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Chapter 1

Introduction

The group SL(2,R) of 2 × 2 matrices with determinant one acts on the upper

half plane H = {z ∈ C : Im(z) > 0} by Möbius transformations. A classical or

elliptic modular form is a holomorphic function on the complex upper half-plane

H which transforms in a certain way under the action of a discrete subgroup of

SL(2,R), for instance the full modular group SL(2,Z). A holomorphic function

is a complex differentiable function over some open, simply connected region in

the complex plane. Hence, this topic at first seems to belong to Complex Analysis.

However, modular forms, in fact, arise with a lot of applications in other fields

such as Combinatorics, Differential Equations, Mathematical Physics, Geometry,

and Number Theory especially. Important examples of modular forms include

Eisenstein series, Ramanujan’s discriminant function, theta series, and generating

series of interesting sequences. We discuss some of these examples in Chapter 2.

The algebra of modular forms is not stable under differentiation. Therefore,

we introduce quasimodular forms, which are an extension of modular forms. In

Chapter 3, we give the definition of quasimodular functions and quasimodular

forms and observe their behaviour under differentiation. There is also an Eisen-

stein series E2 which is not a modular form but a quasimodular form. We finish

the chapter with some structure theorems.

The set of all modular forms of a fixed weight is a complex vector space of finite

dimension. There are linear transformations called Hecke operators preserving

this space. We define these in Chapter 4. We also introduce eigenfunctions of the
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Hecke operators and L-functions of Hecke eigenforms.

Chapter 5 addresses the main question of this thesis: is there a Hecke theory

for quasimodular forms? We give Hecke operators acting on quasimodular forms

which preserve the given weight and depth. The main ingredient is the relation be-

tween Hecke operators and the derivative operator D. We conclude by presenting

some recent results on quasimodular eigenforms.

Our main source for the theory of modular forms is Serre’s Cours d’arithmétique,

with occasional references to the books of Bump and Koblitz. For the fundamentals

of quasimodular forms, we relied heavily on Royer’s Un cours “Africain” sur les

formes modulaires. The classification of quasimodular eigenforms in Chapter 5 is an

exposition of results of Meher (2012) and Das-Meher (2015).
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Chapter 2

Classical Modular Forms

2.1 Basic Definitions

LetH be the upper half plane of C, i.e. H = {z ∈ C : Im(z) > 0}.

Definition 1 (Modular Form). A modular form of weight k ∈ Z is a holomorphic

function f : H → C such that

1. f
(
az + b

cz + d

)
= (cz+d)kf(z), for all z ∈ H and all matrices

a b

c d

 ∈ SL(2,Z)

2. f is holomorphic as z → i∞.

Evaluating the first condition on the matrices

1 1

0 1

,

0 −1

1 0

which are the

generators of SL(2,Z), we obtain f(z+1) = f(z) and f
(
−1
z

)
= zkf(z) respectively.

Since f(z + 1) = f(z), therefore the modular form f is periodic of period 1, and

hence f can be represented by a Fourier series f(z) =
∞∑
n=0

an(f)e2πinz =
∞∑
n=0

an(f)qn.

There are no negative-index terms because of holomorphicity as z → i∞. The

coefficients an(f) bring arithmetic information which is important in number

theory.

Definition 2 (Cusp Form). A modular form which is zero at i∞ is called a cusp

form.

Consider a modular form f of weight k represented by a Fourier series f(z) =
∞∑
n=0

an(f)e2πinz =
∞∑
n=0

an(f)qn. If z → i∞ then q → 0. Hence f is a cusp form if
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a0(f) = 0. Let Mk denote the C-vector space of modular forms of weight k and let

Sk denote the C-vector space of cusp forms of weight k. Clearly Sk ⊂Mk.

Theorem 3. (a) If k < 12 or k is odd, then dimSk = 0.

(b) If k ≥ 12 and k is even, then

dimSk =


b k
12
c − 1, if k ≡ 2 (mod 12)

b k
12
c, if k 6≡ 2 (mod 12)

(c)

dimMk =


dimSk + 1, if k = 0 or k ≥ 4 is even

0, otherwise.

See Corollary 1 of Proposition 2 in Zagier, 2008 and Section 1.3 in Bump, 1997.

The above theorem shows that Mk and Sk are finite dimensional.

Remark 4. If k = 12, 16, 18, 20, 22, 26, then Sk has dimension 1.

There are some spaces of holomorphic functions. Let Hol(H) denote the space

of all holomorphic functions on H, and let Hol(H/Z) = {f ∈ Hol(H)|f(z + 1) =

f(z)}.

Definition 5. Let Hol∞(H/Z) be the C-vector space of holomorphic functions

f : H → C which are

1. periodic of period 1: f(z + 1) = f(z), and

2. holomorphic at∞: f(z) =
∑∞

n=0 an(f)e2πinz.

Note that Mk ⊂ Hol∞(H/Z) for all k.
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2.2 Examples of Modular Forms

Example 6 (Eisenstein Series). Let k ≥ 4 be even integer and z ∈ H. We define

Eisenstein series Gk and Ek as follows.

Gk(z) =
∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)k
.

This series converges absolutely to a holomorphic function of z inH and its Fourier

expansion is given by

Gk(z) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

σk−1(n)qn

)

where q = e2πiz, σk−1(n) =
∑

d|n d
k−1, Bk ∈ Q is the k-th Bernoulli number, and ζ

denotes the Riemann zeta function. The Fourier expansion of Eisenstein series

shows that it extends to a holomorphic function at z = i∞. Moreover, it satisfies

Gk

(
az + b

cz + d

)
= (cz + d)kGk(z), ∀

a b

c d

 ∈ SL(2,Z).

Next, if we normalize it by setting

Ek(z) =
Gk(z)

2ζ(k)
,

then the Fourier expansion of Ek(z) has rational coefficients and constant term 1.

Proposition 7. Gk ∈Mk and Ek ∈Mk for k ≥ 4.

Note that it is important to assume that k ≥ 4. However, there is a holomorphic

Eisenstein series of weight k = 2 which is a quasimodular form. We will discuss

quasimodular forms in Chapter 3. The following proposition is in Chapter VII

Section 3.2 in Serre, 1970.

Proposition 8. Mk = Sk ⊕ CEk for k ≥ 4.
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Example 9 (The Discriminant Function ∆). Since the Fourier expansion of Ek(z)

has non-zero constant term, Ek /∈ Sk. Now, define

∆(z) =
E4(z)3 − E6(z)2

1728
.

It has integral Fourier coefficients

∆(z) = q
∞∏
n=1

(1− qn)24 =
∞∑
n=1

an(∆)qn

where the sequence an(∆) for n ≥ 1: 1,−24, 252,−1472, .... The function n 7→ an(∆)

is called the Ramanujan function. He calculated the first 30 values of an(∆). It was

also conjectured by Ramanujan (1915) and proved by Mordell (1916) that

(i) amn(∆) = am(∆)an(∆), if (m,n) = 1,

(ii) apn+1(∆) = ap(∆)apn(∆)− p11apn−1(∆), if p is prime, n ≥ 1.

The above identities are also mentioned in Corollary to Proposition 14 in Serre,

1970 Chapter VII, and were generalised by Hecke to the Theory of Hecke Operators

which we will discuss later.

Proposition 10. ∆ ∈ S12.

The proof of above proposition uses the identity of Dedekind eta function η

in Lemma 28. We will prove it later in Section 3.4. More extensive discussion

and examples of modular forms can be found in Zagier, 2008 Section 2 and 3 or

in Weinstein, 2016 for more concise version.
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Chapter 3

Quasimodular Forms

3.1 Quasimodular Functions

Define D :=
1

2πi

d

dz
. If f(z) =

∞∑
n=0

an(f)e2πinz, we obtain Df(z) =
∞∑
n=0

nan(f)e2πinz.

If f ∈Mk, then Df satisfies

(cz + d)−(k+2)Df

(
az + b

cz + d

)
= Df(z) +

k

2πi
f(z)

c

cz + d
. (3.1)

Proposition 11. Let f ∈ Mk and m ∈ Z≥0. For any matrix

a b

c d

 ∈ SL(2,Z), the

mth derivative of f satisfies

(cz+d)−(k+2m)Dmf

(
az + b

cz + d

)
=

m∑
j=0

(
m

j

)
(k +m− 1)!

(k +m− j − 1)!

(
1

2πi

)j
Dm−jf(z)

(
c

cz + d

)j
.

Note that for m = 0, we simply have (cz + d)−kf

(
az + b

cz + d

)
= f(z) as in

Definition 1 of modular form. Consider the Equation 3.1 above, we observe

that the derivative of a modular form is not modular but almost, since should

we regard only the first term, then we will obtain a modular form of weight

k + 2. Therefore, we now introduce the quasimodular forms which generalise

the modular forms. Hence the derivatives of modular forms are an archetypal

example of quasimodular forms. An introduction on quasimodular forms is

studied in Royer, 2012. Now, let us first introduce quasimodular functions.
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Definition 12 (Quasimodular Function). A holomorphic function f : H → C is a

quasimodular function of weight k and depth s with k, s ∈ Z and s ≥ 0 if there exist

holomorphic functions f0, ..., fs overH with fs non-identically zero, such that

(cz + d)−kf

(
az + b

cz + d

)
=

s∑
j=0

fj(z)

(
c

cz + d

)j
(3.2)

for any

a b

c d

 ∈ SL(2,Z) and any z ∈ H.

Let FM s
k denote all quasimodular functions of weight k and depth s, and

FM≤s
k denote the C-vector space of quasimodular functions of weight k and depth

less than or equal to s. There is also

FM∞
k :=

⋃
s∈N

FM≤s
k .

Note:

1. If s = 0, we have (cz + d)−kf

(
az + b

cz + d

)
= f0(z). So, Mk ⊂ FM0

k .

2. If f ∈Mk, thenDmf ∈ FMm
k+2m where fj(z) =

(
m

j

)
(k +m− 1)!

(k +m− j − 1)!

(
1

2πi

)j
Dm−jf(z).

By convention, zero function is quasimodular of depth 0 for any weight. We

define Qj : FM∞
k → Hol(H) given by Qj(f) := fj . It follows from Proposition 3.3

in Royer, 2012 that if f is a quasimodular function of weight k and depth s, then

Qj(f) is a quasimodular function of weight k − 2j and depth s− j.
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3.2 Action of SL(2,Z)

SL(2,Z) × Hol(H) → Hol(H) given by

a b

c d

 , f 7→ (cz + d)−kf

(
az + b

cz + d

)
is a

group action. We then write

f |k
a b

c d


 (z) := (cz + d)−kf

(
az + b

cz + d

)
(3.3)

For A =

a b

c d

 ∈ SL(2,Z), we define

X(A) : H → C

z 7→ c

cz + d
.

Then Equation 3.2 becomes

f |kA =
s∑
j=0

Qj(f)X(A)j (3.4)

Lemma 13. If f0, f1, ..., fs ∈ Hol(H) and
s∑
j=0

fj(z)X(A)j = 0 for all A ∈ SL(2,Z) and

z ∈ H then f0 = f1 = ... = fs = 0.

Proof. Let f0, f1, ..., fs ∈ Hol(H). Set A =

1 d− 1

1 d

, we get

s∑
j=0

fj(z)

(
1

z + d

)j
= f0(z) + f1(z)

1

z + d
+ ...+ fs(z)

1

(z + d)s
= 0

=⇒ Pz(d) = f0(z)(z + d)s + f1(z)(z + d)s−1 + ...+ fs(z) = 0, ∀z ∈ H, d ∈ Z.
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Fix z. Then the polynomial

Pz(X) =
s∑
j=0

fs−j(z)(X + z)j ∈ C[X]

has infinitely many roots since Pz(d) = 0 for all d ∈ Z. Hence Pz = 0. Thus, the

coefficients of the power series expansion of Pz at X = −z are zero, which means

f0(z), f1(z), ..., fs(z) = 0, ∀z ∈ H.

Remark 14. If f ∈Mk, the Equation 3.1 is rewritten as

(Df |k+2A) = Df +
k

2πi
fX(A).

In deriving Equation 3.3, for any function f holomorphic onH we have

D(f |kA) = (Df |k+2A)− k

2πi
(f |kA)X(A). (3.5)

Lemma 15. If A,B ∈ SL(2,Z) then

(X(A)|2B) = X(AB)−X(B).

Proof. Let A =

a b

c d

 and B =

α β

γ δ

. Consider X(AB) −X(B), where we

can easily calculate that

X(AB) =
cα + dγ

(cα + dγ)z + cβ + dδ
and X(B) =

γ

γz + δ
.
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Now, by Equation 3.3 we have

(X(A)|2B) = X(A)|2

α β

γ δ

 = (γz + δ)−2X(A)

(
αz + β

γz + δ

)

=
c(γz + δ)−2

c
(
αz+β
γz+δ

)
+ d

=
c

(γz + δ)[(cα + dγ)z + cβ + dδ]

=
K

(cα + dγ)z + cβ + dδ
+

L

γz + δ
,

where

K = [(cα + dγ)z + cβ + dδ] (X(A)|2B)|z=− cβ+dδ
cα+dγ

= cα + dγ

and

L = (γz + δ) (X(A)|2B)|z=− δ
γ

=
c

−(cα + dγ) δ
γ

+ cβ + dδ
=

−cγ
(αδ − βγ)c

= −γ.

Remark 16. 1. Choosing

a b

c d

 =

1 0

0 1

 in Equation 3.2 shows that

f ∈ FM∞
k =⇒ f0(z) = f(z), i.e Q0(f) = f.

2. Similarly, the choice of

a b

c d

 =

1 0

0 1

 in Equation 3.2 implies

f ∈ FM∞
k =⇒ f is periodic of period 1.

3. Let depth(f) be the depth of f and weight(f) be the weight of f .

4. If f, g ∈ FM∞
k and f, g 6= 0 then

depth(fg) = depth(f) + depth(g) and weight(fg) = 2k.
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5. Let f ∈ FM∞
k . We have Qj(f) = fj for j = 0, 1, ..., depth(f). Set Qj(f) = 0

for j < 0 and j > depth(f). Then for all n ∈ Z, Qn is linear and Qn(fg) =
n∑
j=0

Qj(f)Qn−j(g).

Lemma 17. Consider the upper triangular nilpotent matrix

M(x) =

((
β − 1

α− 1

)
xβ−α

)
1≤α≤s+1
α≤β≤s+1

then

M(x+ y) = M(x)M(y)

and

M(x)−1 = M(−x).

Proof. Let

M(x) =

((
γ − 1

α− 1

)
xγ−α

)
1≤α≤s+1
α≤γ≤s+1

and M(y) =

((
β − 1

γ − 1

)
yβ−γ

)
1≤γ≤s+1
γ≤β≤s+1

.

Define

δ(m ≥ n) =


1, if m ≥ n

0, if m < n.

Then the coefficient index (α, β) of the product M(x)M(y) is

s+1∑
γ=1

δ(γ ≥ α)

(
γ − 1

α− 1

)
δ(β ≥ γ)

(
β − 1

γ − 1

)
xγ−αyβ−γ = δ(β ≥ α)

(
β − 1

α− 1

) β∑
γ=α

(
β − α
γ − α

)
xγ−αyβ−γ

= δ(β ≥ α)

(
β − 1

α− 1

)
(x+ y)β−α.

Proposition 18. Let f ∈ FM≤s
k . For all m ∈ {0, 1, ..., s} we have

(Qm(f)|k−2mA) =
s−m∑
v=0

(
m+ v

v

)
Qm+v(f)X(A)v
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for all A ∈ SL(2,Z). In other words,

Qm ◦Qv = Qm (Qv(f)) =

(
m+ v

v

)
Qm+v.

Proof. Since (f |kAB) = ((f |kA)|kB). From Equation 3.4, we have

(f |kAB) =

((
s∑

n=0

Qn(f)X(A)n

)∣∣∣∣∣
k

B

)

=
s∑

n=0

(Qn(f)X(A)n|kB)

=
s∑

n=0

(Qn(f)|k−2nB) (X(A)|2B)n .

By Lemma 15,

(f |kAB) =
s∑

n=0

(Qn(f)|k−2nB) (X(AB)−X(B))n

=
s∑

n=0

(Qn(f)|k−2nB)
n∑
j=0

(
n

j

)
X(AB)j(−X(B))n−j

=
s∑

n=0

n∑
j=0

(
n

j

)
(−X(B))n−j (Qn(f)|k−2nB)X(AB)j

=
s∑
j=0

[
s∑

n=j

(
n

j

)
(−X(B))n−j (Qn(f)|k−2nB)

]
X(AB)j

=
s∑
j=0

Qj(f)X(AB)j.

Then we get equations for j = 0, 1, ..., s:

Qj(f) =
s∑

n=j

(
n

j

)
(−X(B))n−j (Qn(f)|k−2nB) .
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Rewriting these equations in form of matrix, we have



Q0(f)

Q1(f)

...

Qs(f)


= M(−X(B))



Q0(f)|kB

Q1(f)|k−2B
...

Qs(f)|k−2sB


.

By Lemma 17, 
Q0(f)|kB

...

Qs(f)|k−2sB

 = M(X(B))


Q0(f)

...

Qs(f)

 .

In other words,

(Qn(f)|k−2nB) =
s∑

n=j

(
n

j

)
Qn(f)X(B)n−j.

The result follows.

Corollary 19. For any integer r ≥ 1, Qr =
1

r!
Q1 ◦ ... ◦Q1︸ ︷︷ ︸

r-times

.

Proof. Proof by induction on r. Base case: r = 1. By Proposition 18,

Q1 ◦Q1 =

(
2

1

)
Q2 = 2Q2 =⇒ Q2 =

1

2
Q1 ◦Q1.

Induction step: Suppose true for r − 1, i.e. Q1 ◦ ... ◦Q1︸ ︷︷ ︸
(r−1)-times

= (r − 1)!Qr−1. By the

induction hypothesis and Proposition 18,

Q1 ◦ ... ◦Q1︸ ︷︷ ︸
r-times

= (Q1 ◦ ... ◦Q1︸ ︷︷ ︸
(r−1)-times

) ◦Q1 = (r − 1)!

(
r

1

)
Qr = r!Qr.

Corollary 20. If m ≤ s and f ∈ FM s
k , then Qm(f) ∈ FM s−m

k−2m.

Note that by Corollary 20, it follows that if f ∈ FM s
k then Qs(f) ∈ FM0

k−2s.

So it satisfies the modularity equation of weight k − 2s, that is for all matrices
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A ∈ SL(2,Z), we have

(Qs(f)|k−2sA) = Qs.

Since all Qj(f) are quasimodular functions whenever f is, hence by Remark 16,

they are periodic of period 1, and hence admit a Fourier expansion. Thus, we add

a condition to definition of quasimodular functions as follows.

3.3 Quasimodular Forms and Differentiation

Quasimodular forms were introduced by Kaneko and Zagier in 1995. They were

motivated by the appearance of such forms as generating functions in Mathemati-

cal Physics.

Definition 21 (Quasimodular Form). A quasimodular form f of weight k and depth

s is a quasimodular function of weight k and depth s such that the Fourier expan-

sions of each Qj(f) have no negative-index terms:

Qj(f) =
∞∑
n=0

an(Qj(f))e2πinz

for all j ∈ {0, 1, ..., s}.

Let M s
k denote the set of quasimodular forms of weight k and depth s, and

M≤s
k denote the C-vector space of quasimodular forms of weight k and depth less

than or equal to s. There is also

M∞
k :=

⋃
s∈N

M≤s
k .

Proposition 22. If f ∈M≤s
k and g ∈M≤t

l , then fg ∈M≤s+t
k+l .

Proof. Let f ∈M≤s
k and g ∈M≤t

l . Hence,

(cz + d)−kf

(
az + b

cz + d

)
=

s∑
j=0

Qj(f)(z)

(
c

cz + d

)j
, and
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(cz + d)−lg

(
az + b

cz + d

)
=

t∑
i=0

Qi(g)(z)

(
c

cz + d

)i
.

Then

(cz + d)−(k+l)(fg)

(
az + b

cz + d

)
=

[
s∑
j=0

fj(z)

(
c

cz + d

)j][ t∑
i=0

gi(z)

(
c

cz + d

)i]

=
s+t∑
m=0

(
m∑
j=0

fj(z)gm−j(z)

)(
c

cz + d

)m

=
s+t∑
m=0

Qm(fg)(z)

(
c

cz + d

)m
,

since Qm(fg) =
∑m

j=0Qj(f)Qm−j(g).

Remark 23. 1. A quasimodular form of weight k and depth 0 is a modular

form of weight k, i.e. M0
k = Mk.

2. Since non-constant modular forms are of strictly positive weight, if f ∈M s
k

then s ≤ k

2
, for k even. Note that Qs(f) ∈Mk−2s but if l < 0 then Ml = 0.

3. If k is odd then M s
k = 0 (and hence M≤s

k = 0).

Theorem 24. The sum of the spaces M∞
k as k varies is a direct sum. In other words,

if fj ∈ M∞
kj

for j ∈ {1, 2, ..., r}, k1 < k2 < ... < kr, and f1 + f2 + ... + fr = 0 then

f1 = f2 = ... = fr = 0.

Proof. Let fi ∈ M si
ki
⊂ M s

ki
, where s = maxi(si). Fix z ∈ H and d ∈ Z. Let1 d− 1

1 d

 ∈ SL(2,Z). Then we have

fi

(
z + d− 1

z + d

)
= (z + d)ki

s∑
j=0

Qj(fi)(z)

(
1

z + d

)j
=

s∑
j=0

Qj(fi)(z)(z + d)ki−j.
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By the hypothesis,

0 =
r∑
i=1

fi

(
z + d− 1

z + d

)
=

r∑
i=1

s∑
j=0

Qj(fi)(z)(z + d)ki−j = P (d).

Let P (X) =
∑r

i=1

∑s
j=0Qj(fi)(z)(X + z)ki−j ∈ C[X]. Since P (d) = 0 for all d ∈ Z,

hence P (X) = 0. This implies all theQj(fi)(z) = 0 for all z ∈ H, for all i = 1, 2, ..., r

and for all j = 0, 1, ..., s. Consider the highest-degree termQ0(fr)(z)(X+z)kr . Then

by Remark 16, we have fr(z) = Q0(fr)(z) = 0,∀z ∈ H. So fr = 0. By induction,

fi = 0 for all i.

Theorem 25. Let f ∈M s
k be non-constant, then Df ∈M s+1

k+2 . More precisely,

Q0(Df) = Df,

Qn(Df) = D(Qnf) +
k − n+ 1

2πi
Qn−1(f), for 1 ≤ n ≤ s,

Qs+1(Df) =
k − s
2πi

Qs(f).

Proof. Let f ∈ M s
k be non-constant and let A =

a b

c d

 ∈ SL(2,Z). Recall that

Df :=
1

2πi

df

dz
and X(A)(z) =

c

cz + d
. Then

D(X(A))(z) =
1

2πi

d

dz

(
c

cz + d

)
= − 1

2πi

(
c

cz + d

)2

= − 1

2πi
(X(A)(z))2 .

On the other hand,

(f |kA) =
s∑
j=0

Qj(f)X(A)j
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implies

D(f |kA) =
s∑
j=0

D(Qj(f))X(A)j +Qj(f)jX(A)j−1
(
− 1

2πi

)
X(A)2

=
s∑
j=0

D(Qj(f))X(A)j − j

2πi
Qj(f)X(A)j+1.

By Equation 3.5,

(Df |k+2A) = D(f |kA) +
k

2πi
(f |kA)X(A)

=
s∑
j=0

D(Qj(f))X(A)j − j

2πi
Qj(f)X(A)j+1 +

k

2πi

s∑
j=0

Qj(f)X(A)j+1

=
s∑
j=0

D(Qj(f))X(A)j +
k − j
2πi

Qj(f)X(A)j+1

=
s+1∑
j=0

Qj(Df)X(A)j ∈M s+1
k+2 .

Hence, for j = 0 : Q0(Df) = D(Q0(f)) = Df,

for 1 ≤ j ≤ s : Qj(Df) = D(Qj(f)) +
k − j + 1

2πi
Qj−1(f),

for j = s+ 1 : Qs+1(Df) =
k − s
2πi

Qs(f).

The above theorem shows that the algebra of quasimodular forms is stable

under differentiation.

Corollary 26. If f ∈Mk−2s then

Qs(D
sf) =

s!

(2πi)s

(
k − s− 1

s

)
f.

Proof. Let f ∈Mk−2s = M0
k−2s, then by Theorem 25

Q1(Df) =
k − 2s

2πi
Q0(f) =

k − 2s

2πi
f.
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Since f ∈Mk−2s, Df ∈M1
k−2s+2. Apply again Theorem 25, we get

Q2(D
2f) =

k − 2s+ 1

2πi
Q1(Df) =

(k − 2s+ 1)(k − 2s)

(2πi)2
f.

By doing it recursively, we obtain

Qs(D
sf) =

(k − s− 1)(k − s− 2)...(k − 2s)

(2πi)s
f =

s!

(2πi)s

(
k − s− 1

s

)
f.

Define [Qn, D] := Qn ◦D −D ◦Qn.

Remark 27. Let n ∈ {0, 1, ..., s+ 1}. The Theorem 25 is equivalent to

[Qn, D] =
k − n+ 1

2πi
Qn−1.

3.4 The Quasimodular Eisenstein Series E2

Now, recall ∆ ∈ S12 given by ∆(z) = e2πiz
∞∏
n=1

(1− e2πinz)24 as discussed in Example

9. To simplify the writing, we define a function

e : H → C

z 7→ e2πiz.

This function is periodic of period 1 and satisfies De = e. Next, let η be Dedekind

eta function given by

η(z) = e
( z

24

) ∞∏
n=1

(1− e(nz)) .

Then it satisfies the following lemma.
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Lemma 28. The function η satisfies the equation

η

(
−1

z

)
=

√
z

i
η(z).

For a proof, see Lemma 138 in Royer, 2013. Now, observe that

∆(z) = e(z)
∞∏
n=1

(1− e(nz))24 = (η(z))24 .

Then by Lemma 28,

∆

(
−1

z

)
= η

(
−1

z

)24

=
z12

i12
η(z)24 = z12∆(z).

Note that e(n(z + 1)) = e2πinze2πin = e2πinz = e(nz). Hence,

∆(z + 1) = e(z + 1)
∞∏
n=1

(1− e(n(z + 1)))24 = e(z)
∞∏
n=1

(1− e(nz))24 = ∆(z).

Now we want to show:

∆(z)

(
az + b

cz + d

)
= (cz + d)12∆(z), ∀z ∈ H, ∀

a b

c d

 ∈ SL(2,Z).

Evaluating the above equation on matrices

0 −1

1 0

 and

1 1

0 1

, we obtain

∆
(
−1
z

)
= z12∆(z) and ∆(z+ 1) = ∆(z) respectively, which are true by our calcula-

tions above. Therefore, ∆ satisfies modularity equation for

0 −1

1 0

 and

1 1

0 1


which generate SL(2,Z). Moreover,

∆(z) = q

∞∏
n=1

(1− qn)24 =
∞∑
n=1

an(∆)qn,

i.e. a0(∆) = 0. Hence, ∆ is a cusp form of weight 12. This proves Proposition 10.
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Now, we define a weight 2 Eisenstein series E2 :=
D∆

∆
. If f ∈ Mk, then

dividing the Equation 3.1 by (f |kA) = f , we have

(cz + d)−2
Df

f

(
az + b

cz + d

)
=
Df

f
(z) +

k

2πi

c

cz + d
. (3.6)

To ensure that
Df

f
is holomorphic onH, it suffices to show that f does not vanish

onH.

Proposition 29. E2 ∈M1
2 and Q1(E2) =

6

πi
.

Proof. To prove that E2 is holomorphic onH, it suffices to show that ∆ does not

vanish onH. Let z = x+ iy ∈ H.

Claim: ∆(z) 6= 0, ∀z ∈ H.

Assume ∃z ∈ H such that ∆(z) = 0. Then e2πiz = 0 or e2πinz = 1 for some

n ≥ 1. If e2πiz = 0 then e−2πy(cos 2πx + i sin 2πx) = 0, which implies cos 2πx = 0

and sin 2πx = 0 which are impossible. Hence, e2πinz = 1 for some n ≥ 1. So

e−2πny(cos 2πnx+i sin 2πnx) = 1 =⇒ sin 2πnx = 0 =⇒ 2nx ∈ Z =⇒ cos 2πnx ∈

{−1, 1} =⇒ cos 2πnx = 1 and e−2πny = 1 =⇒ y = 0 contradicts z ∈ H (y > 0).

Thus, ∆(z) 6= 0 for all z ∈ H. Next, since ∆ ∈ S12 ⊂M12, hence it satisfies Equation

3.6. So,

(cz + d)−2E2

(
az + b

cz + d

)
= E2(z) +

12

2πi

c

cz + d

=⇒ E2 ∈M1
2 with Q0(E2) = E2 and Q1(E2) =

6

πi
.

Corollary 30.

Qs(D
s−1E2) =

(s− 1)!

(2πi)s−1
6

πi
.

Proposition 31. The Fourier expansion of E2 is given by

E2(z) = 1− 24
∞∑
n=1

σ1(n)e2πinz.
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Proof. Recall D :=
1

2πi

d

dz
and ∆(z) = e(z)

∞∏
n=1

(1− e(nz))24. Note that
de(z)

dz
=

2πie(z) and
d

dz
((1− e(nz))24) = −48πine(nz)(1− e(nz))23. Hence,

D∆(z) =
1

2πi

de(z)

dz

∞∏
n=1

(1− e(nz))24 + e(z)
∞∑
n=1

d ((1− e(nz))24)

dz

∞∏
m=1
m 6=n

(1− e(mz))24


= e(z)

∞∏
n=1

(1− e(nz))24 − 24e(z)
∞∑
n=1

ne(nz)

1− e(nz)

∞∏
m=1

(1− e(mz))24

= ∆(z)− 24∆(z)
∞∑
n=1

ne(nz)

1− e(nz)
.

Thus,

E2(z) =
D∆(z)

∆(z)
= 1− 24

∞∑
n=1

ne(nz)

1− e(nz)
.

Recall that
1

1− x
= 1 + x+ x2 + ... for |x| < 1. Note that if z ∈ H then |e(nz)| < 1

for all n ∈ N. Also note that e(nz)k = e(knz). Therefore,

E2(z) = 1− 24

(
e(z)

1− e(z)
+

2e(2z)

1− e(2z)
+

3e(3z)

1− e(3z)
+ ...

)
= 1− 24 (e(z)[1 + e(z) + e(2z) + ...] + 2e(2z)[1 + e(2z) + e(4z) + ...] + ...)

= 1− 24 (e(z) + e(2z) + e(3z) + ...+ 2e(2z) + 2e(4z) + 2e(6z) + ...+ 3e(3z) + ...)

= 1− 24(e(z) + (1 + 2)e(2z) + (1 + 3)e(3z) + (1 + 2 + 4)e(4z) + ...)

= 1− 24
∞∑
n=1

σ1(n)e(nz).

Another normalisation is

G2 = − 1

24
E2 = − 1

24
+
∞∑
n=1

σ1(n)e2πinz.
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3.5 Structure Theorems

Theorem 32. For any f ∈M s
k , there exist unique modular forms Fi ∈Mk−2i such that

f = F0 + F1E2 + F2E
2
2 + ...+ FsE

s
2.

Proof. Existence: Proof by induction on the depth.

Base case: s = 0. f ∈M0
k = Mk, so f = f .

Induction step: Fix s > 0. Suppose true for depth ≤ s− 1. Let f ∈M s
k . Note that

f −
(
iπ

6

)s
Qs(f)Es

2 ∈M s−1
k .

Then,

f = F0 + F1E2 + ...+ Fs−1E
s−1
2 +

(
iπ

6

)s
Qs(f)Es

2.

Uniqueness: Suppose f = F0 +F1E2 +F2E
2
2 + ...+FsE

s
2 where Fi ∈Mk−2i and

f = G0 +G1E2 +G2E
2
2 + ...+GsE

s
2 where Gi ∈Mk−2i. Then let

0 = (F0 −G0) + (F1 −G1)E2 + ...+ (Fs −Gs)E
s
2 = H.

Note that (Fs −Gs)E
s
2 ∈ M s

k implies Qs ((Fs −Gs)E
s
2) = (Fs −Gs)Qs(E

s
2). While

for t = 0, 1, 2, ..., s− 1, we have (Ft −Gt)E
t
2 implies Qs ((Ft −Gt)E

t
2) = 0. Hence,

0 = Qs(H) = Qs ((Fs −Gs)E
s
2) .

Since Fs −Gs ∈M0
k , Qs ((Fs −Gs)E

s
2) = (Fs −Gs)Qs(E

s
2) = (Fs −Gs)

(
iπ
6

)s
Es

2.

Thus, Fs = Gs.

The above theorem says that any quasimodular form is a polynomial in E2

with coefficients being modular forms. The following theorem then says that any

quasimodular form can be written uniquely as a linear combination of derivatives

of modular forms and of E2.
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Theorem 33. Let f ∈M s
k .

(a) If s < k
2
, then f = F0 +DF1 +D2F2 + ...+DsFs

for some modular forms Fi ∈Mk−2i where i = 0, 1, ..., s. In fact,

M≤s
k =

s⊕
i=0

DiMk−2i.

(b) If s = k
2
, then f = F0 +DF1 + ...+D

k
2
−2F k

2
−2 + αD

k
2
−1E2

for some modular forms Fi ∈ Mk−2i where i = 0, 1, ..., k
2
− 2, and some non-zero

α ∈ C. In fact,

M
≤k/2
k =

k/2−2⊕
i=0

DiMk−2i ⊕ CD
k
2
−1E2.

(c) If s > k
2
, then M s

k = 0.

Proof. (a) Proof by induction on the depth s. Let f ∈M s
k . Given g ∈Mk−2s, then

by Corollary 26

Qs(D
sg) =

s!

(2πi)s

(
k − s− 1

s

)
g.

So if s 6= k
2
, let

g =
(2πi)s

s!

(
k − s− 1

s

)Qs(f) ∈Mk−2s.

Hence, Qs(D
sg) = Qs(f). Then Qs(f −Dsg) = 0 implies f −Dsg ∈ M≤s−1

k .

By the induction hypothesis,

f −Dsg =
s−1∑
i=0

DiF i = F0 +DF1 +D2F2 + ...+Ds−1Fs−1.

Thus,

f = F0 +DF1 +D2F2 + ...+Ds−1Fs−1 +Dsg.

For the direct sum part, let f = 0. Suppose Fs 6= 0, then by Corollary 26

Qs(f) = Qs(D
sFs) 6= 0 =⇒ f 6= 0,
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a contradiction. So, Fs = 0. Repeat to get F0 = F1 = ... = Fs = 0.

(b) If s = k
2
, then (

k − s− 1

s

)
=

(k
2
− 1
k
2

)
= 0.

By Corollary 30,

Q k
2

(
D

k
2
−1E2

)
=

(
k
2
− 1
)
!

(2πi)
k
2
−1
Q1(E2) =

(
k
2
− 1
)
!

(2πi)
k
2
−1

6

πi
.

Since f ∈M s
k , Q k

2
(f) ∈M0 = C. So let

α =
πi

6

(2πi)
k
2
−1(

k
2
− 1
)
!
Q k

2
(f) ∈ C.

Then,

Q k
2

(
f − αD

k
2
−1E2

)
= Q k

2
(f)− αQ k

2

(
D

k
2
−1E2

)
= 0.

So, f − αD k
2
−1E2 ∈M

≤ k
2
−1

k . Thus by part (a),

f = F0 +DF1 + ...+D
k
2
−2F k

2
−2 + αD

k
2
−1E2.

Furthermore,

Q k
2
(f) = αQ k

2

(
D

k
2
−1E2

)
6= 0 =⇒ f 6= 0.

(c) This was already discussed in Remark 23.

Corollary 34. If f ∈M s
k then f ∈ Hol∞(H/Z).

Proof. Claim 1: If F ∈ Hol∞(H/Z) then DmF ∈ Hol∞(H/Z) for all integers m ≥ 0.

Let F (z) =
∑∞

n=0 an(F )qn ∈ Hol∞(H/Z). Recall D :=
1

2πi

d

dz
= q

d

dq
with q = e2πiz.

Since F is holomorphic on H, then DF is holomorphic on H. Hence DmF ∈

Hol(H) for all m ∈ Z≥0. Since F is periodic of period one, DF is periodic of period
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one. Hence DmF ∈ Hol(H/Z) for all m ∈ Z≥0. Since F is holomorphic at ∞ :

F (z) =
∑∞

n=0 an(F )qn, DmF (z) =
∑∞

n=0 an(DmF )qn with an(DmF ) = nman(F ).

Hence DmF ∈ Hol∞(H/Z) for all m ∈ Z≥0.

Claim 2: E2 ∈ Hol∞(H/Z).

By Proposition 29, E2 ∈ Hol(H). Then by Proposition 31, E2 ∈ Hol∞(H/Z).

Now, let f ∈M s
k . Then by Theorem 33:

(a) If s < k
2
, then f = F0 +DF1 +D2F2 + ...+DsFs for some Fi ∈Mk−2i.

For all i ∈ {0, 1, ..., s}, Fi ∈ Mk−2i =⇒ Fi ∈ Hol∞(H/Z) (since Mk−2i ⊂

Hol∞(H/Z)) =⇒ DiFi ∈ Hol∞(H/Z) (by Claim 1) =⇒ f ∈ Hol∞(H/Z).

(b) If s = k
2
, then f = F0 +DF1 + ...+D

k
2
−2F k

2
−2 +αD

k
2
−1E2 for some Fi ∈Mk−2i

and some α ∈ R. By part (a), F0 + DF1 + ... + D
k
2
−2F k

2
−2 ∈ Hol∞(H/Z). In

the other hand, E2 ∈ Hol∞(H/Z) (by Claim 2) =⇒ D
k
2
−1E2 ∈ Hol∞(H/Z)

(by Claim 1). Hence, f ∈ Hol∞(H/Z).

Putting together Theorem 33 and Corollary 34, we have the following result.

Corollary 35. If f ∈M s
k then it has a Fourier expansion

f =
∞∑
n=0

an(f)e2πinz

where

an(f) =


an(F0) + nan(F1) + ...+ nsan(Fs), if s < k

2

an(F0) + nan(F1) + ...+ n
k
2
−2an(F k

2
−2) + αn

k
2
−1an(E2), if s = k

2

0, otherwise

for some modular forms Fi ∈Mk−2i where i = 0, 1, ..., s, and some non-zero α ∈ C.

The following proposition shows that the space of quasimodular forms of

weight k and depth less than or equal to s is finite dimensional and its dimension
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can be expressed as the sum of dimensions of some spaces of modular forms with

decreasing weights.

Proposition 36.

dimM≤s
k =


dimMk + dimMk−2 + ...+ dimMk−2s, if s < k

2

dimMk + dimMk−2 + ...+ dimM4 + 1, if s = k
2

0, otherwise

Proof. By Theorem 33,

dimM≤s
k =



s∑
i=0

dimDiMk−2i, if s < k
2

k
2
−2∑
i=0

dimDiMk−2i + dimCD k
2
−1E2, if s = k

2

0, otherwise.

Claim: If k > 0 then D : M≤s
k →M≤s+1

k+2 is an injective linear transformation.

Let f =
∞∑
n=0

an(f)qn ∈M≤s
k be such that Df = 0.

Df =
∞∑
n=0

nan(f)qn = 0 =⇒ an(f) = 0 for all n ≥ 1 =⇒ f = a0(f).

If a0(f) 6= 0 then k = 0 which is a contradiction. So f = a0(f) = 0. This proves the

claim. Hence, dimDM≤s
k = dimM≤s

k . We repeat to get dimDiM≤s
k = dimM≤s

k for

all i ∈ Z≥0, and we are done.
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Chapter 4

Hecke Operators on Modular Forms

4.1 Definition and Basic Properties

There is a linear operator Tn for each integer n ≥ 1, called nth Hecke operator acting

on modular forms of a given weight. First, recall the space Hol∞(H/Z) from

Definition 5. It is clear that Mk ⊂ Hol∞(H/Z) for all k.

Definition 37 (Hecke Operator). Let f ∈ Mk and p be prime; we define a linear

map Tp,k : Hol∞(H/Z)→ F(H,C) by the following formula:

Tp,kf(z) = pk−1f(pz) +
1

p

p−1∑
n=0

f

(
z + n

p

)
.

For the purpose of convenience, we sometimes omit the k and write Tp instead.

There are similar operators Tn for all n ∈ N which commute with one another and

satisfy the identities:

TmTn = Tmn, if (m,n) = 1, (4.1)

TpTpn = Tpn+1 + pk−1Tpn−1 , if p is prime, n ≥ 1. (4.2)

See Section 5.3 Chapter VII in Serre, 1970 for more details.

Theorem 38. If f ∈ Hol∞(H/Z), then Tpf ∈ Hol∞(H/Z).



30 Chapter 4. Hecke Operators on Modular Forms

Proof. Tpf is periodic of period 1:

Tpf(z + 1) = pk−1f(pz + p) +
1

p

[
p−1∑
n=0

f

(
z + n

p

)
− f

(
z

p

)
+ f

(
z + p

p

)]
= Tpf(z).

Therefore Tpf has a Fourier series expansion:

(Tpf)(z) =
∞∑

n=−∞

an(Tpf)e2πinz.

Its coefficients can be described explicitly in terms of the coefficients of f , see

Proposition 39 below. Since f is holomorphic at∞, (Tpf)(z) has no negative terms,

so Tpf ∈ Hol∞(H/Z).

Proposition 39. If f ∈ Hol∞(H/Z), then

an(Tpf) =


pk−1an/p(f) + apn(f), if p | n

apn(f), if p - n.

for all n ∈ N.

For a proof, see Royer, 2013 Proposition 68.

Lemma 40. Tp,kGk = σk−1(p)Gk = (1 + pk−1)Gk.

Proof.

Gk = c0 +
∞∑
n=1

σk−1(n)qn.

By Proposition 39, we have

an(Tp,kGk) =


pk−1an/p(Gk) + apn(Gk), if p | n

apn(Gk), if p - n.

Hence,

a0(Tp,kGk) = pk−1a0(Gk) + a0(Gk) = (1 + pk−1)a0(Gk),
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and for n > 0,

an(Tp,kGk) =


pk−1σk−1(

n
p
) + σk−1(np), if p | n

σk−1(np), if p - n.

Note that if n = pβm with gcd(p,m) = 1, then

σk−1(np) = σk−1(p
β+1m) = σk−1(p

β+1)σk−1(m)

and

σk−1

(
n

p

)
= σk−1(p

β−1m) = σk−1(p
β−1)σk−1(m).

Hence, if p | n, we have

an(Tp,kGk) = σk−1(m)
[
pk−1σk−1(p

β−1) + σk−1(p
β+1)

]
.

On the other hand,

an(Gk) = σk−1(n) = σk−1(p
β)σk−1(m).

Observe that

pk−1σk−1(p
β−1)+σk−1(p

β+1) = 1k−1+2pk−1+...+2pβ(k−1)+p(β+1)(k−1) = (1+pk−1)σk−1(p
β).

Thus,

an(Tp,kGk) = (1 + pk−1)an(Gk) if p | n.

If p - n, we have

an(Tp,kGk) = σk−1(np) = σk−1(n)σk−1(p)

and

an(Gk) = σk−1(n).
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So,

(1 + pk−1)an(Gk) = (1 + pk−1)σk−1(n) = σk−1(n)σk−1(p) = an(Tp,kGk).

Therefore for all n ∈ N, an(Tp,kGk) = (1 + pk−1)an(Gk) which implies

Tp,kGk = (1 + pk−1)Gk.

The last lemma shows that Tp sends Eisenstein series to Eisenstein series. More

generally, we have the following theorem.

Theorem 41. (a) If f ∈ Sk then Tpf ∈ Sk.

(b) If f ∈Mk then Tpf ∈Mk.

The above theorem confirms that the function Tpf is also a modular form of

weight k. Thus, Hecke operators preserve the space of modular forms of a given

weight. For a proof, see Theorem 90 in Royer, 2013.

4.2 Eigenfunctions of the Hecke Operator

Definition 42 (Eigenfunction). Let f ∈ Mk and f 6= 0. We call f an eigenfunction

for the Hecke operator Tn if there exists λn ∈ C such that Tn(f) = λnf . We call λn

the eigenvalue of Tn associated to f .

Definition 43 (Modular Eigenform). A modular form is said to be an eigenform if

it is an eigenfunction for all Hecke operators Tn for n ∈ N.

Let f(z) =
∞∑
n=0

an(f)qn. If f is an eigenform then a1(f) 6= 0 (Proposition 40

in Koblitz, 1993), so we can multiply f by a suitable constant to get the coefficient

a1(f) equal to 1.
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Definition 44 (Normalized Eigenform). If f is an eigenform, then f is called

normalized if a1(f) = 1.

Definition 45 (Primitive Form). We call f a primitive form in Sk if it is a normalized

eigenform in Sk.

Proposition 46. All the primitive forms in Sk form an orthogonal basis of Sk. We denote

this basis by H∗k .

For a proof, see Proposition 95 in Royer, 2013. The prime-indexed coefficients

of primitive forms satisfy Deligne’s bound (Theorem 8.2 in Deligne, 1974), a special

case of Proposition 54.

Theorem 47. If f ∈ Sk is a primitive form and p is prime, then

|ap(f)| ≤ 2p
k−1
2 .

We have the following theorem (Proposition 40 in Koblitz, 1993).

Theorem 48. Let f(z) =
∞∑
n=0

an(f)qn ∈ Mk be a normalized eigenform. If λn(f) is the

eigenvalue of Tn associated to f , then λn(f) = an(f) for all n > 1.

The following results are Corollaries 1 and 2 of Theorem 7 in Chapter VII

of Serre, 1970.

Corollary 49 (Multiplicity One). Let f, g ∈ Mk be two normalized eigenforms. If

λn(f) = λn(g) for all n, then f = g.

Corollary 50. If f(z) =
∞∑
n=0

an(f)qn ∈Mk is a normalized eigenform, then

am(f)an(f) = amn(f), if (m,n) = 1 (4.3)

ap(f)apn(f) = apn+1(f) + pk−1apn−1(f), if p is prime, n ≥ 1. (4.4)

The two identities above were first discovered by Ramanujan (for f = ∆) and

proved by Mordell. We will also be using some results from linear algebra.



34 Chapter 4. Hecke Operators on Modular Forms

Lemma 51. Let T be a linear operator defined on a finite-dimensional vector space over

C. Let f =
∑r

i=1 cifi (for some non-zero constants ci ∈ C) be such that f and all fi

are eigenvectors under T with eigenvalues a and ai respectively. If all the fi are linear

independent, then a = ai for all i.

Proof. Observe that Tfi = aifi and Tf = af =
∑r

i=1 acifi. Since T is linear,

Tf =
∑r

i=1 ciTfi =
∑r

i=1 ciaifi. Hence
∑r

i=1(a − ai)cifi = 0. Since all the fi are

linear independent and ci 6= 0 for all i, we have a− ai = 0 for all i.

Lemma 52. Let T : V → V be a linear transformation. Suppose V = U ⊕W , where

both U and W are T -invariant. Let v ∈ V be an eigenvector of T with eigenvalue a. If

v = u + w for some u ∈ U and w ∈ W , then either both u and v are eigenvectors of T

with eigenvalue a or either u or w is zero.

Proof. Let v ∈ V = U ⊕W . Then there exist u ∈ U and w ∈ W such that v = u+w.

Suppose u and w are non zero. Observe that T (u) + T (w) = T (u + w) = T (v) =

av = au + aw =⇒ T (u) − au = −(T (w) − aw). Since both U and W are T -

invariant, T (u)− au ∈ U and T (w)− aw ∈ W . Since U ∩W = {0}, T (u) = au and

T (w) = aw.

Some examples of eigenforms are the Eisenstein series and the ∆ function.

Eisenstein series are the only non-cuspidal eigenforms. By Lemma 40, the eigen-

value of Tp associated to Ek is λp(Ek) = 1 + pk−1. More about eigenfunctions of the

Hecke operator is discussed in Chapter VII Section 5.4 in Serre, 1970.

4.3 L-functions of Hecke Eigenforms

Definition 53 (L-function of Modular Form). Let f(z) =
∑∞

n=0 an(f)qn ∈Mk and

s ∈ C. We define an associated L-function

L(f, s) =
∞∑
n=1

an(f)

ns
.
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We want to know the condition for which this series converges. So, we need

the following estimates.

Proposition 54. If f ∈ Sk then there exists a constant C > 0 such that

|an(f)| ≤ Cn
k
2 .

For a proof, see Proposition 1.3.5 in Bump, 1997. The more accurate estimate

is |an(f)| ≤ Cn
k−1
2

+ε for any ε > 0. This was conjectured by Ramanujan (1916) for

f = ∆ which is well known by Ramanujan Conjecture, and was proved by Deligne

(1971). Further discussion for this conjecture can be found in Section 3.5 in Bump,

1997. A particular result for this is in Theorem 47. Next, if f is not a cusp form, we

have the following proposition (Corollary of Theorem 5 in Chapter VII in Serre,

1970).

Proposition 55. If f ∈Mk\Sk then there exist two constants C1, C2 > 0 such that

C1n
k−1 ≤ |an(f)| ≤ C2n

k−1.

Corollary 56. If f ∈Mk then there exists a constant C > 0 such that

|an(f)| ≤ Cnk−1.

Now we are ready to prove the following result.

Corollary 57. The L-function L(f, s) converges absolutely if Re(s) > k.

Proof. By Corollary 56,

∞∑
n=1

∣∣∣∣an(f)

ns

∣∣∣∣ ≤ ∞∑
n=1

∣∣∣∣Cnk−1ns

∣∣∣∣ = C
∞∑
n=1

∣∣∣∣ 1

ns−k+1

∣∣∣∣ .
Note that the Dirichlet Series

∞∑
n=1

1

ns
converges if Re(s) > 1. Hence,

∞∑
n=1

1

ns−k+1

converges if Re(s− k + 1) > 1, i.e. Re(s) > k.
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Hecke proved that by analytic continuation, L-function L(f, s) can be extended

to a meromorphic function on the whole C (entire if f is a cusp form) and satisfies

a functional equation relating L(f, k − s) to L(f̃ , s) where f̃(z) = f

(
−1

z

)
. Hecke

also proved the converse, that every L(f, s) satisfying this functional equation and

some regularity and growth hypothesis implies f ∈Mk. See Section 33 in Hecke,

1959 for further discussion.

By Proposition 8 and Proposition 46, we know that Mk is spanned by nor-

malized eigenforms f(z) =
∞∑
n=0

an(f)qn ∈Mk where an(f) satisfy the identities in

Equation 4.3 and 4.4. Equation 4.3 says that the coefficients an(f) are multiplicative,

and hence the L-function of f has an Euler product

L(f, s) =
∏

p prime

(
1 +

ap(f)

ps
+
ap2(f)

p2s
+ ...

)
.

Putting Equation 4.3 and 4.4 together, we have

L(f, s) =
∏

p prime

1

1− ap(f)p−s + pk−1−2s

of f ∈Mk a normalized eigenform.

Example 58 (L(Ek, s)). The L-function of the Eisenstein series Ek is given by

L(Ek, s) =
∏

p prime

1

1− (1 + pk−1)p−s + pk−1−2s
= ζ(s)ζ(s− k + 1).

For a proof, see Chapter VII Proposition 13 in Serre, 1970.

Further, if f ∈ Sk is a primitive form, we let An(f) be defined by

f(z) =
∞∑
n=1

An(f)n
k−1
2 qn.

Then

L̃(f, s) =
∞∑
n=1

An(f)

ns
=
∏

p prime

1

1− Ap(f)p−s + p−2s
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is an example of an automorphic L-function on GL(2), using the terminology

in Iwaniec and Kowalski, 2004 Chapter 5. The local components of L̃(f, s) at p

are the complex numbers α1,p(f) and α2,p(f) in the factorisation

1− Ap(f)z + z2 = (1− α1,p(f)z) (1− α2,p(f)z) .

The following result is due to Jacquet and Shalika (see Proposition 5.43 in Iwaniec

and Kowalski, 2004).

Theorem 59 (Strong Multiplicity One Principle). Let L̃(f, s) and L̃(g, s) be two

automorphic L-functions of cuspforms on GL(2). If the local components of L̃(f, s) and

L̃(g, s) coincide at all but finitely many primes, then f = g.
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Chapter 5

Hecke Operators on Quasimodular

Forms

5.1 The Action of Hecke Operators on M s
k

Recall the space Hol∞(H/Z) from Definition 5. Observe that M s
k ⊂ Hol∞(H/Z) by

Corollary 34. By Theorem 38, for each prime p we have a linear transformation

Tp,k : Hol∞(H/Z)→ Hol∞(H/Z) given by the formula

Tp,kf(z) = pk−1f(pz) +
1

p

p−1∑
n=0

f

(
z + n

p

)
. (5.1)

There are also similar operators Tn,k for all n ∈ N. If we fix k, then by direct

calculation with 5.1, Tn,k and Tm,k commute for all n,m ∈ N, i.e.

Tn,k ◦ Tm,k = Tm,k ◦ Tn,k.

Further, these operators satisfy the identities 4.1 and 4.2 as before.

Define D :=
1

2πi

d

dz
. If f(z) =

∞∑
n=0

an(f)e2πinz, we obtain Df(z) =
∞∑
n=0

nane
2πinz.

Proposition 60. For any f ∈ Hol∞(H/Z), we have Tp,k+2(Df) = pD(Tp,kf).

Proof. Let f(z) =
∑∞

n=0 an(f)e2πnz. Then Tp,kf(z) =
∑∞

n=0 an(Tp,kf)e2πnz. First, note

that if f(z) =
∑∞

n=0 an(f)e2πnz then Df(z) =
∑∞

n=0 nan(f)e2πnz. Recall Proposition
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39:

an(Tp,kf) =


pk−1an/p(f) + apn(f), if p | n

apn(f), if p - n.

Thus,

Tp,k+2(Df)(z) =
∞∑
n=0


(
pk+1 n

p
an/p(f) + pnapn(f)

)
e2πnz, if p | n

(pnapn(f)) e2πnz, if p - n.

On the other hand,

pD(Tp,kf)(z) = p
∞∑
n=0

an(Tp,kf)e2πnz.

Again, by Proposition 39,

pD(Tp,kf)(z) =
∞∑
n=0


(
pnpk−1an/p(f) + pnapn(f)

)
e2πnz, if p | n

(pnapn(f)) e2πnz, if p - n.

Simplifying both cases, we obtain the equality, i.e. Tp,k+2(Df) = pD(Tp,kf).

The above proposition shows that the Hecke operators and the derivatives

commute up to multiplication by a scalar.

Hol∞(H/Z) Hol∞(H/Z)

Hol∞(H/Z) Hol∞(H/Z)

Tp,k+2

Tp,k

D pD

The following theorem confirms that the image of the Hecke operator of any

quasimodular form of a given weight and depth is again a quasimodular form of

the same weight and depth, i.e. Tp,k(M s
k) ⊂M s

k .
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Theorem 61. If f ∈M s
k then Tp,kf ∈M s

k .

Proof. Set G2 = − 1
24
E2. Let f ∈ M s

k and let s′ = min (s, k
2
− 2). By Theorem 33,

there exist modular forms fi ∈ Mk−2i, complex numbers ci ∈ C for i = 0, 1, ..., s′,

and ck/2 ∈ C (note: ck/2 6= 0 if and only if s = k
2
) such that

f =
s′∑
i=0

ciD
ifi + ck/2D

k/2−1G2.

Then by Proposition 60,

Tp,kf =
s′∑
i=0

ciTp,k(D
ifi) + ck/2Tp,k(D

k/2−1G2)

=
s′∑
i=0

cip
iDi(Tp,k−2ifi) + ck/2p

k/2−1Dk/2−1(Tp,2G2).

By Lemma 40, we have Tp,2G2 = σ1(p)G2 = (p + 1)G2. And since fi ∈ Mk−2i,

hence Tp,k−2ifi ∈Mk−2i by Theorem 41. Therefore,

Tp,kf =
s′∑
i=0

cip
iDigi + ck/2p

k/2−1(p+ 1)Dk/2−1G2 ∈M s
k .

The Proposition 60 together with Theorems 25 and 61 show that the following

diagram commutes.

Df Tp,k+2(Df) = pD(Tp,kf)

f Tp,kf

M s
k M s

k

M s+1
k+2 M s+1

k+2

Tp,k

D

Tp,k+2

pD
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5.2 Quasimodular Eigenforms

Definition 62 (Eigenfunction). Let f(z) ∈M≤∞
k and f 6= 0. We call f an eigenfunc-

tion for the Hecke operator Tn if there exists λn ∈ C such that Tn(f) = λnf . We call

λn the eigenvalue of Tn associated to f .

Definition 63 (Quasimodular Eigenform). A quasimodular form is said to be an

eigenform if it is an eigenfunction for all of the Hecke operators Tn for n ∈ N.

Furthermore, if f(z) =
∞∑
n=0

an(f)qn, f is normalized if a1(f) = 1.

Proposition 64. Let k ≥ 2. We define

H≤∞k =

k
2
−2⋃
i=0

DiH∗k−2i

and

N≤∞k =

{
DiGk−2i

∣∣∣∣0 ≤ i ≤ k

2
− 2

}⋃{
D

k
2
−1G2

}
.

Then H≤∞k
⋃
N≤∞k forms a basis for M≤∞

k and it consists of quasimodular eigenforms.

For a proof, see Royer, 2013 Proposition 147. The following is a generalisation

of Theorem 48.

Theorem 65. Let f(z) =
∞∑
n=0

an(f)qn ∈M≤∞
k be a quasimodular eigenform. Then

(a) a1(f) 6= 0.

(b) If f is normalized and λn is the eigenvalue of Tn associated to f , then λn = an(f)

for all n > 1.

Since the Hecke operators of quasimodular forms satisfy the identities 4.1 and

4.2, by Theorem 65 above, we have a direct consequence which is a generalisation

of Corollary 50 as follows:

Corollary 66. If f(z) =
∞∑
n=0

an(f)qn ∈M s
k is a normalized eigenform, then

am(f)an(f) = amn(f), if (m,n) = 1 (5.2)
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ap(f)apn(f) = apn+1(f) + pk−1apn−1(f), if p is prime, n ≥ 1. (5.3)

Furthermore, one may check it immediately by direct computation using Propo-

sition 70. The corollary below is a straightforward generalisation of Proposition 60

and Theorem 61.

Corollary 67. If f ∈M≤∞
k , then

Tp,k+2m(Dmf) = pmDm(Tp,kf),

for m ≥ 0. Moreover, Dmf is a quasimodular eigenform for Tp if and only if f is.

Furthermore, if λp is the eigenvalue of Tp associated to f , then pmλp is the eigenvalue of

Tp associated to Dmf .

The following two results are Proposition 2.4 and Proposition 2.5 respectively

in Meher, 2012.

Proposition 68. Let {fi}i be a collection of non-zero modular forms of distinct weights

ki. Then for ai ∈ C∗,
∑t

i=1 aiD
n− ki

2 fi is an eigenform if and only if each Dn− ki
2 fi is an

eigenform and the eigenvalues are the same for all i.

Proposition 69. If k > l and f ∈ Mk, g ∈ Ml are eigenforms, then for all r ≥ 0,

D
k−l
2

+rg and Drf do not have the same eigenvalues.

These are used in Das and Meher, 2015 to obtain the following classification of

quasimodular eigenforms:

Proposition 70. Let f ∈M s
k be a quasimodular eigenform.

(a) If s < k
2
, then f = Dsfs, where fs ∈Mk−2s is an eigenform.

(b) If s = k
2
, then f ∈ CD k

2
−1E2.

Proof. Let f ∈M s
k be a quasimodular eigenform. By Theorem 33:
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(a) If s < k
2
, then

f = F0 +DF1 +D2F2 + ...+DsFs (5.4)

for some modular forms Fi ∈ Mk−2i where i = 0, 1, ..., s. We claim that

there is only one non-zero term on the right hand side of Equation 5.4.

Assume, on the contrary, that there are at least two non-zero terms DiFi

and DjFj with i < j. By Proposition 68, DiFi and DjFj are eigenforms with

λn(DiFi) = λn(DjFj) for all n ∈ N. By Proposition 67, Fi and Fj are (modular)

eigenforms of distinct weights k− 2i > k− 2j. Applying Proposition 69 with

r = i, we get λn(DjFj) 6= λn(DiFi), contradiction. So, f = DaFa for some

0 ≤ a ≤ s and some eigenform Fa ∈Mk−2a. By Theorem 25, depth(DaFa) = a.

In the other hand, depth(f) = s. Thus, a = s. In other words, f = DsF s

where Fs ∈Mk−2s is an eigenform.

(b) If s = k
2
, then there exists a non-zero α ∈ C such that

f = F0 +DF1 + ...+D
k
2
−2F k

2
−2 + αD

k
2
−1E2 (5.5)

for some modular forms Fi ∈Mk−2i where i = 0, 1, ..., k
2
− 2. In fact,

M
k/2
k =

k/2−2⊕
i=0

DiMk−2i ⊕ CD
k
2
−1E2.

By Lemma 52, g = F0 +DF1 + ...+D
k
2
−2F k

2
−2 ∈M

k/2−2
k is either zero or an

eigenform with λn(g) = λn(f), and αD
k
2
−1E2 ∈ Mk/2

k is an eigenform with

λn

(
αD

k
2
−1E2

)
= λn(f). Assume g 6= 0. By part (a), g = D

k
2
−2F k

2
−2 with

F k
2
−2 ∈M4 an eigenform. Then we have

λn

(
D

k
2
−2F k

2
−2

)
= λn

(
αD

k
2
−1E2

)
.
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By Proposition 67,

n
k
2
−2λn(F k

2
−2) = n

k
2
−1λn(E2), ∀n ∈ N.

By Lemma 40, for n = p prime,

p
k
2
−2λp(F k

2
−2) = p

k
2
−1λp(E2) = p

k
2
−1(p+ 1).

Hence,

λp(F k
2
−2) = p(p+ 1) (5.6)

where F k
2
−2 ∈ M4 an eigenform. By Proposition 8, M4 = S4 ⊕ CE4. So, if

F k
2
−2 ∈ S4 (without loss of generality, we assume that F k

2
−2 is a primitive

form), then by Theorem 47 of Deligne,

∣∣∣λp(F k
2
−2)
∣∣∣ ≤ 2p

3
2 ,

which contradicts Equation 5.6. In the other hand, if F k
2
−2 = βE4 for some

non-zero β ∈ C, then by Lemma 40,

λp(F k
2
−2) = 1 + p3,

which also contradicts Equation 5.6. Therefore, g = 0. Hence, f = αD
k
2
−1E2.

The description of quasimodular eigenforms given in the proposition above is

crucial to the main result of Das and Meher, 2015:

Theorem 71 (Multiplicity One). Let f1, f2 ∈ M≤∞
k be quasimodular eigenforms. If

f1, f2 have same eigenvalues with respect to the Hecke operators Tp for all but finitely

many primes p, then f1 = cf2 for some constant c.
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Proof. Let p be prime and let f1, f2 ∈M≤∞
k be quasimodular eigenforms such that

Tp(f1) = (λ1)pf1, ∀p,

Tp(f2) = (λ2)pf2, ∀p.

Suppose (λ1)p = (λ2)p for all but finitely many primes p. By Proposition 70,

∃t1, t2 ∈ N such that

f1 = Dt1g1 and f2 = Dt2g2

where either g1 ∈Mk−2t1 is an eigenform or g1 = αE2 for some α ∈ C, and either

g2 ∈Mk−2t2 is an eigenform or g2 = βE2 for some β ∈ C. Without loss of generality,

we assume that g1 and g2 are normalized.

Since Mk = Sk ⊕ CEk by Proposition 8, so there are three cases:

(a) g1 = αEk1 and g2 = βEk2 , where α, β ∈ C and ki ∈ {2, k − 2t1, k − 2t2}.

By Lemma 40, Tp(gi) = (1 + pki−1)gi for all i ∈ {1, 2}. Then by Proposition 67,

we have

Tp(fi) = pti(1 + pki−1)fi = (λi)pfi.

Let p be such that (λ1)p = (λ2)p. This implies t1 = t2 and k1 = k2. Hence

g1 = α
β
g2, so f1 = α

β
f2 follows directly.

(b) g1 = αEk1 where k1 ∈ {2, k − 2t1} and g2 ∈ Sk−2t2 .

Again by Lemma 40 and Proposition 67, we have

(λ1)p = pt1(1 + pk1−1), ∀p.

Let g2 =
∞∑
n=1

an(g2)q
n. Since g2 is normalized, by Theorem 65 and Proposition

67, we have

(λ2)p = pt2ap(g2), ∀p.
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In other hand, by Theorem 5 in Murty, 1983 we have the following fact: If

g ∈ Sk and the Fourier coefficients of g are real, then there exist infinitely

many primes p such that ap(g) > 0 and there exist infinitely many primes

p′ such that ap′ < 0. Thus, (λ1)p = (λ2)p for all but finitely many primes p

contradicts this fact. Hence, this case is ruled out.

(c) g1 ∈ Sk−2t1 and g2 ∈ Sk−2t2 .

Let g1 =
∞∑
n=1

an(g1)q
n and g2 =

∞∑
n=1

an(g2)q
n. By Theorem 47 of Deligne,

|ap(gi)| ≤ 2p(k−2ti−1)/2. Hence,

∣∣∣∣ ap(gi)

p(k−2ti−1)/2

∣∣∣∣ ≤ 2.

Let Ap(gi) =

∣∣∣∣ ap(gi)

p(k−2ti−1)/2

∣∣∣∣. Then ap(gi) = Ap(gi)p
(k−2ti−1)/2. Since both g1 and

g2 are normalized, by Theorem 65 and Proposition 67, we have

(λi)p = ptiap(gi) = p
k−1
2 Ap(gi).

But since (λ1)p = (λ2)p for all but finitely many primes p, so Ap(g1) = Ap(g2)

for all but finitely many primes p. Hence the local components of L̃(g1, s) and

L̃(g2, s) coincide at all but finitely many primes p. By Theorem 59, g1 = g2, so

t1 = t2 and hence f1 = f2.

5.3 L-functions of Quasimodular Eigenforms

We have seen L-functions of modular Hecke eigenforms in Section 4.3. The next

question is: can we attach L-functions to quasimodular forms? By Corollary 35,

any quasimodular form has a Fourier expansion. In this section, we want to make

a generalisation of our previous results.
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Definition 72 (L-function of Quasimodular Form). Let f(z) =
∑∞

n=0 an(f)qn ∈M s
k

and t ∈ C. We define an associated L-function

L(f, t) =
∞∑
n=1

an(f)

nt
.

We will see shortly under what condition this series converges. We know

that the Fourier coefficients of modular forms are bounded above. The following

propositions are a generalisation of Corollary 56.

Proposition 73. If f ∈M s
k with k > 2, then there exists a constant C > 0 such that

|an(f)| ≤ Cnk−1.

Proof. By Corollary 35:

(a) If s < k
2
, then f =

∑∞
n=0 an(f)qn where an(f) = an(F0) + nan(F1) + ... +

nsan(Fs). Hence by Corollary 56, there exist positive constants Ci, C for all

i ∈ {0, 1, ..., s} such that

|an(f)| ≤ |an(F0)|+ |nan(F1)|+ ...+ |nsan(Fs)|

≤ C0n
k−1 + nC1n

k−3 + ...+ nsCsn
k−2s−1

= C0n
k−1 + C1n

k−2 + ...+ Csn
k−s−1

≤ C(s+ 1)nk−1.

(b) If s = k
2
, then f =

∑∞
n=0 an(f)qn where an(f) = an(F0) + nan(F1) + ... +

n
k
2
−2an(F k

2
−2) + αn

k
2
−1an(E2). Hence by Corollary 56 and Proposition 31,

there exist a non-zero α ∈ C and positive constantsCi, C for all i ∈ {0, 1, ..., k
2
−
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2} such that for all n ≥ 1,

|an(f)| ≤ |an(F0)|+ |nan(F1)|+ ...+ |n
k
2
−2an(F k

2
−2)|+ |αn

k
2
−1an(E2)|

≤ C0n
k−1 + nC1n

k−3 + ...+ n
k
2
−2C k

2
−2n

3 + 24|α|n
k
2
−1σ1(n)

= C0n
k−1 + C1n

k−2 + ...+ C k
2
−2n

k
2
+1 + 24|α|n

k
2
−1σ1(n).

Note that σ1(n) ≤ n2 for all n. Since k > 2, n
k
2
−1σ1(n) ≤ nk−1. Therefore,

|an(f)| ≤ Ck

2
nk−1.

Proposition 74. If f ∈M1
2 then there exists a constant C > 0 such that

|an(f)| ≤ Cn2.

Proof. By Corollary 35 and Proposition 31, there exists a non-zero α ∈ C such that

|an(f)| = |αan(E2)| = 24|α|σ1(n) ≤ 24|α|n2.

Corollary 75. If f ∈M s
k with k > 2, then the L-function L(f, t) converges absolutely if

Re(t) > k.

The proof is the same as of Corollary 57 replacing Corollary 56 with Proposition

73.

Corollary 76. If f ∈M1
2 then the L-function L(f, t) converges absolutely if Re(t) > 3.

Proof. By Proposition 74,

∞∑
n=1

∣∣∣∣an(f)

nt

∣∣∣∣ ≤ ∞∑
n=1

∣∣∣∣Cn2

nt

∣∣∣∣ = C
∞∑
n=1

∣∣∣∣ 1

nt−2

∣∣∣∣ .
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Note that
∞∑
n=1

1

nt−2
converges if Re(t− 2) > 1, i.e. Re(t) > 3.

Now by Proposition 64, we have M s
k spanned by normalized quasimodular

eigenforms f(z) =
∞∑
n=0

an(f)qn ∈ M s
k where by Corollary 66, an(f) satisfy the

identities in Equation 5.2 and 5.3. Thus, if f ∈M s
k is a normalized eigenform,

L(f, t) =
∏

p prime

(
1 +

ap(f)

pt
+
ap2(f)

p2t
+ ...

)
=
∏

p prime

1

1− ap(f)p−t + pk−1−2t
.
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