
+ 6.714330921

4.3 Improving the estimate

Without improvements to the techniques used, improvement on the bounds for the

constant can come from one of two places: either from improved bounds on π(x) or

by choosing a larger value of a.

If we write the bounds of π(x) as

x

log x− 1− 1
log x
− b

log2 x

< π(x) <
x

log x− 1− 1
log x
− c

log2 x

then, in the expressions for Cup(a) and Clw(a), the most significant terms that

directly involve b and c are − b
log x

and − c
log x

respectively. Thus, if we fix a = 4 ·1012,

to improve either bound by, say, 0.01, we would need to either increase b or reduce

c by 0.01 log a ≈ 0.29. Given the current values of b = 2.85 and c = 3.69, this would

mean increasing b to 3.14 or decreasing c to 3.40.

Looking at the difference between Cup(a) and Clw(a), we get that

Cup(a)−Clw(a) =
c− b
log a

− 1

12a2
+

log a

12a2
+

1

12a2 log a
− b

2a log2 a
+

c+ 1

12a2 log2 a
+

c

6a2 log3 a

which clearly goes to zero as a goes to infinity. Additionally, if we only look at the

dominant term c−b
log a

, to get a difference of at least d for a given b and c, we would

require that a ≥ e(c−b)/d. So, with the current b and c which have a difference of

0.84, to reduce the difference by 0.01 would require a ≈ 1.8 · 1019, and to reduce it

by 0.02 would require a ≈ 5.9 · 1040.
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