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L-functions of Rational Elliptic Curves

Kwan Sheng Ong

Abstract

In this thesis, we investigate and present the correspondence between L-functions
associated with rational elliptic curves and L-functions of modular forms, whose re-
lationship was crucial to the proof of Fermat’s Last Theorem. We start with the
general theory of elliptic curves over local and global fields and present the con-
struction of the L-function associated to a rational elliptic curve. Then we introduce
modular forms and discuss the theory of L-functions associated with cusp forms. We
end with a survey on Birch Swinnerton-Dyer conjecture and present some promising
progress on said conjecture.
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Chapter 1

Introduction

The story of elliptic curves started in ancient Greece, in Diophantus of Alexandria’s
Arithmetica. Like many of the problems worked on by Diophantus, this involved
solving for integer and rational solutions to polynomial equations, in particular, an
equation of the form

y2 = ax3 + bx2 + cx+ d,

where the cubic on the right hand side has no repeated roots. The problem Dio-
phantus recorded can be stated as: “To divide a given number into two numbers
such that their product is a cube minus its side.” [Hea85, Book IV, Problem 24] Let
a be Diophantus’ given number, then we would like to find x and y such that

y(a− y) = x3 − x.

By a (linear) change of variables Y = y − a/2, X = −x, we get the equation

Y 2 = X3 −X +
(a
2

)2
.

This equation will later become known as one that defines an elliptic curve.
Fast forward to the 1600s, when Pierre de Fermat famously scribbled on the

tiny margins of his translated copy of Arithmetica his famous last conjecture: if the
integer n is greater than 2, then the equation

an + bn = cn

has no integer solutions with abc ̸= 0. Unbeknownst to Fermat, his mysterious “truly
marvelous proof” will ignite one of the longest pursuits in mathematics history
spanning more than 350 years, engaging countless mathematicians. The problem
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was finally solved by Andrew Wiles and Richard Taylor in 1994, whose proof relied
heavily on the theory of elliptic curves among other mathematical tools. [Wil95]
Central to their work was the question:

Are all (semistable) elliptic curves defined over the rationals modular?

Let us rewind to the start of 1900s, when modern theory of elliptic curves first
begun with a question posed by Bernhard Riemann:

Is the group of rational points of an elliptic curve finitely generated?

This question was answered in the 1920s by Louis Mordell, who proved what is
now known as Mordell’s theorem. Building on Mordell’s work, André Weil later
provided a new proof and extended the results to higher-dimensional analogues of
elliptic curves known as abelian varieties over number fields, and this generalisation
became known as Mordell-Weil theorem. [Wei29] The 1930s saw further signficant
advancements with Helmut Hasse’s series of papers focusing on elliptic curves over
finite fields. In his paper, Hasse showed two significant results, the first being the
Hasse bound, which gives a sharp estimate for the number of points on an elliptic
curve over a finite field. The second is the analogue of the Riemann hypothesis
for elliptic curves. Hasse’s insights not only significantly deepened the understand-
ing of the behavior of elliptic curves in arithmetic contexts, but also established a
foundational link between the geometry of elliptic curves and algebraic structures
in number theory.

Weil later generalised these ideas to smooth algebraic varieties in what became
known as the Weil Conjectures, a set of deep conjectures about zeta functions of
algebraic varieties over finite fields. [Wei49] Weil’s successful attempt for curves
showed promise for more general algebraic varieties, but it was out of reach at the
time. This would later spark two decades of development in étale cohomology by
Alexander Grothendieck and his collaborators, as they worked toward solving the
Weil Conjectures. These early 20th-century developments, particularly Mordell’s
and Weil’s results, firmly established elliptic curves as central objects of study in
number theory and algebraic geometry, laying the groundwork for later applications
in areas such as cryptography, coding theory, and the eventual proof of Fermat’s
Last Theorem.

In more recent times, elliptic curves have been discovered to have increasingly
important and sometimes surprising applications, particularly in the field of cryptog-
raphy. In 1985, both Neal Koblitz and Victor Miller independently proposed using
elliptic curves for cryptographic purposes, marking the beginning of elliptic curve
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cryptography (ECC). [Kob87; Mil86] The primary advantage of ECC lies in the
difficulty of solving the elliptic curve discrete logarithm problem (ECDLP), which
is thought to be much harder to break than traditional methods like factoring large
composite numbers used in RSA encryption. Specifically, for the same level of se-
curity, elliptic curve cryptography can use significantly smaller key sizes, making
it more efficient. For example, a 256-bit key in ECC provides comparable security
to a 3072-bit key in RSA, offering substantial benefits in terms of computational
efficiency, memory usage, and transmission bandwidth. This makes ECC especially
appealing for use in environments where resources are limited. As a result, elliptic
curves have become a crucial part of modern cryptographic systems.

Thus, from ancient Greece to modern cryptography, elliptic curves continue to
reveal their profound influence across mathematics and technology.

1.0.1 Structure of Thesis

This thesis is organised as follows. Chapter 2 sets the stage by discussing vari-
ous types of L-functions, from the classical Riemann zeta function to the general
Dirichlet L-function. In Chapter 3, we delve into elliptic curves and their asso-
ciated structures, including isogenies and Tate modules, offering insights into their
algebraic properties. Chapter 4 focuses on elliptic curves over finite fields, intro-
ducing Hasse’s bound and Weil’s conjectures in the setting of elliptic curves. We also
define the L-function associated to a rational elliptic curve. Chapter 5 addresses
the theory of modular forms and Hecke operators, which leads to the statement of
the modularity theorem. Finally, Chapter 6 provides a detailed exploration of the
Birch and Swinnerton-Dyer conjecture, reviewing both classical results and recent
developments in the study of the rank of elliptic curves and the behaviour of their
L-functions.
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Chapter 2

Some Examples of L-functions

The theory of L-functions originates from the Riemann zeta function, defined as:

ζ(s) =
∞∑
n=1

1

ns
=

1

1s
+

1

2s
+

1

3s
+ · · ·

It was Leonhard Euler who first noticed that properties of primes could be studied
analytically. He noticed, for a real number s > 1, one can factorise ζ(s) into the
infinite product

∞∑
n=1

1

ns
=

∏
p prime

1

1− p−s
.

This insight connects prime numbers to the analytic properties of the zeta function.
Many are familiar with Euclid’s proof of the infinitude of primes. Here, we present
a different proof by Euler that leverages the properties of the series above.

Theorem 2.0.1. There are infinitely many primes.

Proof. For a prime p, we have 1/p < 1, thus the ratio 1/(1− 1/p) can be expanded
into the geometric series

1

1− 1/p
= 1 +

1

p
+

1

p2
+ · · · .

By Fundamental Theorem of Arithmetic, for finite products we get

N∏
p

1

1− 1/p
=
∑
n∈Np

1

n

where the left hand side runs over all primes left than or equal to N and Np = {n ∈
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N | n = p1p2 · · · pr, pi ≤ N, ∀i}. Therefore, as we limit N to ∞, we get∏
p

1

1− 1/p
=
∑
n∈N

1

n
.

Since the harmonic series on the right hand side diverges, the left hand side cannot
be a product of finitely many terms. And thus, there are infinitely many terms in
the product, which means there are infinitely many primes.

This is one of the first signs that show arithmetic objects such as the prime
numbers can be studied analytically through functions such as the Riemann zeta
function. In 1837, to study the primes in arithmetic progressions, Johann Peter
Dirichlet introduced the Dirichlet L-functions, which he in turn used to prove his
eponymous theorem.

Theorem 2.0.2 (Dirichlet’s theorem). For all coprime integers a and m, there are
infinitely many primes p ≡ a mod m.

To define a Dirichlet L-series, we start with a Dirichlet character.

Definition 2.0.3. A complex-valued arithmetic function χ : Z→ C is a Dirichlet
character of modulus m if for all integers a, b, we have:

i. χ is completely multiplicative, i.e. χ(ab) = χ(a)χ(b).

ii. χ(a)

= 0, if gcd(a,m) > 1,

̸= 0, if gcd(a,m) = 1.

iii. χ is periodic with period m, i.e. χ(a+m) = χ(a).

Definition 2.0.4. A Dirichlet L-series is a function of the form

L(s, χ) =
∞∑
n=1

χ(n)

ns
,

where χ is a Dirichlet character and s is a complex variable with Re(s) > 1.

Remark. If χ0 is the trivial character, i.e. it sends everything to 1, we recover the
Riemann zeta function L(s, χ0) = ζ(s).

Remark. Note that the L-series, which is an infinite series representation (for ex-
ample the Dirichlet series for the Riemann zeta function), is distinguished from the
L-function, which is the function in the complex plane that is its analytic continua-
tion.
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Over time, the theory of L-functions was extended to various other contexts. For
example, the L-function of an elliptic curve is given by:

Example 2.0.5 (L-function of elliptic curves). The L-function of elliptic curve is

L(s, E) =
∏
p

1

1− app−s + p1−2s
,

where the coefficients ap are related to the number of points on the elliptic curve over
finite fields (as we will define in Section 4.4).

This is one of many modern examples of how L-functions are used to study
arithmetic objects. The development of L-functions, beginning with the Riemann
zeta function, laid the foundation for some of the most important results in number
theory, including the Prime Number Theorem:

Theorem 2.0.6 (Prime Number Theorem). Let π(x) be the prime-counting func-
tion, i.e. it equals to the number of primes less than or equal to x. Then we have

π(x) ∼ x

log(x)
.

This result, proved using properties of the Riemann zeta function, reveals the
deep connection between primes and the behavior of analytic functions.
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Chapter 3

Elliptic Curves and Tate Modules

This chapter will largely follow [Sil09, Chapter III]. At the heart of number theory,
elliptic curves frequently emerge. This is because they possess a unique duality,
originating as analytic objects while also exhibiting rich algebraic properties. In
this chapter we will showcase some of their algebraic qualities.

3.1 Elliptic Curves

Definition 3.1.1 (Elliptic Curves). An elliptic curve E is a curve C in the pro-
jective plane P2 given by a Weierstrass equation

C : Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3.

We denote the point [0, 1, 0] by O. This is called the prescribed point of the elliptic
curve E. The elliptic curve E is defined over K, written E/K, if the coefficients
a1, . . . , a6 are in K.

Remark. Some might have seen elliptic curves defined as a nonsingular curve of
genus one with a prescribed point O. This is an equivalent definition as the set
of curves defined by Definition 3.1.1 maps surjectively onto the set of nonsingular
curves of genus one with a prescribed point [Sil09, Chapter III, §3, Proposition 3.1].

Remark. If Z = 0, from the Weierstrass equation above, we can see X3 = 0 which
gives X = 0. Since in projective space, at least one of the coordinates is nonzero, it
means Y ̸= 0. WLOG assume Y = 1. This means O = [0, 1, 0] is the only point on
an elliptic curve E with Z = 0. So often in literature, one replaces X, Y, Z with

x =
X

Z
and y =

Y

Z
,
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and works in the affine plane A2 while calling the point O the point at infinity. Some
also denote the prescribed point/point at infinity with ∞.

Let L ⊆ P2 be a line. Since the equation of an elliptic curve E is degree 3, by
Bézout’s theorem, L ∩ E taken with multiplicities consists of exactly three points.
This allow us to define a group law on the points of the elliptic curve E. We define
the composition law as follows:

1. Let P,Q ∈ E and L be the line through P and Q. If P = Q, then let L be
the tangent line to E at P .

2. Then let R denote the third point of intersection of L with E.

3. Let L′ be another line that goes through the points R and O = [0, 1, 0].

4. Then L′ intersects E at three points, R, O, and a third point. Denote this
third point by P +Q, the “sum” of the points P and Q.

Proposition 3.1.2. The composition law has the following properties:

(a) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then
(P +Q) +R = O.

(b) (Identity) P +O = P for all P ∈ E.

(c) (Commutativity) P +Q = Q+ P for all P,Q ∈ E.

(d) (Additive Inverse) Let P ∈ E. There is a point of E, denoted by −P , satisfying
P + (−P ) = O.

(e) (Associativity) Let P,Q,R ∈ E. Then (P +Q) +R = P + (Q+R).

So the points of E form an abelian group with group operation +.

(f) If E is defined over a field K, then

E(K) = {(x, y) ∈ K2 | y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6} ∪ {O}

is a subgroup of E with group operation +.
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3.2 Isogeny

Every elliptic curve has a prescribed point O, so it is useful to look at morphisms
between varieties that respect the prescribed points when we look at maps between
elliptic curves.

Definition 3.2.1. Let E1 and E2 be elliptic curves. An isogeny from E1 to E2 is
a map of curves ϕ : E1 → E2 satisfying ϕ(O) = O. Two elliptic curves E1 and E2

are isogenous if there is a nonconstant isogeny from E1 to E2.

The zero isogeny [0] is defined as follows, [0](P ) = O for all P ∈ E1. By [Sil09,
Chapter II, §2, Theorem 2.4(a)], a nonconstant map ϕ : C1 → C2 of curves defined
over K will induce a map of function fields ϕ∗ : K(C2) → K(C1) such that K(C1)

is a finite extension of ϕ∗(K(C2)). So ϕ is called a finite map of curves if it is
nonconstant. So except for the zero isogeny, every other isogeny is a finite map of
curves. Thus we get the injection of function fields

ϕ∗ : K̄(E2)→ K̄(E1),

which allows us to define the degree of an isogeny.

Definition 3.2.2. The degree of an isogeny ϕ : E1 → E2 is defined as the de-
gree of the finite extension K̄(E1)/ϕ

∗K̄(E2), with degs(ϕ) and degi(ϕ) denoting the
separable and inseparable degrees of the extension respectively.

The theorem below shows an isogeny ϕ actually commutes with the group op-
eration on the points of an elliptic curve, in other words, every isogeny is a group
homomorphism on the points of elliptic curves.

Theorem 3.2.3. Let ϕ : E1 → E2 be an isogeny. Then

ϕ(P +Q) = ϕ(P ) + ϕ(Q) for all P,Q ∈ E1.

Proof. [Sil09, Chapter III, §4, Theorem 4.8]

Because the points of E2 form an abelian group, we can define addition between
between isogenies with pointwise addition

(ϕ+ ψ)(P ) = ϕ(P ) + ψ(P ).

So the isogenies from E1 to E2 form an abelian group

Hom(E1, E2) = {isogenies E1 → E2}



10

with identity [0], the zero isogeny.

Example 3.2.4. [Was08, Section 12.2, Example 12.3]
Let E1 : y

2
1 = x31+ax

2
1+ bx1 be an elliptic curve over some field of characteristic not

2. We require b ̸= 0 and a2− 4b ̸= 0 in order to have E1 nonsingular. Then (0, 0) is
a point of order 2. Let E2 be the elliptic curve y22 = x32− 2ax22 + (a2− 4b)x2. Define
α : E1 → E2 as follows:

(x1, y1) 7→
(
y21
x21
,
y1(x

2
1 − b)
x21

)
.

α is clearly a nonconstant map of curves. If we look at the first coordinate and
substitute y21 with x31 + ax21 + bx1, we get the rational function

r(x) =
x3 + ax2 + bx

x2
=
x2 + ax+ b

x
,

which gives us deg(α) = 2 and α is separable. As we will later see in Theorem
3.2.7, this means there are two points in the kernel α−1(O2). Note the kernel is the
inverse image of the point at infinity O2 because it is the identity element in the
group formed by the points of E2. From r(x) = x + a + (b/x), we see that the two
points must be (0, 0) and O1, since all of the other points have finite images.

Example 3.2.5 (Multiplication-by-m isogeny [m]). For each m ∈ Z, we can define
the multiplication-by-m isogeny as follows:

[m] : E → E, [m](P ) =


P + P + · · ·+ P︸ ︷︷ ︸

m terms

, if m > 0,

O, if m = 0,

[−m](−P ) = −P − P − · · · − P︸ ︷︷ ︸
m terms

, if m < 0.

The map defined above is clearly an isogeny since [m](O) = O.

We can now define the torsion subgroups of an elliptic curve E.

Definition 3.2.6. Let E be an elliptic curve and let m ∈ Z with m ≥ 1. The
m-torsion subgroup of E is the set of points of E of order m,

E[m] = {P ∈ E(K̄) | [m]P = O}.
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The torsion subgroup of E is the set of points of finite order,

Etors =
∞⋃

m=1

E[m].

If E is defined over K, then Etors(K) denotes the points of finite order in E(K).

Next, let Q ∈ E be a point in E. Then we define the translation-by-Q map in
the following way:

τQ : E → E, τQ(P ) = P +Q, ∀ P ∈ E.

We then have the following theorem on the Galois theory of elliptic function fields.

Theorem 3.2.7. Let ϕ : E1 → E2 be a nonzero isogeny.

(a) For every Q ∈ E2, we have

#ϕ−1(Q) = degs(ϕ).

Furthermore, for every P ∈ E1,

eϕ(P ) = degi(ϕ).

(b) The map

ker(ϕ)→ Aut(K̄(E1)/ϕ
∗(k̄(E2))), (3.1)

T 7→ τ ∗T , (3.2)

is an isomorphism.

(c) Suppose that ϕ is separable. Then ϕ is unramified,

#ker(ϕ) = deg(ϕ),

and K̄(E1) is a Galois extension of ϕ∗(K̄(E2)).

This theorem tells us that an elliptic curve isogenous to the elliptic curve E1 is
uniquely determined by the kernel of the isogeny from E1 to it.

Corollary 3.2.7.1. Let ϕ : E1 → E2 and ψ : E1 → E3 be nonconstant isogenies,
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and assume that ϕ is separable. If ker(ϕ) ⊆ ker(ψ), then there is a unique isogeny

λ : E2 → E3

satisfying ψ = λ ◦ ϕ.

Therefore, if ker(ϕ) = ker(ψ), then E2 is isomorphic to E3.

Remark. Isogenies are important in the study of elliptic curves. For example, for
elliptic curves defined over finite fields Fq, elliptic curves E1, E2 are isogenous over
Fq if and only if #E1(Fq) = #E2(Fq). Similarly, for elliptic curves over Q, they are
isogenous if and only if their L-series [which we define in Chapter 4.4] are equal.
This theorem arose from Falting’s proof of Mordell’s conjecture that an algebraic
curve of genus 2 has finitely many rational points. [Was08, Section 12.5]

3.3 Dual Isogeny

Being isogenous is actually an equivalence relation because of the existence of a
“reverse” isogeny we call the dual isogeny. The following theorem gives the existence
and uniqueness of the dual isogeny.

Theorem 3.3.1. Let ϕ : E1 → E2 be a nonconstant isogeny of degree m. Then
there exists a unique isogeny

ϕ̂ : E2 → E1 satisfying ϕ̂ ◦ ϕ = [m].

We call ϕ̂ from above the dual isogeny to ϕ.

Example 3.3.2. Let E1 be an elliptic curve given by y21 = x31+ax
2
1+ bx1 with b ̸= 0

and a2 − 4b ̸= 0 so it is nonsingular. From Example 3.2.4, we know there is an
isogeny α : E1 → E2 to the elliptic curve E2 given by y22 = x32 − 2ax22 + (a2 − 4b)x2.
Its dual isogeny α̂ : E2 → E1 is defined as follows

(x2, y2) 7→
(
1

4
(x2 +

−2ax2 + a2 − 4b

x2
),
1

8
(y2 −

(a2 − 4b)y2
x22

).

)
Composing α̂ ◦ α, we get

x1 7→
y21
x21
7→
(
3x21 + 2ax1 + b

2y1

)2

− a− 2x1,
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which is the formula for the x-coordinate of 2(x1, y1). [Sil09, Chapter III, §2, Group
Law Algorithm 2.3] A similar calculation for the y-coordinate tells us α̂ ◦ α = [2],
which verifies α̂ is the unique dual isogeny of α. For more detailed calculations, look
at [Was08, Section 12.3, Example 12.4].

The following theorem lists the properties of the dual isogeny.

Theorem 3.3.3. Let ϕ : E1 → E2 be an isogeny.

(a) Let m = deg(ϕ). Then

ϕ̂ ◦ ϕ = [m] on E1 and ϕ ◦ ϕ̂ = [m] on E2.

(b) Let λ : E2 → E3 be another isogeny. Then

λ̂ ◦ ϕ = ϕ̂ ◦ λ̂.

(c) Let ψ : E1 → E2 be another isogeny. Then

ψ̂ + ϕ = ψ̂ + ϕ̂.

(d) For all m ∈ Z, we have

ˆ[m] = [m] and deg[m] = m2.

(e) deg(ϕ̂) = deg(ϕ).

(f) ˆ̂
ϕ = ϕ.

Corollary 3.3.3.1. Let E1 and E2 be elliptic curves. Then the degree map

deg : Hom(E1, E2)→ Z

is a positive definite quadratic form.

Corollary 3.3.3.2. Let E be an elliptic curve and let m ∈ Z be nonzero.

(a) If m ̸= 0 in K, i.e. char(K) = 0 or char(K) ∤ m, then

E[m] ∼=
Z
mZ
× Z
mZ

.
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(b) If char(K) = p > 0, then one of the following is true:

i. E[pe] = {O} for all e = 1, 2, 3, . . ..

ii. E[pe] ∼= Z
peZ for all e = 1, 2, 3, . . ..

3.4 Tate Modules

As noted in Corollary 3.3.3.2, the group of m-order torsion points has a natural
Z/mZ-module structure. Since the Galois group GK̄/K acts on the torsion subgroups
for an elliptic curve E/K, it is often useful to investigate the Galois representations
related to these torsion subgroups. As we will soon find out, it will be useful to
package together the torsion subgroups for all prime powers of a fixed prime as they
are, in a sense, a nested sequence of subgroups.

Definition 3.4.1 (Tate Modules of an Elliptic Curve). Let E be an elliptic curve
and let ℓ ∈ Z be a prime that is not equal to char(K) = p ≥ 0. The ℓ-adic Tate
Module of E is the Zℓ-module

Tℓ(E) = lim←−
n

E[ℓn],

with the inverse limit being taken with respect to the natural maps

E[ℓn+1]
[ℓ]−−→ E[ℓn].

From Corollary 3.3.3.2, the Tate module Tℓ(E), as a Zℓ-module, has the following
structure:

• If ℓ ̸= char(K), then Tℓ(E) ∼= Zℓ × Zℓ.

• If p = char(K) > 0, then Tp(E) ∼= {0} or Zp.

This also illustrates another advantage of the Tate module. We can now work
in the p-adic field Qℓ, which has characteristic 0, instead of the ring Z/ℓnZ.

Let ϕ : E1 → E2 be an isogeny of elliptic curves. Then ϕ induces a map
ϕ : E1[ℓ

n] → E2[ℓ
n] since it is a group homomorphism by Theorem 3.2.3. Thus it

induces a Zℓ-linear map ϕℓ : Tℓ(E1)→ Tℓ(E2) on the Tate modules. This gives us a
natural homomorphism

Hom(E1, E2)→ Hom(Tℓ(E1), Tℓ(E2)).
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If E1 = E2 = E, we then get the homomorphism of rings

End(E)→ End(Tℓ(E)).

Back to the homomorphism from isogenies to linear maps between Tate modules,
tensoring with Zℓ we get a homomorphism of Zℓ modules

Hom(E1, E2)⊗ Zℓ → Hom(Tℓ(E1), Tℓ(E2)). (3.3)

If ℓ ̸= char(K), the map (3.3) is injective. This means isogenies between elliptic
curves are entirely characterised by their induced map on the Tate modules, and the
latter is linear whereas the former often is not! (Check Example 3.2.4) This gives
us the following corollary:

Corollary 3.4.1.1. Let E1 and E2 be elliptic curves. Then Hom(E1, E2) is a free
Z-module of rank at most 4.

It has been shown (3.3) is an isomorphism in following two situations:

1. K is a finite field. [Tat66]

2. K is a number field. [Fal83; Fal86]

3.5 Weil Pairing

For an abelian variety A, the Weil pairing is a pairing between them-torsion elements
of A and its dual abelian variety Â [Sil10]

A[m]× Â[m]→ µm.

Since elliptic curves are self-dual, we get a pairing of the form

E[m]× E[m]→ µm.

We will directly invoke the proposition below to get the existence of the Weil pairing,
in particular the induced Weil pairing on the Tate modules, for more details on the
explicit construction of the Weil pairing, look at [Sil09, Chapter III §8] or [Sil10].

Proposition 3.5.1. Let µ denote the roots of unity. Then there exists a pairing

e : Tℓ(E)× Tℓ(E)→ Tℓ(µ)
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with the following properties:

(a) It is bilinear:

e(S1 + S2, T ) = e(S1, T )e(S2, T ),

e(S, T1 + T2) = e(S, T1)e(S, T2).

(b) It is alternating:

e(S, T ) = e(T, S)−1 and e(T, T ) = 1.

(c) It is nondegenerate: If e(S, T ) = 1 for all S ∈ Tℓ(E), then T = O.

(d) It is Galois invariant:

e(S, T )σ = e(Sσ, T σ) for all σ ∈ GK̄/K .

(e) Furthermore, if ϕ : E1 → E2 is an isogeny, then ϕ and its dual ϕ̂ are adjoints
for the pairing, i.e. e(ϕS, T ) = e(S, ϕ̂T ).

We will now use it to prove the following proposition that allows us to compute
the degree of an isogeny using the determinant and trace of the induced map on Tate
modules ϕℓ. This proposition is later applied to count the number of K-rational
points of an elliptic curve defined over a finite field K.

Proposition 3.5.2. Let ϕ ∈ End(E), let ℓ ̸= char(k) and let ϕℓ : Tℓ(E)→ Tℓ(E) be
the map that ϕ induces on the Tate module of E. Then

det(ϕℓ) = deg(ϕ) and tr(ϕℓ) = 1 + deg(ϕ)− deg(1− ϕ).

In particular, det(ϕℓ) and tr(ϕℓ) are in Z and are independent of ℓ.

Proof. Let {v1, v2} be a Zℓ-basis for Tℓ(E). Write ϕℓ(v1) = av1 + bv2 and ϕℓ(v2) =

cv1 + dv2. So the matrix of ϕℓ relative this basis is

ϕℓ =

[
a b

c d

]
.
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Using the properties of Weil pairing from Proposition 3.5.1, we have

e(v1, v2)
deg(ϕ) = e([deg ϕ]v1, v2) (bilinearity of e)

= e(ϕ̂ℓϕℓv1, v2) (Theorem 3.3.1)

= e(ϕℓv1, ϕℓv2) (Proposition 3.5.1, Theorem 3.3.3 (f))

= e(av1 + bv2, cv1 + dv2)

= e(av1, cv1)e(bv2, cv1)e(av1, dv2)e(bv2, dv2)

= e(v1, v1)
ace(v1, v2)

−bce(v1, v2)
ade(v2, v2)

bd

= e(v1, v2)
ad−bc (since e is bilinear and alternating)

= e(v1, v2)
detϕℓ .

Since e is nondegenerate, we can conclude that deg(ϕ) = det(ϕℓ). For any 2 × 2

matrix, we have

tr(A) = a+ d = q + (ad− bc)− ((1− a)(1− d)− bc) = 1 + det(A)− det(1− A).

Thus we get the desired proposition.

The independence of ℓ shows that both det(ϕℓ) and tr(ϕℓ) are intrinsic values
of the elliptic curve E and are not simply introduced by the linearisation to Tℓ(E),
which requires a choice of a prime ℓ.
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Chapter 4

Elliptic Curves over Finite Fields

It is often useful to study equations over finite fields because it is easier to find
solutions and often provides intriguing insights into solutions in other infinite fields
such as Q and C. This statement will come in the form of Weil Conjectures in a bit.

4.1 Frobenius Morphism

Let K be a field of characteristic p > 0, and let q = pr for some r ≥ 1.
Let E/K be an elliptic curve given by a Weierstrass equation. Then E(q)/K

is defined by raising the coefficients of the equation for E to the qth-power. Since
E(q) is the zero locus of a Weierstrass equation, if the equation is nonsingular, then
it will be an elliptic curve. It can be shown that the discriminant of E(q) satisfies
∆(E(q)) = ∆(E)q, thus E(q) is also an elliptic curve.

The Frobenius morphism ϕq is defined by

ϕq : E → E(q), (x, y) 7→ (xq, yq).

The following theorem specifies the conditions for separability of the map m + nϕ,
which is needed later to show Hasse’s bound.

Theorem 4.1.1. Let E/Fq be an elliptic curve. Let ϕ : E → E be the qth-power
Frobenius morphism and let m,n ∈ Z. Then the map

m+ nϕ : E → E

is separable if and only if p ∤ m. In particular, the map 1− ϕ is separable.

Proof. [Sil09, Chapter III, §5, Corollary 5.5]
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Previously in Example 3.3.2 we gave an example of the dual isogeny to a separable
isogeny. Here is an example for an inseparable isogeny, in particular the Frobenius
morphism ϕq. Let E/Fq be an elliptic curve. Let a = q+1−#E(Fq), then we have
ϕ2
q−aϕq+q = 0. [Was08, Section 4.2, Theorem 4.10] Therefore, if we let ϕ̂q = a−ϕ,

then we have

ϕ̂q ◦ ϕq = (a− ϕq) ◦ ϕq = aϕq − ϕ2
q = q = deg(ϕq).

4.2 Hasse’s Bound

In this section, we show Hasse’s bound on the number of points on an elliptic curve
E/Fq. For a rough bound, we can first look at the Weierstrass equation for E

E : Y 2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6,

where we have set Z = 1 without loss of generality. For each value ofX, the equation
will yield at most two values of Y since it is a quadratic, so a rough upper bound is

#E(Fq) ≤ 2q + 1.

The +1 comes from the prescribed point O = [0, 1, 0]. However, because there are
q2 distinct monic quadratic polynomials with coefficients in Fq and roughly q2/2,
i.e. half of them are reducible in Fq, we expect the bound to be around q instead of
2q. We will first prove Cauchy-Schwarz for a positive quadratic form.

Lemma 4.2.1 (Cauchy-Schwarz). Let A be an abelian group, and let

d : A −→ Z

be a positive definite quadratic form. Then we have the inequality

|d(ψ − ϕ)− d(ϕ)− d(ψ)| ≤ 2
√
d(ϕ)d(ψ) for all ψ, ϕ ∈ A.

Proof. If ψ = 0, then the inequality is trivially satisfied. Let ϕ, ψ ∈ A where ψ ̸= 0,
and define the following bilinear form

L(ψ, ϕ) = d(ψ − ϕ)− d(ϕ)− d(ψ)

associated to the quadratic form d. Since d is a positive quadratic form, by A.1.1
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we have for all m,n ∈ Z,

mnL(ψ, ϕ) = L(mψ, nϕ) = d(mψ − nϕ)− d(mψ)− d(nϕ)

and thus
0 ≤ d(mψ − nϕ) = m2d(ψ) +mnL(ψ, ϕ) + n2d(ϕ).

Now, we pick
m = −L(ψ, ϕ) and n = 2d(ψ),

which gives us
0 ≤ d(ψ)(4d(ψ)d(ϕ)− L(ψ, ϕ)2).

This gives us the desired inequality because ψ ̸= 0.

We now proceed to show Hasse’s bound.

Theorem 4.2.2 (Hasse’s Bound). Let E/Fq be an elliptic curve. Then

|#E(Fq)− q − 1| ≤ 2
√
q.

Proof. We first choose a Weierstrass equation for E with coefficients in Fq. Let
ϕ : E → E, (x, y) 7→ (xq, yq) be the qth-power Frobenius morphism. Since the
Galois group GF̄q/Fq

is (topologically) generated by the qth-power map on F̄q, we see
that for any point P ∈ E(F̄q), we have

P ∈ E(Fq) if and only if ϕ(P ) = P,

in other words, P has coordinates in Fq if and only if it is fixed by the Galois group
GF̄q/Fq

which is generated by the Frobenius element ϕ. Thus we have E(Fq) =

ker(1− ϕ). By Theorem 4.1.1, 1− ϕ is separable, and thus by Theorem 3.2.7(c) we
have

#E(Fq) = ker(1− ϕ) = degs(1− ϕ) = deg(1− ϕ).

Since the degree map on End(E) is a positive quadratic form by Theorem 3.3.3.1,
noting deg(ϕ) = q, Lemma 4.2.1 gives us the desired result

| deg(1− ϕ)− deg(ϕ)− deg(1)| ≤ 2
√
deg(ϕ) deg(1)

|#E(Fq)− q − 1| ≤ 2
√
q.
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Example 4.2.3. Let E/Q be the elliptic curve given by y2 = x3 + 3. We are
going to calculate the points on E(F7). Naturally, we have the prescribed point O.
Calculations will show the rest are

{(1, 2), (1, 5), (2, 2), (2, 5), (3, 3), (3, 4), (4, 2), (4, 5), (5, 3), (5, 4), (6, 3), (6, 4)}.

Therefore, #E(F7) = 13. Applying Hasse’s bound (Theorem 4.2.2), we get

|#E(F7)− 7− 1| = 5 ≤ 2
√
7 ≈ 5.2915.

This is one example of where the Hasse bound is sharp.

4.3 Weil Conjectures

Having a sequence of integers {#V (Fqn)}, it is often useful to collect them into a
generating series. The zeta function of a variety V/Fq is defined as follows:

Definition 4.3.1. The zeta function of V/Fq is the power series

Z(V/Fq;T ) := exp

(
∞∑
n=1

(#V (Fqn))
T n

n

)
,

where #V (Fqn)

For any power series F (T ) ∈ Q[[T ]] with no constant term, the power series
exp (F (T )) is defined to be the series

∑
k≥0

F (T )k

k!
. From the definition, we can see

we can recover the information on #V (Fqn) from Z(V/Fq;T ).
Below, we have a theorem that gives one part of the Weil Conjectures.

Theorem 4.3.2. Let E/Fq be an elliptic curve and ϕ : E → E be the qth-power
Frobenius endomorphism. Let a = q + 1 − #E(Fq), and then let α, β ∈ C be the
roots of the polynomial T 2−aT +q. Then α and β are complex conjugates satisfying
|α| = |β| = √q, and for every n ≥ 1, we have

#E(Fqn) = qn + 1− αn − βn.

Proof. From the proof of Theorem 4.2.2, we see that #E(Fq) = deg(1 − ϕ). We
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then use Proposition 3.5.2 to compute the following:

det(ϕℓ) = deg(ϕ) = q

tr(ϕℓ) = 1 + deg(ϕ)− deg(1− ϕ) = 1 + q −#E(Fq) = a

Hence the characteristic polynomial of ϕℓ is

det(T − ϕℓ) = T 2 − tr(ϕℓ)T + det(ϕℓ) = T 2 − aT + q = (T − α)(T − β)

where the last equality comes from factoring over C since the coefficients a and q

are both in Z. For every rational number m/n ∈ Q, we have

det
(m
n
− ϕℓ

)
=

det(m− nϕℓ)

n2
=

deg(m− nϕ)
n2

≥ 0.

Because det(T − ϕℓ) ≥ 0 for all rationals Q, we have the quadratic polynomial
det(T − ϕℓ) = T 2 − aT + q ∈ Z[T ] is nonnegative for all T ∈ R = Q. Thus the
polynomial either has complex conjugate roots, or it has a double root. In either
case, we have |α| = |β|. Then from αβ = det(ϕℓ) = deg(ϕ) = q, we have |α||β| = q

and so |α| = |β| = √q as above. Similarly, for each integer n ≥ 1, the (qn)th-power
Frobenius endomorphism satisfies #E(Fqn) = ker(1 − ϕn) = deg(1 − ϕn) because
ϕn fixes only Fqn , i.e. it fixes only points with coordinates in Fqn . By putting ϕℓ in
Jordan normal form, we can see the characteristic polynomial of ϕn

ℓ will be given by
det(T − ϕn

ℓ ) = (T − αn)(T − βn). Therefore, we have

#E(Fqn) = deg(1− ϕn)

= det(1− ϕn
ℓ ) from Proposition 3.5.2

= 1− αn − βn + qn

Since α, β are the roots of 1 − aT + qT 2, the integer a determines what they
can be. So the formula #E(Fqn) = qn + 1 − αn − βn from Theorem 4.3.2 directly
implies the number of Fq-points in E fixes the number of Fqn-points for all n. This
is a special property of elliptic curves defined over finite fields.

Remark. Another way to see this is to look at the sequence

an = qn + 1−#E(Fqn), n ≥ 1.
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By convention let a0 = 2, then we have the recurrence relation

an+2 = a1an+1 − qan for all n ≥ 0.

To show this, let ϕℓ be the map the Frobenius morphism induces on the Tate module
Tℓ(E) of E. By Proposition 3.5.2, we have

tr(ϕn
ℓ ) = 1 + deg(ϕn)− deg(1− ϕn) = 1 + qn −#E(Fqn) = an.

Since ϕℓ is a 2 × 2 matrix (if we fix a Zℓ-basis for Tℓ(E)), let λ1, λ2 denote the
two (possibly identical) eigenvalues of ϕℓ. Then because the trace is the sum of
eigenvalues, we have

a1an+1 − qan = tr(ϕℓ)tr(ϕ
n+1
ℓ )− qtr(ϕn

ℓ )

= (λ1 + λ2)(λ
n+1
1 + λn+1

2 )− q(λn1 + λn2 )

= λn+2
1 + λn+2

2 + λ1λ
n+1
2 + λn+1

1 λ2 − q(λ1 + λ2)

= λn+2
1 + λn+2

2 + (λ1λ2 − q)(λ1 + λ2)

= tr(ϕn+2
ℓ ) + (det(ϕℓ)− q)(λ1 + λ2)

= an+2

because det(ϕℓ) = q, giving us the desired recurrence relation. This recurrence re-
lation also indicates all the subsequent an’s are fixed by a1, which we can obtained
from the number of points in E(Fq).

Theorem 4.3.3 (Weil Conjectures for E/Fq). Let E/Fq be an elliptic curve.
Then there is an a ∈ Z such that

Z(E/Fq;T ) =
1− aT + qT 2

(1− T )(1− qT )
.

Furthermore,
Z(E/Fq; 1/(qT )) = Z(E/Fq;T )

and
1− aT + qT 2 = (1− αT )(1− βT )

with |α| = |β| = √q.
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Proof. By definition of zeta function, we have

log(Z(E/Fq;T )) =
∞∑
n=1

(#E(Fqn))
T n

n

=
∞∑
n=1

(1− αn − βn + qn)T n

n
by Theorem 4.3.2

= − log(1− T ) + log(1− αT )
+ log(1− βT )− log(1− qT ).

The last line follows from the Taylor series of log(1 + x). Therefore we have

Z(E/Fq;T ) =
(1− αT )(1− βT )
(1− T )(1− qT )

=
1− aT + qT 2

(1− T )(1− qT )
.

The functional equational above is satisfied as follows:

Z(E/Fq; 1/(qT )) =
1− a(1/(qT )) + q(1/(qT )2)

(1− (1/(qT )))(1− q(1/(qT )))

=
1− a(1/(qT )) + q(1/(qT )2)

(1− (1/(qT )))(1− (1/(T )))

=
T 2 − a(1/q)T + (1/q)

(T − (1/q))(T − 1)

=
qT 2 − aT + 1

(qT − 1)(T − 1)

=
qT 2 − aT + 1

(1− qT )(1− T )
= Z(E/Fq;T ).

The last assertion of the theorem also comes directly from Theorem 4.3.2.

Remark. Note that the numerator of Z(E/Fq;T ), 1− aT + qT 2, is a polynomial
of degree 2. This is precisely double of the genus of a torus, which every elliptic
curve is isomorphic to over C. [Sil09, Chapter VI, §5, Corollary 5.1.1] This is not
just a mere coincidence. In fact, the degree of the polynomial in the numerator is
the first Betti number of the torus, which, for a closed orientable surface, is double
of its genus. This is also part of the more general Weil Conjectures for projective
algebraic varieties.

The remark above illustrates why the Weil Conjectures are so interesting. There
are seemingly deep connections between the physical (or geometrical) properties of
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a curve, which in our case is the topology of the complex points on a variety V , and
the number theoretic properties, the number points of variety V over finite fields.

4.4 L-function

Let K be a local field, complete with respect to a discrete valuation v. Let R be the
ring of integers of K. Let M be the unique maximal ideal of R and k = R/M be
the residue field of R.

There are many possible Weierstrass equations for an elliptic curve E. We want
to choose one such that the reduction properties over maximal idealM is as good as
possible. The idea is to minimize the “zeroness” of the discriminant with respect to
the maximal ideal we are reducing by, i.e. we want to minimize the discriminant with
respect to the given valuation v. We call such an equation a minimal Weierstrass
equation for E at v.

Definition 4.4.1. Let E/K be an elliptic curve and v be the valuation. A Weier-
strass equation for E is called minimal (Weierstrass) equation for E at v if
v(∆) is minimized subject to a restriction on the coefficients a1, a2, a3, a4, a6 ∈ R.

In the case of E/Q and reduction over p, we want to pick a Weierstrass equation
such that the cubic has the largest obtainable number of distinct roots mod p and
the power of p in the discriminant ∆ is as small as possible for each p. The existence
of a minimal Weierstrass equation is guaranteed by the discreteness of the valuation
v.

Proposition 4.4.2. Every elliptic curve E/K has a minimal Weierstrass equation.

Here we define the good and bad reduction of an elliptic curve.

Definition 4.4.3. Let E/K be an elliptic curve, and let Ẽ be the reduction modulo
M of a minimal Weierstrass equation for E. Then

• E has good (or stable) reduction if Ẽ is nonsingular.

• E has multiplicative (semistable) reduction if Ẽ has a node.

• E has additive (or unstable) reduction if Ẽ has a cusp.

For multiplicative reduction, it is called split if the slopes of the tangent lines at the
node of Ẽ are in k, non-split otherwise.
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Figure 4.1: Two singular curves. [Sil09, Chapter III, §1, Figure 3.2]

Remark. Cusp means there is one tangent direction at the singular point and node
means there are two distinct tangent direction at the singular point, as shown in
Figure 4.1.

Example 4.4.4. [Was08, Section 14.2, Example 14.1]
Suppose we start with the Weierstrass equation

y2 = x3 − 270000x+ 128250000.

The discriminant of this cubic is −2831251211, so E has good reduction everywhere
except possibly at 2, 3, 5, 11. Let us apply the change of variables x = 25x1, y = 125y1,
which transforms the equation into

y21 = x31 − 432x1 + 8208.

The discriminant of this new cubic is −2831211, so this indicates E also has good
reduction at 5. Now, a second change of variables x1 = 9x2 − 12, y1 = 27y2 will
change the equation to

y22 = x32 − 4x22 + 16.

The discriminant of this cubic is −2811, thus E has good reduction at 3. A final
change of variables x2 = 4x3, y2 = 8y3 + 4 will change the equation of E to

y23 + y3 = x33 − x23.
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This is nonsingular at 2 since the partial derivative with respect to y

2y + 1 ≡ 1 ̸≡ 0 mod 2

is nonzero. Therefore, E has good reduction at 2. If we look at the discriminant
of the cubic, it is −11. Since any change of variables can be shown to change
the discriminant by a square, the last equation is actually a minimal Weierstrass
equation for E at all of the finite places (look at the discriminant), and thus is the
minimal Weierstrass equation. Looking at the situation at 11 a bit more closely, we
see the polynomial in x2 factors as

x32 − 4x22 + 16 ≡ (x2 + 1)2(x2 + 5) mod 11.

Because of the 2 in the exponent of (x + 1), we know the singular point is going to
be at x = −1, and hence y = 0, and it is going to be a node. To find the tangents at
the singular point, look at the line given by y = mx + c. For it to past through the
curve at the point (−1, 0), we need to have c = m. Substituting y = mx +m into
the equation y2 = x3 − 4x2 + 5, we get

m2x2 + 2m2x+m2 = x3 − 4x2 + 5 (4.1)

=⇒ x3 + (−m2 − 4)x2 − 2m2x+ 5−m2 = 0. (4.2)

To be a tangent line to the elliptic curve at (−1, 0), it needs to intersect the curve to
order 3, in other words the polynomial 4.2 needs to have a zero of order 3 at x = −1,
i.e.

x3 + (−m2 − 4)x2 − 2m2x+ 5−m2 ≡ (x+ 1)3 mod 11.

Expanding the right hand side and matching the coefficients give us m2 ≡ 4 mod 11.
So the slopes of the tangents at (−1, 0) are ±2 which is in F11. Therefore, E has
split multiplicative reduction at 11.

Definition 4.4.5.

Lp(T ) =


1− apT + pT 2, if E has good reduction at p,

1− T, if E has split multiplication reduction at p,

1 + T, if E has non-split multiplication reduction at p,

1, if E has additive reduction at p,

where ap = p+ 1−#E(Fp).
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Definition 4.4.6 (L-function of an Elliptic Curve E over Q).

L(s, E) =
∏
p

1

Lp(p−s)

where the product is over all primes p.

Remark. It can also be defined through combining all of the numerators of the zeta
function for E for all prime p, i.e.

L(s, E) =
∏
p

1

num(Z(E/Fq; p−s))

We can expand the L-function into a Dirichlet series∑
n=1

bn
ns
.

To find bn, we look closer at the product in Definition 4.4.6∏
p

1

Lp(p−s)
=

∏
p good

1

1− app−s + p−2s+1
×

∏
p additive

1

×
∏

p split multiplicative

1

1− p−s
×

∏
p non-split multiplicative

1

1 + p−s

=
∏

p good

1

(1− αpp−s)(1− βpp−s)
×

∏
p additive

1

×
∏

p split multiplicative

1

1− p−s
×

∏
p non-split multiplicative

1

1 + p−s

because 1−apT + qT 2 = (1−αpT )(1−βpT ) by Theorem 4.3.3 for all p. Each linear
factor in the denominator can be expanded as a geometric series

1

1− γp−s
=

∞∑
k=0

(γp−s)k,
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thus we have

∞∑
n=1

bn
ns

=
∏

p good

(1 + αpp
−s + α2

pp
−2s + · · · )(1 + βpp

−s + β2
pp

−2s + · · · )

×
∏

p additive

1×
∏

p split multiplicative

(1 + p−s + p−2s + · · · )

×
∏

p non-split multiplicative

(1− p−s + p−2s − · · · )

(4.3)

So finding bn boils down to finding how many ways we can form 1/ns. First, we
observe for m,n ∈ Z≥1 such that gcd(m,n) = 1, none of the primes in m will
contribute to 1/ns and vice versa. Therefore, the number of ways to form 1/(mn)s

is equal to the product of the ways to form 1/ns and 1/ms. In other words,

bmn = bmbn if gcd(m,n) = 1,

i.e. the sequence {bn} is multiplicative. So it suffices to describe b1 and bpr for all
primes p and r ∈ Z≥1.

It is clear that b1 = 1 from (4.3). For each prime p, the number bpr can be
determined entirely from the corresponding Euler factor

1

Lp(p−s)
=

∞∑
r=0

bpr

(pr)s
.

1. If p is a prime of additive reduction, then bpr = 0 for all r ∈ Z≥1.

2. If p is a prime of split multiplicative reduction, then bpr = 1 for all r ∈ Z≥1.

3. If p is a prime of non-split multiplicative reduction, then bpr = (−1)r for all
r ∈ Z≥1.

4. If p is a prime of good reduction, then b1 = 1, bp = ap, and the rest follows
from the following recurrence relation

bpr = bpbpr−1 − pbpr−2 for r ≥ 2.

To see this, let

∞∑
r=0

bpr

(pr)s
= (1 +

αp

ps
+
α2
p

p2s
+ · · · )(1 + βp

ps
+
β2
p

p2s
+ · · · ) (4.4)
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where 1 − apT + qT 2 = (1 − αpT )(1 − βpT ). With αpβp = p and αp + βp = ap, we
can expand the RHS of (4.4) to get

bp = αp + βp = ap

bp2 = α2
p + αpβp + β2

p = (αp + βp)
2 − αpβp = a2p − p

bp3 = α3
p + α2

pβp + αpβ
2
p + β3

p = (αp + βp)
3 − 2αpβp(αp + βp) = a3p − 2pap

...

We observe that

bpr =
r∑

m=0

αr−m
p βm

p .

With the identity

r∑
m=0

αr−m
p βm

p = (αp + βp)
r−1∑
m=0

αr−1−m
p βm

p − αpβp

r−2∑
m=0

αr−2−m
p βm

p ,

we have the recursion pattern

bpr = bpbpr−1 − pbpr−2 for r ≥ 2,

with b1 = 1 and bp = ap.

Remark. Note the recursion pattern can also be deduced from looking at the be-
haviour of the coefficient of a Hecke eigenform. Refer to Chapter 5 for more details,
in particular Subsection 5.2.3 and Theorem 5.4.2.

To show convergence of the Euler product/Dirichlet series in a half plne, we first
state the following proposition:

Proposition 4.4.7. [Hus10, Chapter 11, §6, Corollary 6.5]
A quadratic Euler product ∏

p

1

1− app−s + pc−2s

converges for Re(s) > 1 + c/2 when |ap| ≤ 2pc/2 for each p.

With Proposition 4.4.7, convergence of the L-function L(s, E) in the half plane
Re(s) > 3/2 follows directly from Hasse’s bound [Theorem 4.2.2].
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Example 4.4.8. Going back to the elliptic curve E/Q in Example 4.4.4 given by
the Weierstrass equation

y2 + y = x3 − x2.

We have established that it has good reduction everywhere except at p = 11, where it
has split multiplicative reduction. So its L-function looks like

L(s, E) =
∏
p ̸=11

1

1− app−s + p1−2s
× 1

1− (11)−s
.

When expanded, it will have the form

L(s, E) =
1

1s
− 2

2s
− 1

3s
+

2

4s
+

1

5s
+

2

6s
− 2

7s
− 2

9s
− 2

10s
+

1

11s
+ · · ·

To preface the next section on modular forms, we state the following fact. The
following complex-valued function on the upper half plane H

q − 2q2 − q3 + 2q4 + q5 + 2q6 − 2q7 − 2q9 − 2q10 + q11 + · · ·

where q = e2πiτ/11, τ ∈ H, is a modular form. In fact, it is a cusp form. Notice how
the first few coefficients of the modular form and the L-function from Example 4.4.8
are matching up. Further calculations to higher precision will still match up. In
fact, they will always match up. Several more examples of these pairings of elliptic
curves and modular forms will give us the following questions: Can we always create
a modular form from the L-function of an elliptic curve? And conversely, does every
modular form have a corresponding elliptic curve such that the coefficients of the
modular form “matches” with the coefficients of the L-function?
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Chapter 5

Application of Modularity

Notation: H = {τ ∈ C | Im(τ) > 0}

5.1 Modular Forms

5.1.1 Congruence subgroups

We begin with the congruence subgroups of SL2(Z). Let

Γ(N) :=

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣∣
[
a b

c d

]
≡

[
1 0

0 1

]
mod N

}

denote the principal congruence subgroup of level N .

Definition 5.1.1. A subgroup Γ of SL2(Z) is a congruence subgroup if Γ(N) ⊆ Γ

for some N ∈ Z+. We call such a subgroup Γ a congruence subgroup of level N if
N is minimal such that Γ(N) ⊆ Γ.

Remark. Since
[SL2(Z) : Γ(N)] = N3

∏
p|N

(1− 1

p2
),

this gives us many subgroups of finite index. Note, not all subgroups of finite index
are congruence subgroups, this is known as the congruence subgroup problem.

Here are some important examples of congruence subgroups.

Example 5.1.2.

Γ0(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣∣
[
a b

c d

]
≡

[
∗ ∗
0 ∗

]
mod N

}
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Γ1(N) =

{[
a b

c d

]
∈ SL2(Z)

∣∣∣∣∣
[
a b

c d

]
≡

[
1 ∗
0 1

]
mod N

}
For these congruence subgroups, we have the following inclusion,

Γ(N) ⊆ Γ1(N) ⊆ Γ0(N) ⊆ SL2(Z).

5.1.2 Modular Forms

The group GL+
2 (R) acts on the upper half plane H in the following way, for each

γ = [ a b
c d ] ∈ GL+

2 (R) and τ ∈ H, we have

γ(τ) =
aτ + b

cτ + d
.

Definition 5.1.3. Let γ ∈ GL+
2 (R) and k be an integer. We define the weight-k

operator [γk] on functions f : H → C as follows:

(f [γ]k)(τ) = (det(γ))k/2(cτ + d)−kf(γ(τ)), ∀τ ∈ H.

Remark. Since (cτ + d) is never zero or infinity on H, if f is meromorphic, then
f [γ]k is also meromorphic and has the same zeros and poles as f .

Definition 5.1.4. A meromorphic function f on H is weakly modular of weight
k with respect to Γ if

f(τ) = (cτ + d)−kf(γ(τ)) = (f [γ]k)(τ), ∀τ ∈ H, γ ∈ Γ.

In other words, it is weight-k invariant under the congruence subgroup Γ. Do note
det(γ) = 1 for all γ ∈ Γ.

Definition 5.1.5. Let k be an integer and Γ be a congruence subgroup of SL2(Z).
A function f : H → C is a modular form of weight k with respect to Γ if f
satisfies all of these properties:

• f is holomorphic on H.

• f is weight-k invariant under Γ.

• f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

It is common to call f a modular form of level N when Γ is a congruence subgroup
of level N .
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Remark (Holomorphic at ∞). Since Γ(N) contains the translation matrix[
1 N

0 1

]
: τ 7→ τ +N,

every meromorphic function f : H → C that is weight-k invariant with respect to Γ

is NZ-periodic. Let D = {q ∈ C | |q| < 1} be the open complex unit disk, and let
D′ = D − {0} be the punctured disk. Then

H → D′, τ 7→ e2πiτ/N

is an NZ-periodic map. So the function g corresponding to f , defined as follows

g : D′ → C, g(q) = f(N log(q)/(2πi))

is well defined even though the logarithm is determined only up to 2πiZ.
Since f is holomorphic on the upper half plane, the composition g is then holo-

morphic on the punctured disk since the logarithm can be defined holomorphically
about each point, and so g has a Laurent expansion g(q) =

∑
n∈Z anq

n for q ∈ D′.
The relation |q| = e−2πIm(τ) shows that q → 0 as Im(τ) →∞. So we define f to be
holomorphic at ∞ if the corresponding g extends holomorphically to the punc-
ture point q = 0, or equivalently, the Laurent series sums over non-negative integers
n ∈ N. From this, we also get that a modular form f of weight k with respect to a
congruence subgroup Γ of level N has a Fourier expansion at ∞

f(τ) =
∞∑
n=0

an(f)q
n, q = e2πiτ/N , an(f) ∈ C.

Usually we omit the f and simplify an(f) to an.

Example 5.1.6 (Eisenstein series). The Eisenstein series G2k is given by

G2k(τ) = 2ζ(2k) +
2(2πi)2k

(2k − 1)!

∞∑
n=1

σ2k−1(n)q
n

where σl(n) =
∑

0<d|n d
l is the sum of the l-th powers of the positive divisors of n,

and q = e2πiτ . It is a family of modular forms of even weight 2k with respect to the
modular group SL2(Z).

Definition 5.1.7. A cusp form of weight k with respect to Γ is a modular form of
weight k with respect to Γ whose Fourier expansion at any cusp has leading coefficient
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a0 = 0, i.e.

f(τ) =
∞∑
n=1

an(f)q
n, q = e2πiτ/N .

Example 5.1.8 (Modular discriminant). The modular discriminant form ∆ is de-
fined as follows

∆(τ) = −16(4(−15G4(τ))
3 + 27(−35G6(τ))

2).

This is a modular form of weight 12 for SL2(Z) = Γ(1), therefore it is of level 1.
∆(τ) has a simple zero at ∞ and no other zeros. The q-expansion of ∆ is

q − 24q2 + 252q3 − 1472q4 + 4830q5 − 6048q6 − 16744q7 + 84480q8 + · · ·

[LMFDB, Modular Form 1.12.a.a]. Evidently from the q-expansion, the modular
discriminant ∆ is a cusp form.

The set of modular forms of weight k with respect to Γ is denoted Mk(Γ) and
the subset of cusp forms of weight k with respect to Γ is denoted with Sk(Γ). They
are both finite-dimensional C-vector spaces, with Sk(Γ) forming a C-linear subspace
ofMk(Γ). [Zag08, Chapter 1, §3, Proposition 3]

Definition 5.1.9. A modular form is said to be normalised if the first nonzero
coefficient of its q-expansion is equal to 1.

Proposition 5.1.10. Let k ≥ 2 and let Γ be a congruence subgroup. Let Γ′ be
another congruence subgroup contained in Γ. Then any modular form f of weight
k for Γ is also a modular form of the same weight for Γ′. Therefore, Mk(Γ) is a
C-linear subspace of Mk(Γ

′) and Sk(Γ) ⊆ Sk(Γ′).

LetN ≥ 1 andM be a positive divisor ofN . Then Γ(N) ≤ Γ(M). So Proposition
5.1.10 implies the Mk(Γ(M)) ⊆ Mk(Γ(N)). Also, suppose that N = MM ′ , where
1 < M,M ′ < N so that M and M ′ are proper divisors of N , and g(τ) ∈Mk(Γ(M)).
Then, we can show that f(τ) := g(M ′τ) ∈ Mk(Γ(N)). To see this, let γ ∈ Γ(N).
Then by definition, [

a b

c d

]
≡

[
1 0

0 1

]
mod N.

Since M is a proper divisor of N , it implies[
a b

c d

]
≡

[
1 0

0 1

]
mod M,

https://www.lmfdb.org/ModularForm/GL2/Q/holomorphic/1/12/a/a/
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i.e. γ ∈ Γ(M). So, we have

f [γ]k(τ) = (cτ + d)−kf(γ(τ))

= (cτ + d)−kg(M ′γ(τ))

= (cτ + d)−kg

(
a(M ′τ) +M ′b

cτ + d

)
= (

c

M ′ (M
′τ)τ + d)−kg

(
a(M ′τ) +M ′b
c

M ′ (M ′τ)τ + d

)
=

(
g

[
a M ′b

c/M ′ d

]
k

)
(M ′τ)

= g(M ′τ) = f(τ)

because
[

a M ′b
c/M ′ d

]
∈ Γ(M) and g ∈ Mk(Γ(M)), thus weight-k invariant under

Γ(M).

Definition 5.1.11. Let N, k ≥ 1 be integers. A modular form of weight k for Γ(N)

is said to be an old form if:

(a) There are some positive divisor M of N such that f(z) is a modular form in
the space Mk(Γ(M)); or,

(b) N =MM ′ and f(z) = g(M ′z), for some g ∈Mk(Γ(M)); or,

(c) f(z) is a C-linear combination of forms of (a) and (b).

The C-linear subspace spanned by the set of all old forms of Mk(Γ(N)) is usually
denoted by M old

k (Γ(N)). We also define Sold
k (Γ(N)) :=M old

k (Γ(N))∩Sk(Γ(N)) to be
the space of all old cusp forms.

5.1.3 Petersson Inner Product

Let Γ be a congruence subgroup and D be a fundamental domain of Γ. Let D∗

denote a fundamental domain of SL2(Z), then D is the union of (almost disjoint)
translates of D∗:

D =
⋃
j

αjD
∗

where {αj} is a set of coset representatives for (±1 · Γ)\SL2(Z).
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Let X(Γ) = Γ\H. Let ϕ : H → C be a function on the upper half plane. If ϕ is
Γ-invariant, we may then define the integral of ϕ on X(Γ) as:∫

X(Γ)

ϕ(τ)dµ(τ) =
∑
j

∫
αjD∗

ϕ(τ)dµ(τ) =
∑
j

∫
D∗
ϕ(αj(τ))dµ(αj(τ))

=
∑
j

∫
D∗
ϕ(αj(τ))dµ(τ).

Since ϕ is Γ-invariant, the last term in the above equality shows that the definition is
independent of the choice of coset representatives. So we may calculate the covolume
of Γ as follows:

covol(Γ) =

∫
X(Γ)

dµ(τ) = [PSL2(Z) : Γ]covol(SL2(Z)) =
π

3
[PSL2(Z) : Γ].

Let f, g ∈ Sk(Γ) be two cusp forms for Γ of weight k, and set ϕ(τ) = f(τ)g(τ)Im(τ)k.
We then have the following lemma:

Lemma 5.1.12. The function ϕ is Γ-invariant, and for all α ∈ SL2(Z), the translate
ϕ(α(τ)) is bounded on D∗.

Proof. For γ ∈ Γ, we have

ϕ(γ(τ)) = f(γ(τ))g(γ(τ))Im(γ(τ))k

= (cτ + d)kf(τ)(cτ + d)kg(τ)|cz + d|−2kIm(τ)k

= ϕ(τ).

For α ∈ SL2(Z), we have

ϕ(α(τ)) = f(γ(τ))g(γ(τ))Im(γ(τ))k

= f [α]kg[α]kIm(τ)k

= O(q)O(q)yk = O(|q|2yk),

where y = Im(τ) and q comes from the q expansions of f and g. So this approaches
0 as y approaches infinity, because q = e2πiτ/k = e2πi(x+iy)/k. This gives the bound-
edness in the lemma.

This lemma allows us to define an inner product on the spaces of cusp forms:
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Definition 5.1.13. The Petersson inner product of f and g is:

⟨f, g⟩Γ =
1

covol(Γ)

∫
X(Γ)

f(τ)g(τ)Im(τ)kdµ(τ).

Remark. The reason to divide by covol(Γ) is that if we have two congruence sub-
groups such that Γ ⊆ Γ′, then

⟨f, g⟩Γ = ⟨f, g⟩Γ′ .

Remark. For the above integral to converge, it is enough to just have one of f or g
be a cusp form. Therefore it is well-defined to extend it to an inner product between
a modular form and a cusp form. So we can still define the orthogonal complement
of Sk(Γ) in the space of modular forms Mk(Γ):

Ek(Γ) = {f ∈Mk(Γ) | ⟨f, g⟩k = 0 ∀g ∈ Sk(Γ)},

this is called the Eisenstein space ofMk(Γ). As the name suggests, this is the space
of Eisenstein series. In other words, the space of modular forms can be broken down
into a direct sum of cusp forms and Eisenstein series.

Here we define the orthogonal complement of the old forms Sold
k (Γ(N)) in the

space Sk(Γ(N)):

Definition 5.1.14. Let N, k ≥ 1. Let Sold
k (Γ(N)) be the subspace of Sk(Γ(N))

of old forms. We define a new subspace of new forms, denoted Snew
k (Γ(N)) as

the orthogonal complement of Sold
k (Γ(N)) in Sk(Γ(N)) with respect to the Petersson

inner product, i.e.

Snew
k (Γ(N)) := Sold

k (Γ(N))⊥

= {f(z) ∈ Sk(Γ(N)) | ⟨f(z), g(z)⟩ = 0 for all g ∈ Sold
k (Γ(N))}

5.2 Hecke Operators

5.2.1 WN operators

Define the operator WN onMk(Γ1(N)) as follows:

WN :Mk(Γ1(N))→Mk(Γ1(N)),

f 7→ ikN1−k/2f [[ 0 −1
N 0 ]]k = ikN−k/2τ−kf(−1/(Nτ)).
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Proposition 5.2.1. [Loz11, Chapter 4, §4, Proposition 4.4.2] Let N, k ≥ 1 and let
f(τ) ∈ Sk(Γ0(N)). Then

• WN(f) is also a modular form in Sk(Γ0(N));

• WN is C-linear; and

• The square of WN is the identity, i.e. WN(WN(f)) = f .

We will use the operator WN to decompose the space Sk(Γ0(N)) in later subsec-
tions.

5.2.2 Diamond operators ⟨δ⟩
Let δ ∈ Z be fixed. Let M = [ a b

c d ] ∈ Γ0(N) such that d ≡ δ mod N .
The diamond operator ⟨δ⟩ is a linear map

⟨δ⟩ :Mk(Γ1(N))→Mk(Γ1(N)), (5.1)

(⟨δ⟩f)(z) = (cz + d)−kf(Mz). (5.2)

The definition of ⟨δ⟩ does not depend on the choice of M , thus ⟨δ⟩ is determined
by the value δ mod N . In other words, there are N distinct diamond operators, one
for each value 0, 1, . . . , N − 1. Note that ⟨1⟩f = f because we can pick M = id.

Here are some properties of the diamond operator ⟨δ⟩.

Proposition 5.2.2. Let N, k ≥ 1 be fixed integers and let δ, δ′ ∈ Z be integers with
(δδ′, N) = 1. Then

⟨δ′⟩(⟨δ⟩f) = ⟨δ⟩(⟨δ′⟩f) = ⟨δ′δ⟩f.

In particular, ⟨δ⟩ϕ(N) = ⟨1⟩ = id and the eigenvalues of ⟨δ⟩ must be roots of unity
of order dividing ϕ(N), where ϕ is the Euler phi function. Proposition 5.2.2 also
shows the diamond operators with gcd(δ,N) = 1 form a group under multiplication.

Let µϕ(N) be the set of all roots of unity of order dividing ϕ(N). Then for
each δ ∈ Z and every ξ ∈ µϕ(N), there is an eigenspace of Mk(Γ1(N)) formed
by eigenvectors of ⟨δ⟩ with eigenvalues ξ. There is also another decomposition of
Mk(Γ1(N)) with respect to the diamond operator ⟨δ⟩.

Proposition 5.2.3. Let N, k ≥ 1 be fixed integers. For every group homomorphism
χ : (Z/NZ)× → C×, i.e. a character, we define the subspace:

Mk(N,χ) = {f ∈Mk(Γ1(N)) | ⟨δ⟩f = χ(δ)f for all δ ∈ (Z/NZ)×}.
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Then we have Mk(Γ1(N)) =
⊕

χMk(N,χ), where the direct sum is over all possible
characters χ of (Z/NZ)×.

Remark. If χ0 is the trivial character, i.e. χ0(δ) = 1 for all (δ,N) = 1, then
Mk(N,χ0) =Mk(Γ0(N)).

5.2.3 Tn operators

Let f(τ) ∈Mk(N,χ) and suppose that f(τ) has the q-expansion f(τ) =
∑

n≥0 anq
n

where q = e2πiτ . Let p ≥ 2 be a prime.
We define the operator Tp as follows:

Tp(f)(τ) =
1

p

p−1∑
j=0

f(
τ + j

p
) + χ(p)pk−1f(pτ)

where χ(p) = 0 if N ≡ 0 mod p. Equivalently, we can define Tp(f) to be

Tp(f)(τ) =
∑
n≥0

bnq
n

with bn = apn + χ(p)pk−1an/p where an/p = 0 if n ̸≡ 0 mod p. Then we define the
general Tn operators for n ≥ 1 as follows:

• If n = pr where r ≥ 1 and p | N , then:

Tpr = (Tp)
r,

where the product means Tp composed with itself r times.

• If n = pr and p ∤ N , then Tpr can be calculated with the recurrence relation:

Tp · Tpr = Tpr+1 + pk−1⟨p⟩Tpr−1 .

• If (n,m) = 1, then:

Tnm(f) = (Tn · Tm)(f) = (Tm · Tn)(f) = Tm(Tn(f)).

There are numerous equivalent ways to define the Hecke operators. It can either
be defined as above, or as a function on lattices, or as a double coset operator.
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Each Hecke operator Tn defines a linear map

Tn :Mk(N,χ)→Mk(N,χ).

What might be surprising is there are modular forms that are eigenvectors for all of
the Hecke operators.

Definition 5.2.4. Let f ∈ Mk(N,χ) ⊆ Mk(Γ1(N)). We say f is an eigenform if
f is an eigenvector for all Hecke operators Tn, n ≥ 1, i.e. there exists λn ∈ C such
that

Tn(f) = λnf ∀n ≥ 1.

Theorem 5.2.5. Let k ≥ 1 and suppose that f is an eigenform in the space
Mk(N,χ) ⊆ Mk(Γ1(N)), with Tn(f) = λnf for all n ≥ 1. Suppose further that
f has a q-expansion of the form f(τ) =

∑
n≥0 anq

n, then:

1. a1 ̸= 0 and an = λna1 for all n ≥ 1, and

2. if a0 ̸= 0 [i.e. not a cusp form], then the eigenvalues are given by the formula

λn =
∑
d|n

χ(d)dk−1.

Definition 5.2.6. An eigenform f ∈ Mk(N,χ) ⊆ Mk(Γ1(N)) is said to be nor-
malised if a1 = 1.

Proposition 5.2.7. Let f ∈ Mk(N,χ) be a modular form with Fourier expansion
f(τ) =

∑∞
n=0 anq

n. Then f is a normalised eigenform if and only if its Fourier
coefficients satisfy:

i. a1(f) = 1.

ii. apr(f) = ap(f)apr−1(f)− χ(p)pk−1apr−2(f) for all primes p and r ≥ 2.

iii. amn(f) = am(f)an(f) when (m,n) = 1.

Proof. [DS05, Chapter 5, §8, Proposition 5.8.5]

Theorem 5.2.8. [Loz11, Chapter 4, §4, Theorem 4.4.15] The spaces of modular
forms Snew

k (Γ1(N)) and Sold
k (Γ1(N)) are stable under WN , the diamond operators,

and Tn for all n ≥ 1.
Furthermore, the space Snew

k (Γ1(N)) has orthonormal basis that consists of new
normalised eigenforms for the Hecke operators WN and Tn, for all n ≥ 1.
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Definition 5.2.9. A normalised eigenform f that is one of the elements of an
orthonormal basis of the space Snew

k (Γ1(N)) is called a newform, not to be confused
with the new forms defined in Definition 5.1.14.

5.3 L-function of a Cusp Form

Each cusp form f ∈ Sk(Γ1(N)) has an associated Dirichlet series, its L-function.
Let f have the Fourier expansion f(τ) =

∑∞
n=1 anq

n where q = e2πiτ , and s ∈ C be
a complex variable. Then we define the associated L-function to be the formal sum

L(s, f) =
∞∑
n=1

ann
−s.

Theorem 5.3.1. Let f ∈ Sk(N,χ) be a cusp form with Fourier expansion f(τ) =∑∞
n=1 anq

n. Then f is a normalised eigenform if and only if L(s, f) has an Euler
product expansion

L(s, f) =
∏
p

(1− app−s + χ(p)pk−1−2s)−1

where the product is taken over all primes p.

Proof. By Proposition 5.2.7, it is equivalent to showing the Fourier coefficients of f
satisfy the three conditions if and only if its corresponding L-function L(s, f) has an
Euler product expansion. We start by showing conditions (i) and (ii) in Proposition
5.2.7 is equivalent to

∞∑
r=0

aprp
−rs =

1

1− app−s + χ(p)pk−1−2s
(5.3)

for prime p. Fix a prime p, then multiplying condition (ii) in Proposition 5.2.7 by
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p−rs and summing over r ≥ 2, we get

apr(f) = ap(f)apr−1(f)− χ(p)pk−1apr−2(f) , ∀r ≥ 2

⇐⇒ apr(f)p
−rs = ap(f)apr−1(f)p−rs − χ(p)pk−1apr−2(f)p−rs , ∀r ≥ 2

⇐⇒
∑
r≥2

apr(f)p
−rs =

∑
r≥2

(ap(f)apr−1(f)p−rs − χ(p)pk−1apr−2(f)p−rs)

⇐⇒
∑
r≥2

apr(f)p
−rs =

∑
r≥1

ap(f)apr(f)p
−(r+1)s −

∑
r≥0

χ(p)pk−1apr(f)p
−(r+2)s

⇐⇒ a1 + app
−s − apa1p−s =

∞∑
r=0

aprp
−rs · (1− app−s + χ(p)pk−1−2s)

which gives us

∞∑
r=0

aprp
−rs · (1− app−s + χ(p)pk−1−2s) = a1 + (1− a1)app−s. (5.4)

If also condition (i) in Proposition (5.2.7), i.e. a1(f) = 1, holds, then the equality
becomes

∞∑
r=0

aprp
−rs · (1− app−s + χ(p)pk−1−2s) = 1 + (1− 1)app

−s = 1,

i.e. (5.3) holds. Conversely, suppose (5.3) holds. The let s → +∞. We then see
LHS = a1, thus a1 = 1. This also implies (5.4), which implies condition (ii) if we
go back up the ladder of equivalent statements above. This gives us the desired
equivalence. Note that the Fundamental Theorem of Arithmetic implies that for a
function g of prime powers, we have

∏
p

∞∑
r=0

g(pr) =
∞∑
n=1

∏
pr||n

g(pr), (5.5)

where pr||n means that pr is the highest power of p that divides n, assuming g is
small enough for formal rearrangements. Now, if (5.4) holds along with condition
(iii), then we can compute
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L(s, f) =
∞∑
n=1

ann
−s =

∞∑
n=1

∏
pr||n

apr

n−s by condition (iii),

=
∞∑
n=1

∏
pr||n

apr(p
r)−s prime factorisation of n,

=
∏
p

∞∑
r=0

aprp
−rs by (5.5),

=
∏
p

(1− app−s + χ(p)pk−1−2s)−1 by (5.4),

giving the Euler product expansion. Conversely, suppose we were given the Euler
product expansion. Then we can compute using geometric series formula and 5.5

L(s, f) =
∏
p

(1− app−s + χ(p)p1−k−2s)−1 =
∏
p

(1− p−s(ap + χ(p)p1−k−s))−1

=
∏
p

∞∑
r=0

bp,r(p
−s)r for some {bp,r},

=
∞∑
n=1

∏
pr||n

bp,rp
−rs

=
∞∑
n=1

∏
pr||n

bp,r

n−s.

By matching the coefficients of n−s, we have an =
∏

pr||n bp,r. This gives condition
(iii) by Fundamental Theorem of Arithmetic and shows bp,r = apr . This in turn
implies

∞∑
r=0

aprp
−rs =

1

1− app−s + χ(p)pk−1−2s
.

5.3.1 Convergence of L-function of a Cusp Form in a Half-
plane

Convergence of L(s, f) in a half-plane can be shown by estimating the coefficients
an.
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Proposition 5.3.2. Let f ∈ Sk(Γ1(N)) be a cusp form. Then the associated L-
function L(s, f) converges absolutely for all s with Re(s) > k/2 + 1.

Proof. Let g(q) =
∑∞

n=1 be the Fourier expansion of f , which is a holomorphic
function on the open unit disk {q | |q| < 1}. By Cauchy’s Formula, we have

an =
1

2πi

∫
|q|=r

g(q)q−ndq

q
for any r ∈ (0, 1),

=

∫ 1

x=0

f(x+ iy)e−2πin(x+iy)dx for any constant y > 0, where q = e2πi(x+iy),

= e2π
∫ 1

x=0

f(x+ i/n)e−2πinxdx letting y = 1/n.

Since f is a cusp form, the value Im(τ)k/2|f(τ)| is bounded on the upper half plane
H, and so bounding the last integral with this inequality gives |an| ≤ Cnk/2. Since
|ann−s| = O(nk/2−Re(s)), the result follows because the Riemann zeta function con-
verges absolutely for Re(s) > 1.

5.3.2 Sk(Γ1(N))± Spaces

Recall the definition of the operator WN on Sk(Γ1(N)) as follows:

WN : Sk(Γ1(N))→ Sk(Γ1(N)),

f 7→ ikN1−k/2f [[ 0 −1
N 0 ]]k = ikN−k/2τ−kf(−1/(Nτ)).

This operator is an involution i.e. W 2
N = id (Proposition 5.2.1) and it is self-

adjoint
⟨WNf1, f2⟩ = ⟨f1,WNf2⟩ ∀f1, f2 ∈ Sk(Γ1(N))

where ⟨·, ·⟩ is the Petersson inner product. Since it is an involution, it will only have
±1 as eigenvalues. Let Sk(Γ1(N))+ and Sk(Γ1(N))− denote the eigenspaces

Sk(Γ1(N))± = {f ∈ Sk(Γ1(N)) | WNf = ±f}.

Then we get an orthogonal decomposition of Sk(Γ1(N)),

Sk(Γ1(N)) = Sk(Γ1(N))+ ⊕ Sk(Γ1(N))−.
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5.3.3 Analytic Continuation of L-function of a Cusp Form

Let f(τ) =
∑∞

n=1 anq
n ∈ Sk(Γ1(N)) be a cusp form of weight k. Its associated

L-function is L(s, f) =
∑∞

n=1 ann
−s and it is convergent for Re(s) > k/2 + 1.

The Mellin transform of a function h is

g(s) =

∫ ∞

t=0

h(it)ts
dt

t

for values of s such that the integral converges absolutely.

Proposition 5.3.3. The Mellin transform of f is

g(s) = (2π)−sΓ(s)L(s, f), Re(s) > k/2 + 1.

Let ΛN(s) = N s/2g(s). This function satisfies the following functional equation.

Theorem 5.3.4. Suppose f ∈ Sk(Γ1(N))±. Then the Mellin transform Λn(s) ex-
tends to an entire function satisfying the functional equation

ΛN(s) = ±ΛN(k − s).

Consequently, L(s, f) has an analytic continuation to the full s-plane.

So the L-function attached to a cuspidal Hecke eigenform has an Euler product
and an analytic continuation to C.

5.4 Modularity Theorem

Define the value fp as follows:

fp =


0, if E has good reduction at p,

1, if E has multiplicative reduction at p,

2, if E has additive reduction at p, and p ̸= 2, 3,

2 + δp, if E has additive reduction at p = 2, 3.

where δp is a technical invariant that described whether there is wild ramification
in the action of the inertia group at p of Gal(Q̄/Q) on the Tate module Tp(E).

Definition 5.4.1. The conductor NE/Q of E/Q is defined to be

NE/Q =
∏
p

pfp
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where the product is over all the primes and the exponents fp are defined as above.

Theorem 5.4.2 (Modularity Theorem). Let E be an elliptic curve over Q with
conductor NE. Then for some newform f ∈ S2(Γ0(NE)), we have

L(s, f) = L(s, E).
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Chapter 6

Birch and Swinnerton-Dyer
Conjecture

The first step to the Birch and Swinnerton-Dyer conjecture is the Mordell-Weil
theorem. Although it is proven in general for abelian varieties over a number field,
here we will restrict to the case of elliptic curves over the rationals Q.

6.1 Mordell-Weil Theorem over Q
Theorem 6.1.1 (Weak Mordell-Weil). Let E/Q be an elliptic curve. Let m ≥ 2 be
an integer, then

E(Q)/mE(Q)

is a finite group.

First, the following lemma allows us to assume E[m] ⊆ E(Q).

Lemma 6.1.2. [Sil09, Chapter 8, §1, Lemma 1.1.1] Let L/K be a finite Galois
extension and m ≥ 2 be an integer. If E(L)/m(L) is finite, then E(K)/mE(K) is
also finite.

Next, we define the Kummer Pairing.

Definition 6.1.3 (Kummer Pairing). The Kummer pairing is defined as follows:

κ : E(K)×GK̄/K → E[m]

(P, σ) 7→ Qσ −Q

where Q ∈ E(K̄) is any point satisfying [m]Q = P .
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The Kummer Pairing induces a perfect bilinear pairing:

E(K)

mE(K)
×GL/K → E[m]

where L = K([m]−1E(K)). Since E[m] is finite, the finiteness of E(K)/mE(K)

depends on the finiteness of GL/K , in other words the finiteness of the extension
L/K. [Sil09, Chapter 8.1, Proposition 1.6]

It can be shown that the extension L/K is abelian of exponent m and is un-
ramified outside of a certain finite set of absolute values on K. [Sil09, Chapter 8.1,
Proposition 1.5] Then by Kummer theory of fields, we can show L/K is a finite
extension as desired. This gives us Weak Mordell-Weil theorem. To prove E(Q)

is finitely generated, we need to employ the theory of heights. We start with the
following theorem:

Theorem 6.1.4 (Descent Theorem). Let A be an abelian group. Suppose that there
exists a (height) function

h : A −→ R

with the following three properties:

i. Let Q ∈ A. There is a constant C1, depending on A and Q, such that

h(P +Q) ≤ 2h(P ) + C1 for all P ∈ A.

ii. There are an integer m ≥ 2 and a constant C2, depending on A, such that

h(mP ) ≥ m2h(P )− C2 for all P ∈ A.

iii. For every constant C3, the set

{P ∈ A : h(P ) ≤ C3}

is finite.

Suppose further that for the integer m in (ii), the quotient group A/mA is finite.
Then A is finitely generated.

Proof. Since the quotient group A/mA is finite, we can pick a finite set of coset
representatives {Q1, . . . , Qr} ∈ A. Then for any P ∈ A, properties i and ii give
allow us to show the difference between P and an appropriate linear combination of
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Q1, . . . , Qr is a multiple of a point whose height is smaller than a constant that is
independent of P . Notice this collection is finite by property iii. So {Q1, . . . , Qr}
and a finite collection of points finitely generate all of A.

So we need to find a suitable height function:

Definition 6.1.5. Let t ∈ Q, then t = p
q

where p, q ∈ Z and gcd(p, q) = 1. Then
define height of t to be

H(t) = max{|p|, |q|}.

Then we define the logarithmic height on E(Q) to be

hx(P ) =

log(H(x(P ))) , P ̸= O,

0 , P = O,

where O is the point at infinity of E and x(P ) is the “x-coordinate” of P with respect
to a Weierstrass equation.

With the height function hx in Definition 6.1.5, by Theorem 6.1.1 and Theorem
6.1.4, we have

Theorem 6.1.6 (Mordell-Weil). Let E/Q be an elliptic curve. Then the group
E(Q) is finitely generated.

In other words, the Mordell-Weil theorem says that the Mordell-Weil group
E(Q) of an elliptic curve can be written in the form

E(Q) ∼= Etors(Q)× Zr,

where the r is called the algebraic rank of the elliptic curve.
The following theorem gives a characterisation of the possible torsion subgroups:

Theorem 6.1.7 (Mazur). [Maz77; Maz78] Let E/Q be an elliptic curve. Then
the torsion subgroup Etors(Q) of E(Q) is isomorphic to one fo the following fifteen
groups:

Z/NZ with 1 ≤ N ≤ 10 or N = 12,

Z/2Z× Z/2NZ with 1 ≤ N ≤ 4.

Further, each of these groups occurs as Etors(Q) for some elliptic curve E/Q.
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Eventhough the torsion subgroup Etors(Q) is well understood and relatively easy
to compute [Sil09, Chapter VIII §7], we still do not know a general way to determine
the rank of an elliptic curve. In fact, quite a lot is not known about this algebraic
rank, for example:

Conjecture 6.1.8. [Sil09, Chapter VIII, §10, Conjecture 10.1] There exists elliptic
curves E/Q of arbitrarily large rank.

One key piece of evidence is that the analogous statement for elliptic curves
over function fields Fp(T ) is true. [TS67] However, it is known that the rank of a
“randomly chosen” elliptic curve defined over Q will tend to be relatively small, in
fact the average rank is bounded by 7/6 [BS15].

6.2 Birch and Swinnerton-Dyer Conjecture

We can associate another important numerical to an elliptic curve E, known as its
analytic rank.

Definition 6.2.1. Let L(s, E) be the L-function associated to an elliptic curve E.
Then the analytic rank of the elliptic curve E is the order of vanishing of L(s, E)
at the central point s = 1.

Around late 1950s, Bryan John Birch and Peter Swinnerton-Dyer began a series
of computations on the EDSAC, the first practical general purpose electric computer
at the time. They calculated the zeta functions of certain elliptic curves and observed
coincidences that led them to the following conjecture outlined in their second paper,
“Notes on elliptic curves II”. [SB65]

Conjecture 6.2.2 (Birch and Swinnerton-Dyer). Let E/Q be an elliptic curve.
Then L(s, E) has a zero at s = 1 of order equal to the rank of E(Q), in other words
the analytic rank of E is equal to the algebraic rank of E.

So the Birch and Swinnerton-Dyer Conjecture asserts that the rank of an elliptic
curve E/Q can determined by its reductions at the primes p.

6.2.1 A Heuristic from Koblitz

To build intuition for the conjecture, consider the following heuristic by Koblitz.
[Kob05, Chapter II, §6] We start by pretending the Euler product L(s, E) converges
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at s = 1. Therefore we have

L(1, E) =
∏
p

1

1− app−s + p1−2s

∣∣∣∣∣
s=1

=
∏
p

1

1− app−1 + p−1
=
∏
p

p

p− ap + 1

=
∏
p

p

#E(Fp)

By Hasse’s bound (Theorem 4.2.2), we know the number #E(Fp) stays close p,
with deviations bounded by 2

√
p. If the distance is evenly distributed across p, we

have #E(Fp) ≈ p ±√p. Then one would expect the infinite product of p/#E(Fp)

to converge to a nonzero limit [Kob05, Chapter II, §6, Problem 1], so the analytic
rank is zero. If the algebraic rank is at least one (i.e. there are infinitely many
rational points), then one would expect reducing modulo p will result in a large
contribution to #E(Fp), so the number of Fq points will lean towards the higher
side of the bound, making it approximately p+√p. Therefore,

L(1, E) ≈
∏
p

p

p+
√
p
=
∏
p

1

1 + p−1/2
= 0,

in other words the analytic rank is also at least one.

6.2.2 Congruent Number Problem

“The congruent number problem, the written history of which can be traced back
at least a millennium, is the oldest unsolved major problem in number theory, and
perhaps in the whole of mathematics.” — John H. Coates.

The congruent number problem asks the question: When is an integer n the
area of a right triangle with rational side lengths? In 1983, Jerrold Tunnell gave the
following resolution [Tun83]:

Theorem 6.2.3 (Tunnell). [Con08] Let n be a squarefree integer. Let

f(n) = #{(x, y, z) ∈ Z3 | x2 + 2y2 + 8z2 = n},
g(n) = #{(x, y, z) ∈ Z3 | x2 + 2y2 + 32z2 = n},
h(n) = #{(x, y, z) ∈ Z3 | x2 + 4y2 + 8z2 = n/2},
k(n) = #{(x, y, z) ∈ Z3 | x2 + 4y2 + 32z2 = n/2}.

For odd n, if n is congruent then f(n) = 2g(n). For even n, if n is congruent
then h(n) = 2k(n). Moreover, if the weak Birch and Swinnerton-Dyer conjecture
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is true for the curve y2 = x3 − n2x then the converse of both implications is true:
f(n) = 2g(n) implies n is congruent when n is odd and k(n) = 2k(n) implies n is
congruent when n is even.

Therefore, if weak Birch and Swinnerton-Dyer conjecture (Conjecture 6.2.2)
holds true, it will resolve one of the oldest — if not the oldest — problem in Dio-
phantine Geometry.

6.2.3 Key Developments Supporting the Conjecture

The first breakthrough for the Birch and Swinnerton-Dyer conjecture came in 1977
from John Coates and his student Andrew Wiles.

Theorem 6.2.4 (Coates and Wiles). Let E/Q be an elliptic curve with complex
multiplication. If E has infinitely many Q-points, then L(E, 1) = 0.

Remark. The original proof [CW77] required the additional assumption that the
quadratic imaginary field of complex multiplication to have class number 1, but it
turned out not to be necessary.

This result was a step forward in connecting the algebraic and analytic ranks, at
least for the curves with complex multiplication.

Benedict Gross and Don Zagier made a breakthrough for modular elliptic curves
with their famous result on Heegner points [GZ86]. This allowed them to deduce:

Theorem 6.2.5 (Gross and Zagier). [GZ86] Let E be a modular elliptic curved
defined over the rational numbers. If LE(s) has a simple zero at s = 1, then it has
a rational point of infinite order.

This result provided strong evidence that the behaviour of L(s, E) is indeed
connected to the algebraic rank of the elliptic curve.

In 1983, Ralph Greenberg was able to make progress on a partial converse
[Gre83]:

Theorem 6.2.6 (Greenberg). Let E be an elliptic curve E/Q with complex multi-
plication by the ring of integers of an imaginary quadratic field K. If L(s, E) has
an odd order zero at s = 1, then either E(Q) has rank greater than or equal to 1,
or the p-primary subgroup of the Tate-Shafarevich group X(E,Q) is infinite for all
primes p where E has good, ordinary reduction (except possibly p = 2 or 3).
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The Tate-Shafarevich group, introduced by Serge Lang, John Tate, and Igor
Shafarevich, plays a key role in the stronger form of the Birch and Swinnerton-
Dyer Conjecture. It is known for being both mysterious and extremely difficult to
compute.

In 1989, Kolyvagin developed a new tool known as Euler systems. He was able
to use them to make advancements in the converse direction:

Theorem 6.2.7 (Kolyvagin). [Kol89] Let E/Q be a modular elliptic curve. If
L(1, E) ̸= 0, then E has algebraic rank 0, i.e. the Mordell-Weil group E(Q) is
finite. If L(1, E) is a first-order zero, then E has algebraic rank 1.

Together with earlier work from others, Kolyvagin was able to confirm the con-
jecture holds for elliptic curves of rank 0 and rank 1.

The next leap came with Andrew Wiles’ momentus proof of Fermat’s Last Theo-
rem. [Wil95] In his paper, Wiles was able to established the modularity of semistable
elliptic curves:

Theorem 6.2.8. [Wil95] All semistable elliptic curves over Q are modular.

Remark. Semistable means elliptic curves that only have bad reduction of multi-
plicative type, i.e. the conductor (Definition 5.4.1) is square-free.

This was further extended by Christophe Breuil, Brian Conrad, Fred Diamond
and Richard Taylor.

Theorem 6.2.9. [Bre+01] All elliptic curves defined over Q are modular.

This result solidified the connection between elliptic curves and modular forms,
a cornerstone of Wiles’ strategy in his proof of Fermat’s Last Theorem.

Recent work by mathematicians such as Manjul Bhargava and Arul Shankar has
deepened our understanding of the distribution of ranks of elliptic curves.

Theorem 6.2.10. When all elliptic curves over Q are ordered by height, their av-
erage rank is at most 7/6.

In combination with result from Tim Dokchister and Vladimir Dokchister [DD10],
Bhargava and Shankar were able to get:

Theorem 6.2.11. When all elliptic curves E/Q are ordered by height, a positive
proportion of them have algebraic rank 0.

Combining with work from Christopher Skinner and Eric Urban [SU14] on the
Iwasawa Main Conjectures for GL2 gives:
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Theorem 6.2.12. When all elliptic curves E/Q are ordered by height, a positive
proportion of them have analytic rank 0, i.e. a positive proportion of them satisfy
L(1, E) ̸= 0.

Combining these results with Kolyvagin’s theorem, we find that a positive pro-
portion of elliptic curves E/Q satisfy the Birch and Swinnerton-Dyer Conjecture.
Thus, while the conjecture remains open in its full generality, substantial progress
has been made in certain cases, bringing us closer to fully understanding the deep
connection between the analytic and algebraic properties of elliptic curves.
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Appendix A

Appendix

A.1 Quadratic Form

Definition A.1.1. Let A be an abelian group. A function d : A→ R is a quadratic
form if it satisfies:

i. d(α) = d(−α) for all α ∈ A.

ii. The pairing A× A→ R, (α, β) 7→ d(α + β)− d(α)− d(β) is bilinear.

The quadratic form is positive definite if it further satisfies:

iii. d(α) ≥ 0 for all α ∈ A.

iv. d(α) = 0 if and only if α = 0.

Lemma A.1.2. Let A be an abelian group. If d : A→ R is a quadratic form, then
it satisfies

d(nα) = n2d(α) ∀α ∈ A, n ∈ Z.

Proof. Since d(α) = d(−α), we only need to show it for n ∈ N. We proceed by
induction. Let

L(α, β) = d(α + β)− d(α)− d(β)

denote the associated bilinear form to the quadratic form d. We first show d(0) = 0.
For this we look at

L(0, 0) = −L(−0, 0) = −L(0, 0) =⇒ L(0, 0) = 0.
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Thus d(0) = 2d(0) which means d(0) = 0. For the base case, we have the following

L(α, α) = d(2α)− d(α)− d(α) = d(2α)− 2d(α) (A.1)

= −L(α,−α) (A.2)

= −(d(0)− d(α)− d(α)) = 2d(α) (A.3)

which gives d(2α) = 4d(α). Assume the lemma be true for 0, 1, . . . , n, then look at

L(nα, α) = d((n+ 1)α)− d(nα)− d(α) = d((n+ 1)α)− n2d(α)− d(α) (A.4)

= nL(α, α) (A.5)

= n(d(2α)− 2d(α)) = n(2d(α)). (A.6)

We thus have d((n+ 1)α) = (n2 + 2n+ 1)d(α) = (n+ 1)2d(α), which completes the
induction.

A.2 Surface Integrals

This section follows Section 4.4 of [Mas15].
Let V ⊆ C. A 2-form on V is an expression of the form ω = f(z, z̄)dz∧dz̄. Note

that
dz ∧ dz̄ = (dx+ idy) ∧ (dx− idy) = −2idx ∧ dy.

The integral of ω on V is:∫
V

ω =

∫
V

f(z, z̄)dz ∧ dz̄ =
∫∫
−2if(x+ iy, x− iy)dxdy.

Consider now, for α = [ a b
c d ] ∈ GL+

2 (R), the map z 7→ α.z = az+b
cz+d

. Then we have

Im(α.z) =
det(α)

|cz + d|2
Im(z).

We also have

d(α.z) =
det(α)

(cz + d)2
dz and d(α.z) =

det(α)

(cz + d)2
dz̄,

which gives

d(α.z) ∧ d(α.z) = (det(α))2

|cz + d|4
dz ∧ dz̄.
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Therefore the 2-form (dz ∧ dz̄)/(Im(z)2) is invariant under the action of GL+
2 (R).

Define
dµ(z) =

dx ∧ dy
y2

=
−1
2i

dz ∧ dz̄
Im(z)2

,

then we define the covolume of SL2(Z) to be

covol(SL2(Z)) =
∫
D∗
dµ(z)

where D∗ is the fundamental domain of SL2(Z).

Lemma A.2.1. covol(SL2(Z)) = π
3
.

Corollary A.2.1.1. If ϕ is a bounded function on D∗, then
∫
D∗ ϕ(z)dµ(z) is a

well-defined complex number.
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