
Experimental Mathematics 2020: Lab
sheets

Alex Ghitza

Version of Fri 29th May, 2020 at 09:47

1 Introduction to Mathematica (13 March) 2

2 Constant recognition (20 March) 4
2.1 Recognising integers . 4
2.2 Recognising rational numbers . 4
2.3 Lattices . 5

3 More constant recognition (3 April) 6
3.1 Some lattice work . 6
3.2 Discovering integer relations . 6
3.3 Recognising algebraic numbers . 6

4 Rings and ideals (24 April) 8

5 Gröbner bases and some applications (1 May) 10
5.1 The mechanics of computing Gröbner bases . 10
5.2 Graph colourings . 10
5.3 Minimal polynomials in field extensions . 11

6 Hypergeometric functions and Celine Fasenmyer’s algorithm (8 May) 12

7 Indefinite hypergeometric summation (15 May) 14
7.1 Finding suitable polynomials p, q, r (Lemma 5.5) 14
7.2 Bound on the degree of the auxiliary polynomial (Lemma 5.6) 15
7.3 Putting it all together: Gosper’s algorithm . 15

8 Wilf–Zeilberger method (22 May) 16
8.1 Verification of Gosper’s algorithm using the rational certificate 16
8.2 Wilf–Zeilberger . 16

9 Zeilberger’s algorithm (29 May) 18
9.1 Applying Zeilberger’s method . 18
9.2 Timing is everything . 19

1

1 Introduction to Mathematica (13
March)

Open a new Mathematica notebook and follow along.

Exercise 1.1. Work through
https://www.wolfram.com/language/fast-introduction-for-math-students/en/entering-input/
Note the differences in syntax between Mathematica lists and Sage (Python, really) lists.
Also note the different behaviour of Range.

Exercise 1.2. Work through
https://www.wolfram.com/language/fast-introduction-for-math-students/en/fractions-and-

decimals/
What is the 5-th digit after the decimal point of the number π3?
What is the millionth digit after the decimal point of the number π3?

Exercise 1.3. Work through
https://www.wolfram.com/language/fast-introduction-for-math-students/en/variables-and-

functions/
On that page, click on the link Defining Variables and Functions to see a more clear

explanation of the difference between = and :=.
Use the function definition syntax to define the two recursive sequences a and b that

converge to the agM of
√

2 and 1.
Compute the first few terms in each sequence.
How many terms do you need in order to get 100 correct digits of the limit?
How many terms do you need in order to get ten thousand correct digits of the limit?

Exercise 1.4. Work through
https://www.wolfram.com/language/fast-introduction-for-math-students/en/sequences-sums-

and-series/
Use syntax from that page to define the recursive sequence giving the number of regions

cut by n lines in the plane:

R(0) = 1, R(n) = R(n − 1) + n.

Compute the first few values. Get Mathematica to tell you a formula for the general term
of the sequence.

Exercise 1.5. Work through
https://www.wolfram.com/language/fast-introduction-for-math-students/en/plots-in-2d/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/more-plots-in-

2d/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/plots-in-3d/
Search the Mathematica documentation for the function ListPointPlot3D.

2

https://www.wolfram.com/language/fast-introduction-for-math-students/en/entering-input/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/fractions-and-decimals/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/fractions-and-decimals/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/variables-and-functions/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/variables-and-functions/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/sequences-sums-and-series/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/sequences-sums-and-series/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/plots-in-2d/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/more-plots-in-2d/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/more-plots-in-2d/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/plots-in-3d/

MAST90053 ExpMath

Consider the recursive formula

a0 = x,

an =
1

2
(a2n−1 + y2)

where x and y are fixed parameters.
Compute the first few values an for various x and y.
Use ListPointPlot3D to get a scatter plot of these values.
Based on the plot, formulate a conjecture regarding the region in the x-y plane where the

recursion converges to a finite limit.

Exercise 1.6. Work through
https://www.wolfram.com/language/fast-introduction-for-math-students/en/matrices-and-

linear-algebra/
Define the matrix

A =
⎡⎢⎢⎢⎢⎢⎣

2 −1 0
−1 2 −1
0 −1 −2

⎤⎥⎥⎥⎥⎥⎦
We want to describe all 3 × 3 matrices B that commute with A.

Work through
https://www.wolfram.com/language/fast-introduction-for-math-students/en/algebra/
Define the matrix of unknowns

B =
⎡⎢⎢⎢⎢⎢⎣

b11 b12 b13
b21 b22 b23
b31 b32 b33

⎤⎥⎥⎥⎥⎥⎦
and ask Mathematica to solve the equation AB −BA = 0.

Did you get some conditions on the coefficients bij?
Good. Now we push this a bit further. I claim that there exist α,β, γ (depending on B)

such that
B = αA2 + βA + γI.

(In other words, that B must be a quadratic polynomial in A.)
Use Mathematica’s equation solving capabilities to find α, β, γ in terms of the bij’s.

Exercise 1.7. Browse through the Mathematica demonstrations at
https://demonstrations.wolfram.com/topic.html?topic=Experimental+Mathematics

3

https://www.wolfram.com/language/fast-introduction-for-math-students/en/matrices-and-linear-algebra/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/matrices-and-linear-algebra/
https://www.wolfram.com/language/fast-introduction-for-math-students/en/algebra/
https://demonstrations.wolfram.com/topic.html?topic=Experimental+Mathematics

2 Constant recognition (20 March)

2.1 Recognising integers

Exercise 2.1. Consider the real number

α = π10

ζ(10)

Compute α to default precision and guess what the exac value of α might be.
Increase the precision a few times to see if your guess persists.

Exercise 2.2. Consider the real number

α = (eπ
√

163 − 744)
1/3

Compute α to default precision and venture a guess about the value of α.
Increase the working precision and recompute α. Do you need to adjust your guess? If not,

maybe increase the precision some more.
Think about what strategies you might employ to check whether what you are seeing is

just a numerical glitch.
A good approach to this type of question relies on interval arithmetic.
There is some information about interval arithmetic in Mathematica at

https://reference.wolfram.com/language/tutorial/Numbers.html

For Sage, see

https://doc.sagemath.org/html/en/prep/Quickstarts/NumAnalysis.html

which also has other useful hints for working with real numbers.

2.2 Recognising rational numbers

Exercise 2.3. Compute the real number

α = ζ(20)
π20

and determine experimentally whether it is a rational number. (Use continued fractions.)

Exercise 2.4. Same as above, with

α = ζ(3)
π3

Even today, there is much that we (the human race) do not know about the values of ζ at
odd integers.

4

https://reference.wolfram.com/language/tutorial/Numbers.html
https://doc.sagemath.org/html/en/prep/Quickstarts/NumAnalysis.html

MAST90053 ExpMath

2.3 Lattices

Exercise 2.5. Write a Sage function lattice2d with signature

def lattice2d(v1, v2, range1, range2):

that returns a list of the points in the lattice with basis {v1, v2} whose first coefficient is in
the range range1 and the second is in the range range2.

Experiment with your function and the square lattice (basis (1, 0) and (0, 1)). Use list plot

or scatter plot or points to visualise the lattice.
Try a couple more lattices.

Exercise 2.6. Repeat the previous exercise, this time in three-dimensional space.

Exercise 2.7. Compare the plots for lattice2d for the lattices given by

• (1,0) and (0,1), both ranges range(-3, 4)

• (2,3) and (3,5), both ranges range(-30, 31)

You may want to restrict the viewing window for the second plot:

points(lst, xmin=-3, xmax=3, ymin=-3, ymax=3)

Exercise 2.8. This does not really involve computation, it’s more of a pen and paper thing.
What kind of matrices give a valid change of basis for the vector space R2?
What kind of matrices give a valid change of basis for a lattice L inside the vector space

R2?

5

3 More constant recognition (3 April)

Get Sage started.

3.1 Some lattice work

Exercise 3.1. Reproduce the LLL calculation from Example 3.4 in the lecture notes.

Exercise 3.2. In Example 3.4, check that the first column b1 is indeed a shortest nonzero
vector in the lattice.

Now check that the second column b2 is a shortest lattice element not in SpanZ(b1).
Is the third column b3 a shortest lattice element not in SpanZ(b1,b2)?

3.2 Discovering integer relations

Exercise 3.3. Reproduce the calculations from Example 3.2 in the lecture notes.
It would be nice to experiment with changing the value of the multiplier A, but it’s a pain

to have to run the same commands again and again. So start by writing a function with
signature

def intrel(alst, A):

that takes as input a list alst of real numbers and an integer multiplier A and returns the
coefficients of the approximate integer relation given by LLL.

Test your function on Example 3.2 with A = 106 to see if it works.
Now experiment with different values of A (say A = 101,102,107,108).

Exercise 3.4. Run an experiment to see if there is an integer relation between the real
numbers 1, e, and π.

3.3 Recognising algebraic numbers

An algebraic integer is a root α of a monic polynomial with integer coefficients:

f(α) = 0, f(x) = xn + an−1xn−1 + ⋅ ⋅ ⋅ + a1x + a0, ai ∈ Z.

Given an algebraic integer α, its minimal polynomial is the monic integer polynomial f of
smallest degree d such that f(α) = 0. We refer to d as the degree of α.

For instance, α =
√

2 has minimal polynomial x2 − 2.

Exercise 3.5. Suppose you have a real number α and you think it might be an algebraic
integer of degree d. Reduce the problem of finding the minimal polynomial of α to an instance
of the integer relation problem.

6

MAST90053 ExpMath

Exercise 3.6. Apply your strategy from the previous exercise to find the minimal polynomial
for

α = 1 +
√

1 +
√

1 +
√

2,

which seems like it might have degree ⩽ 8, doesn’t it?

Exercise 3.7. Let H = {z ∈ C ∣ Im(z) > 0}. The Dedekind eta function η∶H → C is defined by

η(z) = q1/24
∞

∏
n=1

(1 − qn), q = e2πiz

It is implemented in Sage as eta.
Consider the number

α =
η2 (

√
−5/2)

2η2 (2
√
−5)

Figure out whether α may be algebraic. If yes, what is its minimal polynomial (and degree)?

Exercise 3.8. Figure out whether π (yes, the π) is algebraic. If yes, what is its minimal
polynomial (and degree)?

7

4 Rings and ideals (24 April)

Get Sage started.

Exercise 4.1. (You may want to do this in conjunction with the next Exercise, which has
explicit polynomials you can try your hand on.)

Let A be an m × n matrix with entries in Q. Let f1, . . . , fm ∈ Q[x1, . . . , xn] be the linear
polynomials corresponding to the rows of A. Let B be a row echelon form of the matrix A
and let g1, . . . , gr be the linear polynomials corresponding to the nonzero rows of B.

Prove that ⟨f1, . . . , fm⟩ = ⟨g1, . . . , gr⟩.

Exercise 4.2. Apply the approach in the previous Exercise to the polynomials

f1 = x − 2y + z + t
f2 = x + y + 3z + t
f3 = 2x − y − z − t
f4 = 4x − 8y − z + t

Optional: Write a Sage function that implements this “reduction” algorithm for flst a list
of linear polynomials f1, . . . , fm ∈ Q[x1, . . . , xn]:
def reduce_gens(flst):

"""Return reduced list of generators glst given by Gauss-Jordan elimination"""

Exercise 4.3. Before we get to higher degree polynomials, let’s have a look at a (hopefully)
more familiar setting: the good-old integers.

Apply long division repeatedly to get the greatest common divisor d of n1 = 52500 and
n2 = 10725.

Find integers u1 and u2 such that

d = u1n1 + u2n2.

Exercise 4.4. Let f1 = 3x4 − x3 + x2 − x − 2 ∈ Q[x] and f2 = 3x4 + 2x3 + 6x + 4 ∈ Q[x].
Apply polynomial long division repeatedly to get the greatest common divisor d of f1 and

f2.
Find polynomials u1 and u2 in Q[x] such that

d = u1f1 + u2f2.

Let f3 = x4 − x3 + 2x − 2. How can you find the greatest common divisor g of {f1, f2, f3}?
How can you find polynomials v1, v2, v3 ∈ Q[x] such that

g = v1f1 + v2f2 + v3f3?

Exercise 4.5. Something we observed in the previous exercises is that in both Z and Q[x],
every ideal is principal, that is can be generated by a single element. In fact, in both of these
rings we have a good notion of greatest common divisor, and for any elements a1, . . . , an we
have

⟨a1, . . . , an⟩ = ⟨gcd(a1, . . . , an)⟩.

8

MAST90053 ExpMath

There are arithmetic systems where this does not hold, for instance

Z[
√
−5] = {a + b

√
−5 ∣ a, b ∈ Z} .

You can define this ring in Sage by

1sage: K.<alpha> = QuadraticField(-5)

2sage: R = K.ring_of_integers()

Here alpha is
√
−5.

Once you have the ring R, you can define the ideal generated by elements r1, . . . , rn by I =

R.ideal([r1, ..., rn]).
And once you have an ideal I you can ask Sage whether it is principal (i.e. generated by a

single element) with I.is principal().
Try this with the ideal ⟨2, 1 +

√
−5⟩ in Z[

√
−5], as well as the ideals from Exercises 4.3 and

4.4.
Can you find a non-principal ideal in the polynomial ring Q[x, y]? (Interestingly, verifying

this in Sage via the method described above does not work.)

Exercise 4.6. Get ready for GitHub, which we will be using for our assignments and
take-home exam.

• Get a quick introduction to Git version control with the first three videos at

https://git-scm.com/videos

and the guide at

https://guides.github.com/introduction/git-handbook/

• If you do not have a GitHub account, go to

https://education.github.com

and sign up for a student account. (If you already have a normal GitHub account, that
should be sufficient and you can skip this step.)

• If you are running Sage and Mathematica on your own laptop or desktop computer,
download Git from

https://git-scm.com/downloads

If you are using the Melbourne Uni server or Cocalc for Sage, you don’t need to download
Git, but you’re at the mercy of the server gods.

9

https://git-scm.com/videos
https://guides.github.com/introduction/git-handbook/
https://education.github.com
https://git-scm.com/downloads

5 Gröbner bases and some applications
(1 May)

Get Sage started.

5.1 The mechanics of computing Gröbner bases

Recall that we define our polynomial rings and ideals in Sage using something like

R.<x, y, z> = QQ[]

I = R.ideal([x^2-y*z, z^3+x*y*z])

But how do we specify the monomial order? We need to use the extended syntax

R.<x, y, z> = PolynomialRing(QQ, order="lex")

For more details see PolynomialRing?.

Exercise 5.1. Given the system

x2 + y2 − 1 = 0

x2 − y = 0,

define the appropriate ideal and find the Groebner basis with respect to some of the monomial
orders.

What does the Groebner basis tell you about the solutions of the system?

Exercise 5.2. Same questions as above, for the system

6x2y − x + 4y3 − 1 = 0

2xy + y3 = 0.

5.2 Graph colourings

For our purposes, a graph will be simple and undirected. (So it consists of a finite set
V = {j = 0,1, . . . , n − 1} of vertices and a finite subset E of edges of the form {j, k}.)

Given a graph G, we want to decide whether it is 3-colourable or not: can we assign one of
three available colours to each vertex of G in such a way that any two vertices joined by an
edge have distinct colours?

The first step will be to restate this combinatorial question in algebraic terms. Let
ζ = e2πi/3 ∈ C be a third root of unity. We will think of our three colours as being 1, ζ, ζ2. The
vertices of G will be represented by variables x0, x1, . . . , xn−1. Colouring vertex j a certain
colour corresponds to assigning one of the values 1, ζ, ζ2 to the variable xj. We represent the
fact that it can only be one of these three values by the equation

x3j − 1 = 0.

10

MAST90053 ExpMath

This gives us a system of n cubic equations representing the colouring. But there is an
additional constraint: adjacent vertices j and k must not have the same colour. We have
x3j −x3k = 1−1 = 0, and the factorisation x3j −x3k = (xj −xk)(x2j +xjxk +x2k) = 0, so the constraint
can be expressed as

x2j + xjxk + x2k = 0,

which adds a number of quadratic equations equal to the number of edges in the graph.
The question “is G 3-colourable?” then becomes “does the associated system of polynomial

equations have any solutions?”, or letting I be the ideal generated by the left hand sides of
the equations, “is V (I) ≠ ∅?” I mentioned before that V (I) = ∅ if and only if 1 ∈ I, so this
gives us a way to decide 3-colorability using Gröbner bases.

Exercise 5.3. Take the following graph and figure out by hand whether it’s 3-colourable.
(No algebra, just try assigning colours.)

1

30

2

Now express the question as an algebra problem in the polynomial ring Q[x0, x1, x2, x3] as
described above.

Use Gröbner bases to answer the question.

Exercise 5.4. Can you think of a graph that is not 3-colourable?
Use Gröbner bases to prove that you are right.

Exercise 5.5 (Optional). Write a function that takes as input a graph G and a natural
number n and uses Gröbner bases to decide whether G is n-colourable.

A Sage version could have a signature like

def is_colourable(G, n):

"""Return True if the graph G is n-colourable, False otherwise."""

5.3 Minimal polynomials in field extensions

Suppose α is a real number that is algebraic (over Q) with minimal polynomial p ∈ Q[x] (so
p(α) = 0 and p has smallest possible degree among all polynomials with this property).

Consider now a nonzero real number β of the form

β = f(α)
g(α) ,

where f, g ∈ Q[x].
What is the minimal polynomial of β?

Theorem 5.6. Consider the ideal I = ⟨p, gy − f⟩ ⊂ Q[x, y]. Take the (reduced) Gröbner basis
G of I with respect to the lex order with x > y. Then the minimal polynomial of β is the
element of G that is a polynomial in y alone.

Let’s test this out!

Exercise 5.7. Let α be a root of x5 − x − 2 and let

β = 1 − α − 2α3

α

Use Gröbner bases as in the above Theorem to find the minimal polynomial of β.

11

6 Hypergeometric functions and Celine
Fasenmyer’s algorithm (8 May)

Exercise 6.1. By popular demand, I’ll do a quick demo of assignment submission via GitHub.

Exercise 6.2. Given a general term tk, figure out whether it is a hypergeometric term. (So
check whether the ratio tk+1/tk is a rational function of k.)

Try your approach on

(a) tk = k!

(b) tk = (n
k
)

(c) tk = (−1)k x2k+1

(2k + 1)!
Write a function is hypergeometric term(f, k) that returns True if and only if f is a

hypergeometric term with respect to the variable k.

Exercise 6.3. Express the following functions using generalised hypergeometric functions of
the form

pFq[
α1, . . . , αp
β1, . . . , βq

;x] =
∞

∑
k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

xk

k!

Recall that here the ratio of consecutive terms is

tk+1
tk

= (k + α1) . . . (k + αp)
(k + β1) . . . (k + βq)

x

(k + 1)

(a) sin(x) =
∞

∑
k=0

(−1)k x2k+1

(2k + 1)!

(b) ∑
k

1

(2k + 1)(2k + 3)!
Exercise 6.4. Work through the example of Celine Fasenmyer’s algorithm in Section 5.2 in
the lecture notes.

The idea is to do each step “manually” using the computer for the calculations. As you do
this, think about what could be challenging in trying to make the process more automatic.

Exercise 6.5. Automate the process! (To some extent.) Write a function

def hypergeometric_term_recurrence(f, n, k, I=1, J=1):

"""

Implement Celine Fasenmyer’s algorithm for computing a k-free

recurrence relation for the hypergeometric summand f(n, k).

If a relation does not exist with the given box parameters I and J,

raise an error.

"""

12

MAST90053 ExpMath

Run your function on the example from Exercise 6.4 as a test.
Now try also:

(a) f(n, k) = (n
k
)(−n − 1

k
)(1 − x

2
)
k

(b) f(n, k) = (n
k
) k! 3k

(3k)! x
n−k yk

13

7 Indefinite hypergeometric summation
(15 May)

The aim is to implement Gosper’s algorithm for hypergeometric summation.

7.1 Finding suitable polynomials p, q, r (Lemma 5.5)

Exercise 7.1. Write a function irreducible dispersion(s, t, k) that takes two irre-
ducible polynomials s and t in the variable k and determines if they are the same up to a
shift k + j, using the following algorithm:

• if s and t have different degrees, return the empty list

• let n = deg(s) = deg(t); if n is zero, return the empty list

• let a be the coefficient of kn in s, b the coefficient of kn−1 in s, c the coefficient of kn in
t, and d the coefficient of kn−1 in t

• let j = (bc − ad)/(acn); if j ∉ Z⩾0, return the empty list

• if cs(k) − at(k + j) = 0, return the list containing the single element j

Try your function on

• s = k, t = k − 97, should get [97]

• s = k2 + 5, t = k2 + 2, should get []

Exercise 7.2. Write a function dispersion set(q, r, k) that takes two polynomials q
and r in k and returns the dispersion set

J = {j ∈ Z⩾0 ∣ deg gcd(q(k), r(k + j)) > 0}

Use the following algorithm:

• set J = {}

• loop through all polynomial factors s of q and all polynomial factors t of r and let D be
the result of the function irreducible dispersion(s, t, k); set J = J ∪D

Try your function on

• q = (k + 5)2(2k + 7), r = k2(2k + 1), should get [3, 5]

• q = (k + 2)(k + 3), r = k2 + 1, should get []

Exercise 7.3. Write a function find polys(n, d, k) that starts with a rational function
n/d in k and produces polynomials p, q, r satisfying the conditions of Lemma 5.5, using the
dispersion set function from the previous exercise and the rewriting procedure following the
statement of Lemma 5.5.

Try your function on

14

MAST90053 ExpMath

• n = (k + 1)3, d = k3, should get p = k3, q = r = 1;

• n = k, d = k + 1, should get p = 1, q = k − 1, r = k;

• n = x − k, d = k + 1, should get p = 1, q = x − k + 1, r = k.

7.2 Bound on the degree of the auxiliary polynomial
(Lemma 5.6)

Exercise 7.4. Implement the conditions in the statement of Lemma 5.6 in the notes to obtain
a function degree bound(p, q, r, k) that computes an upper bound N on the auxiliary
polynomial f .

Try it on:

• p = k3, q = r = 1, should get N = 4;

• p = 1, q = x − k + 1, r = k, should get N = −1;

• p = 1, q = k − x − 1, r = k, should get N = 0.

7.3 Putting it all together: Gosper’s algorithm

Exercise 7.5. For the last preparatory step, there is an operation that we can isolate from
the context of Gosper’s algorithm (and that also appeared in Fasenmyer’s algorithm last week):
given a symbolic expression f , a distinguished variable k and a set of variables {c0, c1, . . . , cN}
such that f is polynomial in k and has degree at most 1 in each of the cj , solve for c0, c1, . . . , cN
in the equation

f = 0

Implement this as a function solve for coefficients(f, k, coeff).

Exercise 7.6. Write a function gosper sum(a, k) that implements Gosper’s algorithm as
outlined on page 30 of the lecture notes, building on the other functions from these lab sheets.

Try it on:

• a = k3, should get antidifference

A = k
2(k − 1)2

4

• a = 1

k
, should get that a is not Gosper-summable

• a = 1

k
− 1

k + 1
, should get

A = −1

k

• a = 1

k(k + 6) , should get

A = −(3k4 + 30k3 + 95k2 + 100k + 24)(2k + 5)
6(k + 5)(k + 4)(k + 3)(k + 2)(k + 1)k

15

8 Wilf–Zeilberger method (22 May)

You may want to pull the latest version of the lab code from

https://github.com/aghitza/mast90053

8.1 Verification of Gosper’s algorithm using the rational
certificate

Exercise 8.1. Write a function gosper verify(a, R, k) that takes a hypergeometric term
ak and a rational function R and checks that R is indeed the rational certificate for Gosper’s
algorithm applied to ak.

Test your function on:

• ak = k, R = (k − 1)/2

• ak = k2, R = k + 1

• ak =
1

k
− 1

k + 1

• ak = (−1)k(n
k
)

• ak = k (k!)

8.2 Wilf–Zeilberger

Exercise 8.2. Work through the details of Example 5.10 in the lecture notes, i.e. apply the
Wilf–Zeilberger method to the proof of the identity

n

∑
k=0

1

2n
(n
k
) = 1

Exercise 8.3. Write a function wz verify(a, R, n, k) that takes a hypergeometric term
a(n, k) and a rational function R(n, k) and checks that R is indeed the Wilf–Zeilberger
certificate for a(n, k).

Test your function on:

a(n, k) = 1

2n
(n
k
)

with the WZ certificate you can deduce from the previous exercise.

Exercise 8.4. Let’s automate the Wilf–Zeilberger method.
Write a function wz certificate(a, n, k) that takes a hypergeometric term and applies

the Wilf–Zeilberger method to it. If unsuccessful, it should raise an error. If successful, it
should return the WZ certificate.

Test your function on:

16

https://github.com/aghitza/mast90053

MAST90053 ExpMath

• a(n, k) = 1

2n
(n
k
)

• a(n, k) = (n
k
); interpret the outcome

• a(n, k) = (n
k
) xk

(1 + x)n ; interpret the outcome

17

9 Zeilberger’s algorithm (29 May)

You may want to pull the latest version of the lab code from

https://github.com/aghitza/mast90053

Note in particular that I gathered all the code relating to hypergeometric terms and
summation and put it into hypergeometric/hypergeometric.sage

In fact, it’s high time we learned a better way to deal with a larger codebase. Instead
of copying-and-pasting the code from hypergeometric.sage, we tell Sage where to find it.
How? It depends a bit on how you use Sage:

• if you use Jupyter notebooks, use

load(’path-to-the-file-on-your-computer/hypergeometric.sage’)

For bonus 1337 h4x0r street cred, load the file directly from where it sits on GitHub.1

• if you use command-line interface (from a terminal window), then

sage: %attach ’path-to-the-file-on-your-computer/hypergeometric.sage’

which has the added feature that it reloads if the file changes.

(The load command from the previous bullet point can also be used in the terminal.)

9.1 Applying Zeilberger’s method

Exercise 9.1. Work through Example 5.12 in the lecture notes, using the computer to
work out the details, e.g. use find polys to get p, q, r, degree bound to get N , then
solve for coefficients to get b0 and σ1.

Exercise 9.2. Write a function zeilberger(f, n, k, J) that implements Zeilberger’s
algorithm.

Test your function on:

• f(n, k) = (n
k
)

• f(n, k) = (n
k
)
2

. What identity do you get from this?

• f(n, k) = (−1)n+k(n
k
)2k. What identity do you get from this? Can you use a different

algorithm for the same problem?

1Yes, it’s convenient and impresses people at parties. But I should advise you against loading random code
off places on the internet. You don’t know where that’s been. And malicious code can do lots of bad stuff
that you don’t even want to think about.

18

https://github.com/aghitza/mast90053

MAST90053 ExpMath

9.2 Timing is everything

Exercise 9.3. Apply Fasenmyer’s algorithm, implemented in fasenmyer kfree, to

f1(n, k) = (n
k
)xn−kyk

Now try

f2(n, k) = (n
k
) k!2k

(2k)! x
n−kyk

A bit slow, isn’t it?
Replacing 2 by 3 will be even slower (several minutes).
Look at the documentation for %time, %timeit, and %prun, and try these commands on

the Fasenmyer algorithm for f2.

Exercise 9.4. It seems that linear algebra over the symbolic ring SR is slow. Maybe we can
do it over an appropriate ring of polynomials?

Modify the code for solve for coefficients homog to use a polynomial ring instead of
SR.

Run test all() to make sure you haven’t broken anything.
Then run the timings on the examples from the previous exercise to see if this approach is

indeed faster.
We can apply the same optimisation to the code for solve for coefficients and thereby

speed up Gosper, Wilf–Zeilberger, and Zeilberger.

19

	Introduction to Mathematica (13 March)
	Constant recognition (20 March)
	Recognising integers
	Recognising rational numbers
	Lattices

	More constant recognition (3 April)
	Some lattice work
	Discovering integer relations
	Recognising algebraic numbers

	Rings and ideals (24 April)
	Gröbner bases and some applications (1 May)
	The mechanics of computing Gröbner bases
	Graph colourings
	Minimal polynomials in field extensions

	Hypergeometric functions and Celine Fasenmyer's algorithm (8 May)
	Indefinite hypergeometric summation (15 May)
	Finding suitable polynomials p, q, r (Lemma 5.5)
	Bound on the degree of the auxiliary polynomial (Lemma 5.6)
	Putting it all together: Gosper's algorithm

	Wilf–Zeilberger method (22 May)
	Verification of Gosper's algorithm using the rational certificate
	Wilf–Zeilberger

	Zeilberger's algorithm (29 May)
	Applying Zeilberger's method
	Timing is everything

