
Experimental Mathematics 2020

Alex Ghitza

Version of Tue 9th Jun, 2020 at 10:21

1 Gauss’s agM 2
1.1 Two sequences, one limit . 2
1.2 An elliptic integral . 4
1.3 Built-in agM commands . 7

2 Introduction to Sage and Mathematica 8
2.1 Lines on a plane . 8
2.2 Pascal mod 2 . 10

3 Constant recognition 13
3.1 Finding the fraction . 13
3.2 Finding the integer relation . 16
3.3 Lattice reduction . 17

4 Polynomial systems and Gröbner bases 20
4.1 Polynomial rings and ideals . 20
4.2 Linear systems . 22
4.3 Single variable higher degree case . 22
4.4 Monomial orders . 23
4.5 Multivariate polynomial division . 24
4.6 Gröbner bases . 25

5 Hypergeometric summation machine 26
5.1 Hypergeometric stuff . 26
5.2 Celine Fasenmyer’s algorithm for finding recurrence relations 27
5.3 Indefinite hypergeometric summation . 29
5.4 Definite hypergeometric summation via the Wilf–Zeilberger method 32
5.5 Zeilberger’s method . 34
5.6 More hypergeometric goodness . 36

Some answers/solutions/hints/more questions 37

1

1 Gauss’s agM

From Gauss’s diary, entry dated 30 May 1799:

Terminum medium arithmetico–geometricum inter 1 et
√

2 esse = π
$ usque ad

figuram undecimam comprobavimus, qua re demonstrata prorsus novus campus
in analysis certo aperietur.

For those as Latin-challenged as I am, this translates to

We have established that the arithmetic–geometric mean between 1 and
√

2 is
= π
$ to the eleventh decimal place; the demonstration of this fact will surely open

an entirely new field of analysis.

This probably raises more questions than it answers. So let’s look at it in more detail.

1.1 Two sequences, one limit

Consider the two sequences of real numbers (an) and (bn) defined by the recursions

a0 =
√

2, an+1 =
an + bn

2

b0 = 1, bn+1 =
√
anbn

This looks a little strange, as the two definitions are intertwined (and what’s up with the
initial values

√
2 and 1?), but we can recognise some familiar features, at least locally. The

recursive rule defining an+1 takes the arithmetic mean of the numbers an and bn. And the
recursive rule defining bn+1 takes the geometric mean of the same two numbers.

I wonder how the two sequences behave as n increases. If I were Gauss, I would compute
the first few terms by hand (to 11 decimal places, indeed). Having the luxury of living in
the era of funny cat YouTube videos (and incidental infrastructure), I’ll instead call upon
SageMath on my computer:

1sage: def a(n):

2....: if n == 0:

3....: return RR(sqrt(2))

4....: else:

5....: return RR((a(n-1)+b(n-1))/2)

6sage: def b(n):

7....: if n == 0:

8....: return RR(1)

9....: else:

10....: return RR(sqrt(a(n-1)*b(n-1)))

2

MAST90053 ExpMath

Having defined the two sequences, I can now ask for values:

11sage: a(1)

121.20710678118655

13sage: a(2)

141.19815694809463

15sage: a(3)

161.19814023479388

17sage: a(4)

181.19814023473559

19sage: a(5)

201.19814023473559

One might guess now that (an) converges to a number close to 1.19814023473559. How
about (bn)?

21sage: b(1)

221.18920711500272

23sage: b(2)

241.19812352149312

25sage: b(3)

261.19814023467731

27sage: b(4)

281.19814023473559

29sage: b(5)

301.19814023473559

This also seems to converge, and to the same limit? Let’s be bold and proclaim:

Proposition 1.1. Given any starting values a0 = a ⩾ b0 = b ∈ R>0, the sequences (an) and
(bn) both converge to the same limit M(a, b).

Proof. More of a sketch, really.
There are two things to prove: that the sequences converge, and that they have the same

limit1.
Here is one approach to this, courtesy of Wikipedia:

• bn ⩽ an for all n. This is clear for n = 0 and true by simple algebraic manipulation
in general (the arithmetic mean of two numbers is never smaller than their geometric
mean).

• Use the previous part to note that bn+1 ⩾ bn, so the sequence (bn) is non-decreasing.

• Note that bn ⩽ a for all n ⩾ 0, so the sequence (bn) is bounded above. Hence it has a
limit L.

• Note that bn ⩾ b > 0 for all n so L ⩾ b > 0, in particular L ≠ 0.

• Note that

an =
b2n+1
bn

,

so using a theorem about the limit of the quotient of two convergent sequences we
conclude that (an) converges to L2

L = L.

1It would not be sufficient to only show that the sequence of differences (an − bn) converges to 0

3

https://en.wikipedia.org/wiki/Arithmetic-geometric_mean

MAST90053 ExpMath

The real number M(a, b) is called the arithmetic-geometric mean (agM) of a and b. The
above numerical experiment leads us to believe that

M(
√

2,1) = 1.19814023473559 . . .

But Gauss’s diary entry said more about this value. What’s that about?

1.2 An elliptic integral

Consider the lemniscate (of Bernoulli), a plane curve given in polar coordinates (r, θ) by the
equation

r2 = cos(2θ).

It would be nice to graph it, wouldn’t it? As far as I know, neither Sage nor Mathematica
have a built-in command for implicit polar plots. After a bit of algebraic manipulation with
x = r cos θ, y = r sin θ, I get the implicit Cartesian equation

(x2 + y2)2 = x2 − y2.

This is more amenable to plotting:

31sage: var(’x, y’)

32(x, y)

33sage: f = (x^2 + y^2)^2 - (x^2 - y^2)

34sage: p = implicit_plot(f, (x, -1, 1), (y, -1, 1))

35sage: p.show()

36None

which produces the pretty infinity sign in the picture.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

Figure 1.1: The lemniscate of Bernoulli, from Sage

Or you can follow a Mathematica lead from StackExchange:

https://mathematica.stackexchange.com/a/549

4

https://mathematica.stackexchange.com/a/549

MAST90053 ExpMath

ContourPlot[

Evaluate@With[

{r = Sqrt[x^2 + y^2],

theta = ArcTan[x, y]},

r^2 - Cos[2*theta] == 0

],

{x, -1, 1}, {y, -1, 1}

]

-1.0 -0.5 0.0 0.5 1.0

-1.0

-0.5

0.0

0.5

1.0

Figure 1.2: The lemniscate of Bernoulli, Mathematica style

The question is: what is the arclength of this curve?
The standard arclength formula in polar coordinates gives

4∫
π/4

0
(r2 + (

dr

dθ
)

2

)

1/2

dθ = 4∫
π/4

0
(cos(2θ))

−1/2
dθ.

If we introduce a new variable α with the property that cos(2θ) = cos2α, the integral
becomes

4∫
π/2

0
(1 + cos2α)

−1/2
dα = 4∫

π/2

0
(2 cos2α + sin2α)

−1/2
dα.

One-half of this value is what Gauss denoted by $ in his diary entry.
We shouldn’t just believe him like this. Let’s check his calculations by estimating the

integral numerically.
In Sage:

37sage: f = 2/sqrt(2*cos(x)^2 + sin(x)^2)

38sage: varpi = numerical_integral(f, 0, pi/2)[0]

39sage: RR(pi/varpi)

401.19814023473559

Or in Mathematica:

In[1]:= Pi/NIntegrate[2/Sqrt[2*Cos[t]^2+Sin[t]^2],{t,0,Pi/2},

{WorkingPrecision->15}]

Out[1]= 1.19814023473559

Fine, Gauss seems to have gotten his decimals right. More generally, he proved

5

MAST90053 ExpMath

Theorem 1.2. If a ⩾ b > 0 then

∫

π/2

0
(a2 cos2α + b2 sin2α)

−1/2
dα =

π

2M(a, b)

(These are examples of so-called elliptic integrals, and the arithmetic-geometric mean is a
very efficient way of approximating them.)

Proof. Write

I(a, b) = ∫
π/2

0
(a2 cos2α + b2 sin2α)

−1/2
dα

We introduce a variable ϕ with the property that

sinα =
2a sinϕ

a + b + (a − b) sin2ϕ
(1.1)

Then some secret magic sauce (in Gauss’s words “after the development has been done
correctly, it will be seen”2):

(a2 cos2α + b2 sin2α)
−1/2

dα = (a21 cos2ϕ + b2 sin2ϕ)
−1/2

dϕ

which leads us to the conclusion
I(a, b) = I(a1, b1).

A moment’s further thought brings us to continue this as

I(a, b) = I(a1, b1) = I(a2, b2) = ⋅ ⋅ ⋅ = I(an, bn) = . . .

and some judicious (real) analysis allows us to pass to the limit and get

I(a, b) = I(M(a, b),M(a, b)) =
π

2M(a, b)

as the integral I(c, c) is a piece of cake.

Want to know more? There is plenty more where this came from, namely David Cox’s
articles [Cox85] (the shorter version) and [Cox84] (the longer one).

Ah, I can’t resist mentioning one more thing, which I learned from Cox’s papers. In 1973,
Salamin discovered the formula

π =
2M(

√
2,1)2

1 −∑
∞
n=1 2n+1(a2n − b

2
n)

which, as you can see, uses an infinite sum involving the terms an and bn of the sequence we
started with, as well as the common limit M(

√
2,1) of these two sequences. The existence

of such a formula for π is weird enough, but it turns out [Sal76] that it’s actually a pretty
efficient way to compute lots of digits of π (in that the number of significant digits doubles at
each step).

2Jacobi must have been as unimpressed as us by Gauss weaseling out of this, because he wrote down a
couple of intermediate steps: Given the relation (1.1) between α and ϕ, show that

cosα =
(2 cosϕ) (a21 cos2 ϕ + b21 sin2 ϕ)

1/2

a + b + (a − b) sin2 ϕ

and then that

(a2 cos2 α + b2 sin2 α)
1/2
= a

a + b − (a − b) sin2 ϕ

a + b + (a − b) sin2 ϕ

After this and implicitly differentiating (1.1), it’s all smooth sailing to Gauss’s equality of differentials.

6

MAST90053 ExpMath

1.3 Built-in agM commands

You might wonder if the arithmetic-geometric mean is already implemented in the software
we’re playing with.

But of course! In Mathematica, it is as simple as ArithmeticGeometricMean.
In Sage, it is a method (i.e. function attached to an object) of elements of RR (or other

RealFields, and variants):

41sage: a = RR(sqrt(2))

42sage: a.agm(1)

431.19814023473559

Exercise 1.3. Implement your own function myagm(a,b) that returns the agM of two positive
real numbers a and b. If you are so inclined, think about numerical issues.

7

2 Introduction to Sage and Mathematica

We look at a couple of innocent questions as an excuse to familiarise ourselves with the basics
of the software. I would recommend reading through this in parallel with Sage’s guided tour:

https://doc.sagemath.org/html/en/tutorial/tour.html

and bits of Mathematica’s fast introduction for math students:

https://www.wolfram.com/language/fast-introduction-for-math-students/en/

2.1 Lines on a plane

What is the maximal number of regions R(n) that you can obtain by drawing n lines in the
plane R2?

We’ll explore this by hand first. Clearly

R(0) = 1, R(1) = 2, R(2) = 4.

This is a good point to try guessing (a) the next number R(3) in the sequence and (b) a
formula for the general term of the sequence. Popular choices are R(3) = 8 and R(n) = 2(n+1)
or R(n) = 2n. This is actually incorrect, as paper-and-pen will convince you that

R(3) = 7

As you continue exploring this by hand, you may notice that, given an existing configuration
of lines, a new line creates k new regions if and only if it crosses k − 1 old lines. So if we want
to maximise k then we need to maximise the number of old lines we cross. This leads to the
recursion

R(0) = 1

R(n) = R(n − 1) + n if n > 1

We can implement this in Sage as

44sage: def R(n):

45....: if n == 0:

46....: return 1

47....: return R(n-1) + n

Let’s check the first few terms:

48sage: R(1)

492

50sage: [R(n) for n in range(4)]

51[1, 2, 4, 7]

This matches what we already knew. And now, into the great unknown:

8

https://doc.sagemath.org/html/en/tutorial/tour.html
https://www.wolfram.com/language/fast-introduction-for-math-students/en/

MAST90053 ExpMath

52sage: [R(n) for n in range(20)]

53[1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191]

In Mathematica, we could do something like

In[1]:= Clear[R]

In[2]:= R[0] = 1;

In[3]:= R[n_] := R[n-1] + n

In[4]:= Table[R[n], {n, 0, 19}]

Out[4]= {1, 2, 4, 7, 11, 16, 22, 29, 37, 46, 56, 67, 79, 92, 106, 121, 137,

> 154, 172, 191}

Very satisfying. How about a formula for R(n) though? We could think about it and figure
it out fairly quickly in this example, but let’s instead search for the first few terms in the
Online Encyclopedia of Integer Sequences (OEIS):

oeis.org

Feeding it 1,2,4,7,11,16,22,29, it gives a number of suggestions, the foremost of which is

A000124 Central polygonal numbers (the Lazy Caterer’s sequence): n(n+1)/2 +
1; or, maximal number of pieces formed when slicing a pancake with n cuts.

In fact, this is such a common workflow (work out the first few terms, consult OEIS), that
you can do it entirely from Sage1:

54sage: lst = [R(n) for n in range(8)]

55sage: lst

56[1, 2, 4, 7, 11, 16, 22, 29]

57sage: oeis(lst)

580: A000124: Central polygonal numbers (the Lazy Caterer’s sequence): n(n+1)/2 + 1;

or, maximal number of pieces formed when slicing a pancake with n cuts.

591: A152947: a(n) = 1 + (n-2)*(n-1)/2.

602: A098574: a(n) = Sum_{k=0..floor(n/7)} C(n-5*k,2*k).

OEIS helpfully gives us a closed form for the number of regions:

R(n) =
n(n + 1)

2
+ 1

Of course!

R(0) = 1

R(1) = R(0) + 1 = 1 + 1

R(2) = R(1) + 2 = 1 + 1 + 2

R(3) = R(2) + 3 = 1 + 1 + 2 + 3

R(n) = R(n − 1) + n = 1 +
n

∑
k=1

k = 1 +
n(n + 1)

2

By the way, in case you forgot the sum of the first n positive integers, both Sage and
Mathematica can help:

1Check out oeis? for more information.

9

oeis.org

MAST90053 ExpMath

61sage: k, n = var("k, n")

62sage: sum(k, k, 1, n)

631/2*n^2 + 1/2*n

64sage: sum(k, k, 1, n).factor()

651/2*(n + 1)*n

In[1]:= Sum[k, {k, 1, n}]

n (1 + n)

Out[1]= ---------

2

Exercise 2.1. Go one dimension up and play with it: what is the maximal number of regions
that can be obtained from n planes in R3?

As frivolous as the topic may seem (slicing a pancake with n cuts, indeed), it is an active
area of research. Look up hyperplane arrangements on the web, or [Sta12, Section 3.11].

2.2 Pascal mod 2

What is the distribution of even and odd numbers in Pascal’s triangle?
Let’s start by generating part of Pascal’s triangle. The glorious way to approach this is to

code the recursive construction of the triangle, but we’re after answers rather than glory so
we’ll just use the built-in binomial to get the binomial coefficients:

66sage: lst = [binomial(m, n) for m in range(2^3) for n in range(2^3)]

67sage: lst

68[1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 0, 1, 3, 3,

1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 1, 6, 15, 20,

15, 6, 1, 0, 1, 7, 21, 35, 35, 21, 7, 1]

69sage: matrix(2^3, lst)

70[1 0 0 0 0 0 0 0]

71[1 1 0 0 0 0 0 0]

72[1 2 1 0 0 0 0 0]

73[1 3 3 1 0 0 0 0]

74[1 4 6 4 1 0 0 0]

75[1 5 10 10 5 1 0 0]

76[1 6 15 20 15 6 1 0]

77[1 7 21 35 35 21 7 1]

Looks promising. Let’s reduce modulo 2:

78sage: lst = [binomial(m, n) % 2 for m in range(2^3) for n in range(2^3)]

79sage: matrix(2^3, lst)

80[1 0 0 0 0 0 0 0]

81[1 1 0 0 0 0 0 0]

82[1 0 1 0 0 0 0 0]

83[1 1 1 1 0 0 0 0]

84[1 0 0 0 1 0 0 0]

85[1 1 0 0 1 1 0 0]

86[1 0 1 0 1 0 1 0]

87[1 1 1 1 1 1 1 1]

10

MAST90053 ExpMath

We can maybe see a pattern, but a bigger version might help. And dots are more easily
visualised than 0s and 1s. So let’s plot a dot whenever the binomial coefficient is odd:

88sage: lst = [(m, n) for m in range(2^8) for n in range(2^8) \

89....: if (binomial(m, n) % 2) == 1]

90sage: p = list_plot(lst)

91sage: p.show()

92None

50 100 150 200 250

50

100

150

200

250

Figure 2.1: Pascal’s triangle modulo 2

For a proof of what you are observing visually (i.e. that the picture looks a lot like Sierpiński’s
gasket), see [Ste95, Encounter 2].

The Mathematica version:

In[1]:= Table[Binomial[n, m], {n, 0, 2^3}, {m, 0, 2^3}] // MatrixForm

Out[1]//MatrixForm= 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 2 1 0 0 0 0 0 0

1 3 3 1 0 0 0 0 0

1 4 6 4 1 0 0 0 0

1 5 10 10 5 1 0 0 0

1 6 15 20 15 6 1 0 0

1 7 21 35 35 21 7 1 0

1 8 28 56 70 56 28 8 1

11

MAST90053 ExpMath

In[2]:= Table[Mod[Binomial[n, m], 2], {n, 0, 2^3}, {m, 0, 2^3}] // MatrixForm

Out[2]//MatrixForm= 1 0 0 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0

1 1 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0

1 1 0 0 1 1 0 0 0

1 0 1 0 1 0 1 0 0

1 1 1 1 1 1 1 1 0

1 0 0 0 0 0 0 0 1

In[3]:= Table[Mod[Binomial[n, m], 2], {n, 0, 2^8}, {m, 0, 2^8}] // Image // ColorNegate

Exercise 2.2. Look up how to plot a matrix in Sage. Use this to produce a visualisation of
Pascal’s triangle mod 2.

Exercise 2.3. Visualise the reduction of Pascal’s triangle modulo other integers. Start with
3, 4, 5, . . . Maybe give different colours to the different remainders.

12

3 Constant recognition

A common occurrence in computer-assisted mathematics is obtaining a numerical approxi-
mation to a number we are interested in. How can we recognise whether this number is of a
special type (e.g. rational, or algebraic, or a simple combination of other numbers we like such
as π, e, M(

√
2,1))? There are surprisingly robust ways of approaching such an ill-defined

question, as we’ll see now.

3.1 Finding the fraction

The Riemann zeta-function is a function of a complex variable s defined, for Re(s) > 1, by
the infinite series

ζ(s) =
∞

∑
n=1

1

ns

Despite having Riemann’s (1826–1866) name attached to it, particular aspects had been
considered two hundred years before Riemann. As one such example, Mengoli asked in 1650
for the value

ζ(2) =
1

12
+

1

22
+

1

32
= . . .

What Mengoli meant by “value” was not an approximation such as

93sage: RR(zeta(2))

941.64493406684823

which he could compute himself (maybe to slightly fewer decimals). It was the exact value, in
closed form, a notion that is more metaphysical than mathematical. He was basically saying
“I want a simple and pretty answer involving terms that I know already, and a proof that the
answer is correct.” This became known as the Basel problem and Euler knocked it out of the
ballpark in 1741.

We’re going to leave the historical trail and imagine for a moment that, by some stroke of
genius, we thought it would be a good idea to divide ζ(2) by π2 (why not?)

95sage: RR(zeta(2)/pi^2)

960.166666666666667

That is very compelling. Is it an artifact of the low precision?

97sage: Rbig = RealField(1000)

98sage: Rbig(zeta(2)/pi^2) == Rbig(1/6)

99True

Indeed, as Euler proved, it is the case that

ζ(2)

π2
=

1

6

Let’s try another one. What could this be:

100sage: RR(zeta(4))

13

MAST90053 ExpMath

1011.08232323371114

Maybe more divine revelation can help:

102sage: RR(zeta(4)/pi^4)

1030.0111111111111111

Yes,
ζ(4)

π4
=

1

90
This is easy! I can’t believe there’s a whole chapter devoted to this. Okay, one more:

104sage: RR(zeta(12)/pi^12)

1051.08220214040320e-6

Huh? Surely we need more decimals:

106sage: Rbig = RealField(250)

107sage: a = Rbig(zeta(12)/pi^12)

108sage: a

1091.0822021404031986042568053150063732074314084896095478106060116642127224138e-6

There’s a certain gadget called a continued fraction, which is tailor-made for our problem1:

110sage: c = continued_fraction(a)

111sage: c

112[0; 924041, 1, 3, 1, 2, 2, 1, 14]

What this really means is

ζ(12)

π12
= 0 +

1

924041 +
1

1 +
1

3 +
1

1 +
1

2 +
1

2 +
1

1 +
1

14

=
691

638512875

More generally, a continued fraction expansion of a positive real number β is an expression
of the form

β = a0 +
1

a1 +
1

a2 +
1

a3 +
1

. . .
where a0 ∈ Z⩾0, a1, a2, ⋅ ⋅ ⋅ ∈ Z>0.

Given β, the continued fraction expansion is easily computed by the recursion

β0 = β

an = ⌊βn⌋ for n ⩾ 0

βn =
1

βn−1 − an−1
for n ⩾ 1

1And it’s been around forever. According to Wikipedia, the first documented use of continued fractions is in
Sanskrit and goes back to 499.

14

MAST90053 ExpMath

The truncation at an of a continued fraction is called its n-th convergent

a0 +
1

a1 +
1

a2 +
1

⋅ ⋅ ⋅ +
1

an

=
pn
qn

Exercise 3.1. If you harbour any nostalgia for the good ol’ Real Analysis days, try your
hand at this: prove that the sequence (pn/qn) converges as n→∞. One possible approach is
to first show that

pn−1qn − pnqn−1 = (−1)n

then conclude that the sequence (pn/qn) is Cauchy.

For our constant-recognition purposes, some relevant facts are

• β is rational if and only if its continued fraction expansion is finite. This is closely
related to the Euclidean algorithm for computing the greatest common denominator of
two integers.

• β is quadratic irrational if and only if its continued fraction expansion is (eventually)
periodic. (A quadratic irrational is a number of the form a + b

√
d with a, b ∈ Q and d a

squarefree positive integer.)

• Given a denominator upper bound Q, the convergent pn/qn with the largest n such that
qn ⩽ Q is the best rational approximation to β with denominator at most Q, in other
words it is the fraction p/q that minimises the quantity

∣qβ − p∣ subject to 1 ⩽ q ⩽ Q.

Some well-known constants have regular-looking continued fractions:

1 +
√

5

2
= φ = 1 +

1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

1 +
1

. . .

e = 2 +
1

1 +
1

2 +
1

1 +
1

1 +
1

4 +
1

1 +
1

1 +
1

6 +
1

1 +
1

. . .

15

MAST90053 ExpMath

while others do not:

π = 3 +
1

7 +
1

15 +
1

1 +
1

292 +
1

1 +
1

1 +
1

1 +
1

2 +
1

1 +
1

. . .

3.2 Finding the integer relation

Let’s take some of the discussion in the previous section and twist it around a little bit.
Suppose I consider the real numbers ζ(2) and π2 and I ask: are there integers a and b such
that

a ζ(2) + bπ2 = 0? (3.1)

With the 20/20 hindsight afforded by the previous section, we can confidently answer: Yes,
take a = 6 and b = −1. But the point is that in Equation (3.1) we organised this in the form of
a linear relation with integer coefficients between the two numbers ζ(2) and π2. And one can
consider linear relations involving more than two numbers.

More precisely, given a vector x = (x1, x2, . . . , xn) ∈ Rn, we define an integer relation for x
to be a nonzero vector m = (m1,m2, . . . ,mn) ∈ Zn with integer entries such that

m ⋅ x =m1x1 +m2x2 + ⋅ ⋅ ⋅ +mnxn = 0.

Of course, there is no guarantee that such a magical m exists. (Take, for instance,
x = (1,

√
2).) This leads us to state the

Integer relation problem: Given x ∈ Rn, either find a “small” integer relation m for x
or prove that no such “small” integer relation exists.

You may find the rather imprecise use of the adjective “small” distasteful. In that case,
there is a more assertive version of the problem that fixes a bound 2k and asks for m ∈ Zn
with ∥m∥ ⩽ 2n+k or a proof that there is no m ∈ Zn with ∥m∥ < 2k.

There is yet another version that is most attractive in practice, where we take the input
vector x ∈ Zn as well. The following example shows how this might come about.

Example 3.2. Let

x1 = arctan(1) = 0.785398 . . .

x2 = arctan(1/5) = 0.197395 . . .

x3 = arctan(1/239) = 0.004184 . . .

Can we find an integer relation m for x = (x1, x2, x3):

m1x1 +m2x2 +m3x3 = 0?

We turn this into a question about integers by fixing a multiplier A, say A = 106, and
considering

m1⌊Ax1⌋ +m2⌊Ax2⌋ +m3⌊Ax3⌋ ≈ 0,

16

MAST90053 ExpMath

that is
785398m1 + 197395m2 + 4184m3 ≈ 0.

There are several approaches to finding m1,m2,m3 and we will be looking in more detail at
one of them, the LLL algorithm. For now I will just say that this algorithm takes the matrix

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

785398 197395 4184

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and returns the matrix
⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −13 −52
−4 58 203
1 −296 184
2 272 345

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The first column of this matrix will be telling us that

785398 ⋅ 1 + 197395 ⋅ (−4) + 4184 ⋅ 1 = 2,

or, going back to our original real numbers, that

0.785398 ⋅ 1 + 0.197395 ⋅ (−4) + 0.004184 ⋅ 1 =
2

106
≈ 0.

In other words, m = (1,−4,1) seems to be an integer relation.
Indeed, Machin found this formula in 1706:

arctan(1) = 4 arctan(1/5) − arctan(1/239).

It works remarkably well as a rapidly convergent approximation to π = 4 arctan(1).

Obvious questions remain. What is this LLL algorithm? What exactly is it doing to that
matrix? And how come the first column of the resulting matrix gives us the integer relation
we have been looking for?

A quick answer is that LLL is a lattice reduction algorithm, and that the integer relation
problem can be solved via lattice reduction. To make sense of this, we need to know something
about lattices.

3.3 Lattice reduction

Fix a natural number n and let V be an n-dimensional real vector space endowed with an
inner product u ⋅ v. (You may think of V as being Rn with the usual dot product.)

A lattice in V is a subset L ⊂ V such that there exists a basis {b1,b2, . . . ,bn} of V with

L = SpanZ{b1,b2, . . . ,bn} = {r1b1 + r2b2 + ⋅ ⋅ ⋅ + rnbn ∣ r1, r2, . . . , rn ∈ Z}.

We say that {b1, . . . ,bn} is a Z-basis for the lattice L, and we call n the rank of L. The
determinant d(L) of L is the determinant of the matrix with columns b1, . . . ,bn. This turns
out to be independent of the choice of basis.

It would be good to recall the setup of Gram–Schmidt orthogonalisation. Let b1, . . . ,bn be
a basis for V . For i = 1, . . . , n let Vi = SpanR{b1, . . . ,bi}.

17

MAST90053 ExpMath

The Gram–Schmidt process returns vectors b∗1, . . . ,b
∗
n ∈ V and scalars µij ∈ R for 1 ⩽ j < i ⩽

n, defined inductively by

b∗i = projV ⊥i−1(bi) = bi − projVi−1(bi) = bi −
i−1

∑
j=1

µijb
∗
j

µij =
bi ⋅ b∗j
b∗j ⋅ b

∗
j

with b∗1 = b1.
Note that, for all i = 2, . . . , n,

Vi−1 = SpanR{b1, . . . ,bi−1} = SpanR{b
∗
1, . . . ,b

∗
i−1}

and b∗1, . . . ,b
∗
n is an orthogonal basis of V .

Let’s go back to the setup of a lattice L ⊂ V . We say that a basis c1, . . . ,cn for L is
(LLL-)reduced if

∣µij ∣ ⩽
1

2
for all 1 ⩽ j < i ⩽ n

∥c∗i + µi,i−1c
∗
i−1∥

2 ⩾
3

4
∥c∗i−1∥

2 for all 1 < i ⩽ n.

Here 3/4 can be replaced by anything in the open interval (1/4,1).
The advantage of a reduced basis is that its vectors are in some sense small:

Proposition 3.3. If {c1, . . . ,cn} is a reduced basis of a lattice L, then

∥cj∥
2 ⩽ 2i−1∥c∗i ∥

2 for all 1 ⩽ j ⩽ i ⩽ n

d(L) ⩽∏
i

∥ci∥ ⩽ 2n(n−1)/4d(L)

∥c1∥ ⩽ 2(n−1)/4d(L)1/n

∥c1∥
2 ⩽ 2n−1∥x∥2 for all x ∈ L − {0}

It is worth dwelling a little on this last inequality. If the constant (once L is fixed) multiplier
2n−1 were not there, we would have that c1 is a shortest nonzero vector in L. This may seem
like a desirable outcome (and indeed many problems rely on finding a shortest vector), but
it has the great disadvantage that its time complexity is exponential in the dimension n. A
reduced basis gives up some control on the size of c1, to the extent shown in the last inequality
of the Proposition. What is gained however is that this can be computed in time polynomial
in the dimension n.

The latter is achieved by the LLL reduction algorithm. Its name is derived from its
authors, Arjen Lenstra, Hendrik Lenstra, and László Lovász. The algorithm starts with some
given basis of L and iteratively modifies it to achieve a reduced one. It is not particularly
complicated, and the exposition in the original paper [LLL82] is quite good.

Example 3.4. Going back to the situation of Example 3.2, the lattice is Z-spanned by the
columns of the matrix

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0
0 1 0
0 0 1

785398 197395 4184

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

The norms of the three basis vectors are roughly

785398.0,197395.0,4184.0

18

MAST90053 ExpMath

The LLL algorithm returns the matrix

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 −13 −52
−4 58 203
1 −296 184
2 272 345

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

whose columns are the vectors in the reduced basis, with norms roughly

4.7,406.4,443.6

Remember that Proposition 3.3 only guarantees that the first basis vector is within a factor
of

√
23−1 = 2 of the shortest nonzero vector. In this example however, it can be checked that

the first basis vector is actually a shortest vector. This does happen sometimes, an instance
of the fact that the worst-case performance and the average-case performance of an algorithm
can be quite different.

How does lattice reduction help with finding integer relations? (It may be good to follow
along with Example 3.2.) Given x1, . . . , xn ∈ R, let x′1, . . . , x

′
n ∈ R be close approximations

(such as, for instance, truncating after a certain number of digits). Let A be a multiplier.
Consider the Z-linear map Zn → Rn+1 given by

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m1

⋮

mn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

↦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1

⋮

mn

A∑imix′i

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Let L denote the image of this map; it is a lattice (of rank n) inside an n-dimensional subspace
V of Rn+1.

In other words, we consider the matrix representation of the Z-linear map above

M =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 . . . 0
0 1 . . . 0
0 0 . . . 0
⋮ ⋮ ⋱ ⋮

0 0 . . . 1
Ax′1 Ax′2 . . . Ax′n

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Letting b1,b2, . . . ,bn denote the columns of this matrix, we have

L = SpanZ{b1, . . . ,bn} ⊂ V = SpanR{b1, . . . ,bn}

The crucial observation is that

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

m1

⋮

mn

ε

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

∈ L if and only if m1x
′
1 + ⋅ ⋅ ⋅ +mnx

′
n =

ε

A
.

If ε is relatively small then (since x′i ≈ xi)

m1x1 + ⋅ ⋅ ⋅ +mnxn ≈ 0.

So we are interested in finding elements of L that have small components. But, as we have
seen above, the first vector in a reduced basis for L will be relatively small. So we apply
LLL to the basis b1, . . . ,bn of L, obtain a reduced basis c1, . . . ,cn, and take the relation
determined by the first vector c1.

19

4 Polynomial systems and Gröbner bases

From linear algebra, we know how to solve a system of linear equations by doing Gaussian
elimination (aka row reduction). But what can we do if we are faced with a system of nonlinear
polynomial equations such as

x2 + y2 − 1 = 0

x2 − y = 0

Okay, that’s not a very good example since we recognise the first equation as describing the
unit circle and the second as a parabola and it is easy to do a substitution and solve for the
two intersection points.

Exercise 4.1. Do this. (Find the real solutions (x, y) of this system.)
Does anything change if I ask for complex solutions?
Optional: how about solutions in a finite field Fp?

Such adhoc methods will not always be available, for instance given

6x2y − x + 4y3 − 1 = 0

2xy + y3 = 0

There is a systematic approach to simplifying such systems with a view towards under-
standing their solutions. This approach is based on the notion of Gröbner basis, for which we
need to describe/review a bit of algebra.

4.1 Polynomial rings and ideals

Just as vector spaces are the natural environment for reasoning about systems of linear equa-
tions, (multivariate) polynomial rings are the natural environment for systems of polynomial
equations.

The first ingredient is a field of coefficients k. For the purposes of our discussion you can
imagine this to be whatever field you prefer, e.g. Q or R or C. Then we form polynomial
rings like

k[x1, . . . , xn] = {∑ ca1,...,anx
a1
1 . . . xann ∣ a1, . . . , an ∈ Z⩾0, ca1,...,an ∈ k} ,

where the sums have only finitely many terms.
We will refer to the elements of k[x1, . . . , xn] as polynomials and perform the arithmetic

operations of addition and multiplication in the usual way. We might sometimes call them
formal polynomials as opposed to the polynomial functions that you encounter in calculus
(broadly construed). The link between the two is given by the operation of evaluation. For
any b = (b1, . . . , bn) ∈ kn we have evb∶k[x1, . . . , xn] → k given by

evb(f) = f(b1, . . . , bn)

20

MAST90053 ExpMath

where we substitute the field element b1 for the formal variable x1, b2 for x2, etc. This allows
us to think of f ∈ k[x1, . . . , xn] as (giving rise to) a function F ∶kn → k defined by

F (b1, . . . , bn) = evb(f).

While it is important to have an awareness of the distinction between polynomial and
polynomial function, we’ll now join the rest of the planet in abusing notation and writing
f(b1, . . . , bn) when we mean F (b1, . . . , bn).

We can think of the solutions of the system of equations given above as

V (f1, f2) = {(b1, b2) ∈ R2 ∣ f1(b1, b2) = 0, f2(b1, b2) = 0}

where f1(x, y) = 6x2y − x + 4y3 − 1 ∈ R[x, y], f2(x, y) = 2xy + y3 = 0 ∈ R[x, y], and V stands for
vanishing set.

We can define similarly the vanishing set of any subset of polynomials A ⊂ k[x1, . . . , xn]:

V (A) = {(b1, . . . , bn) ∈ k
n ∣ f(b1, . . . , bn) = 0 for all f ∈ A}.

And we can turn this idea on its head and define, for any subset B ⊂ kn, the set of
polynomials that vanish identically on B:

I(B) = {f ∈ k[x1, . . . , xn] ∣ f(b1, . . . , bn) = 0 for all (b1, . . . , bn) ∈ B}.

The interplay between these two functions V and I is the starting point of algebraic geometry
and a beautiful piece of mathematics.

But I digress. The subset I(B) ⊂ k[x1, . . . , xn] exhibits some interesting extra structure:

• if f1 and f2 are in I(B), then f1 + f2 ∈ I(B)

• if f is in I(B) and r is in k[x1, . . . , xn], then rf ∈ I(B)

A nonempty subset of k[x1, . . . , xn] with these properties is called an ideal.
A great way of getting lots of ideals is choosing some elements f1, . . . , fm ∈ k[x1, . . . , xn]

and combining them as follows:

⟨f1, . . . , fm⟩ = {r1f1 + . . . rmfm ∣ r1, . . . , rm ∈ k[x1, . . . , xn]}.

(Compare this to the span of vectors f1, . . . , fm. It is similar in shape but definitely not the
same thing.)

Exercise 4.2. Prove that ⟨f1, . . . , fm⟩ is indeed an ideal of k[x1, . . . , xn]. It is called the ideal
generated by f1, . . . , fm.

Going back to a system such as

6x2y − x + 4y3 − 1 = 0

2xy + y3 = 0

our strategy will be to form the ideal I = ⟨f1, f2⟩ of R[x, y] with f1 = 6x2y − x + 4y3 − 1 and
f2 = 2xy + y3 and try to gain a better understanding of this ideal. More precisely, we will aim
to find a simpler set of generators for this ideal, one that will illuminate the solutions of the
system.

To get a feel for this in more familiar settings, we consider two very special cases of the
problem.

21

MAST90053 ExpMath

4.2 Linear systems

We go back to the linear case momentarily, because we know how to deal with it. Consider
the ideal I = ⟨x + y − z,2x + 3y + 2z⟩ in R[x, y, z]. Its vanishing set is the set of solutions of
the linear system

x + y − z = 0

2x + 3y + 2z = 0

In order to solve this system, we apply Gaussian elimination to the associated matrix

[
1 1 −1
2 3 2

] → [
1 1 −1
0 1 4

]

which tells us that I = ⟨x + y − z, y + 4z⟩, an arguably simpler set of generators than the one
we started with. We could even go all in with Gauss–Jordan elimination to get the reduced
row-echelon form

[
1 0 −5
0 1 4

]

telling us that I = ⟨x − 5z, y + 4z⟩.
From these generators we see that we can express both x and y in terms of z, so the solution

set is one-dimensional and we can write down an explicit parametrisation in terms of z.
So in this special case we used elementary row operations in order to simplify the generators

of I. Note that we implicitly ordered our variables so that x comes before y comes before z.
Had we decided to order them differently, say z before y before x, the same method applies

but we would get the differently-looking answer I = ⟨−z+y+x, 2z+3y+2x⟩ = ⟨z−x/5, y+4x/5⟩.
This is a feature of the whole multivariate polyonomial business, and we’ll have to think about
it more carefully soon.

4.3 Single variable higher degree case

The other special situation we consider is that of higher-degree polynomials in a single variable
x. In other words, we now work with arbitrary elements of k[x].

Let’s take the ideal I = ⟨x3 − 2x2 + 2x+ 8, 2x2 + 3x+ 1⟩. It’s not clear what the vanishing set
of I might be, so we try to find a simpler set of generators.

We can do this by polynomial long division:

x3 − 2x2 + 2x + 8 = (
1

2
x −

7

4
)(2x2 + 3x + 1) + (

27

4
x +

39

4
) ,

from which we conclude that I = ⟨2x2 + 3x + 1, 274 x +
39
4
⟩. This is simpler than before (the

generators have degrees 2 and 1 instead of the original 3 and 2), but still not as simple as
could be1.

We repeat the process:

2x2 + 3x + 1 = (
8

27
x +

4

243
)(

27

4
x +

39

4
) +

68

81
,

so I = ⟨27
4 x +

39
4 ,

68
81
⟩. We could do another long division of the first generator by the second,

but that’s overkill since we already have the condition 68
81 = 0, which indicates that the system

has no solutions.
1You can however use the degree 1 generator to solve for x and then plug the solution into the other generator

to reach the same conclusion as in the next paragraph.

22

MAST90053 ExpMath

Note that there is no ambiguity of ordering of the variables here, as there is a single variable.
The Euclidean algorithm for k[x] (which is what this process of repeated long division is

called) shows that every ideal in k[x] can be generated by a single element. This ceases to be
the case for the general situation k[x1, . . . , xn] (can you think of an ideal in there that cannot
be generated by a single element), but something useful is still true:

Theorem 4.3 (Hilbert Basis Theorem). Every ideal in k[x1, . . . , xn] can be generated by a
finite set of elements.

Having considered the two special cases of this section and the previous one, we turn our
attention to the general case of an ideal (or system of equations) in k[x1, . . . , xn]. Before
we investigate the common generalisation of Gaussian elimination and of single-variable
polynomial long division, let’s note that many questions about the solution set of a system
can be expressed in terms of the associated ideal.

For instance, if k is an algebraically closed field (e.g. C) and I is the ideal associated with a
system of equations in k[x1, . . . , xn], then the system has no solutions if and only if I contains
the constant 1. (As we observed in the example of this section, one direction of this claim is
very easy and holds without any conditions on the field k.)

For the remainder of this chapter, we will focus on the ideals themselves rather than the
systems of equations that they may have originated from.

4.4 Monomial orders

Polynomial long division in one variable x makes crucial use that people tend to order
monomials 1, x, x2, x3, . . . by degreeso that the leading term of 3x4 + x3 − x2 + 1 is 3x4 and
that of x2 − x + 2 is x2. So one step of the division algorithm simply divides one leading term
3x4 by the other x2.

How should we proceed, however, in order to divide x2y2z2 + xy4z − 1 by xy2z − 2z + 3?
There does not seem to be any “natural” reason to prefer x2y2z2 over xy4z as the leading
term of the first polynomial. So it is a matter of choice.

What we are choosing here is a so-called monomial order, that is an order relation > on the
set of monomials

{xa = xa11 . . . xann ∣ a1, . . . , an ∈ Z⩾0}

with the following nice properties:

(a) it is a total order relation: given any two monomials xa and xb with a ≠ b, either xa > xb

or xb > xa;

(b) it is compatible with multiplication in k[x1, . . . , xn]: if xa > xb and xc is any monomial,
then xa+c > xb+c;

(c) it is a well-ordering: every nonempty set of monomials has a smallest element under >.

The ring of polynomials in one variable x has a unique monomial order, namely

⋅ ⋅ ⋅ > xn > xn−1 > ⋅ ⋅ ⋅ > x2 > x > 1

that we already alluded to.
If there is more than one variable, then there are many monomial orders, even after we

choose an order on the variables themselves, which we do now once and for all:

x1 > x2 > ⋅ ⋅ ⋅ > xn.

Here are some popular monomial orders, together with their effect on the monomials
{x1x22x3, x

2
3, x

3
1, x

2
1x

2
3}:

23

MAST90053 ExpMath

• Lexicographic order : we say xa >lex xb if the vector a − b ∈ Zn has positive leftmost
nonzero entry.

This gives x31 > x
2
1x

2
3 > x1x

2
2x3 > x

2
3.

• Graded (or degree) lexicographic order : we say xa >grlex xb if

either ∑ai > ∑ bi

or ∑ai = ∑ bi and xa >lex x
b.

This gives x21x
2
3 > x1x

2
2x3 > x

3
1 > x

2
3.

• Graded reverse lexicographic order : we say xa >grevlex xb if

either ∑ai > ∑ bi

or ∑ai = ∑ bi and the vector a − b has negative rightmost nonzero entry.

This gives x1x22x3 > x
2
1x

2
3 > x

3
1 > x

2
3.

While lexicographic order is the most familiar (it’s used in dictionaries, for instance), it is
almost never the best choice in terms of working with ideals. Which of the other orders is
best to use is a subtle question whose answer depends on the application one has in mind.
We’ll ignore such details and move on.

4.5 Multivariate polynomial division

Assume now that we have fixed a monomial order on k[x1, . . . , xn].
Given a polynomial g ∈ k[x1, . . . , xn], we write LT (g) for the leading term of g, i.e. the

largest term of g with respect to the monomial order >. For instance, with lex order we have

LT (3x31x
2
2 + x

2
1x2x

3
3) = 3x31x

2
2,

while with grevlex order:
LT (3x31x

2
2 + x

2
1x2x

3
3) = x

2
1x2x

3
3.

Let F = (f1, . . . , fs) be an s-tuple of polynomials in k[x1, . . . , xn]. Given f ∈ k[x1, . . . , xn],
there is an expression of the form

f = q1f1 + ⋅ ⋅ ⋅ + qsfs + r, with qi, r ∈ k[x1, . . . , xn]

where

• for each i, qifi = 0 or LT (f) ⩾ LT (qifi);

• r = 0 or r is made of monomials that are not divisible by any of LT (f1), . . . , LT (fs).

We refer to this as a division of f by F and to r as the remainder of this division.

Example 4.4. Consider Q[x1, x2, x3] with lex order. Let f = 3x31x
2
2 +x

2
1x2x

3
3 and F = (f1, f2)

with

f1 = x
2
1x2 + 2x3

f2 = x
2
3

Then the result of a division of f by F looks like

f = (3x1x2 + x
3
3)f1 − (2x23)f2 − 6x1x2x3.

24

MAST90053 ExpMath

4.6 Gröbner bases

In the one variable case, the ideal membership problem is solved by the division algorithm as
follows: starting with an ideal I = ⟨f1, . . . , fs⟩, apply the division algorithm repeatedly to find
the gcd g of the fi’s, so that I = ⟨g⟩. Then given any f , divide f by g with remainder r. We
have that f ∈ I if and only if r = 0.

We would like to adapt this to the multivariate case, using the division algorithm discussed
in the previous section. But it turns out that we cannot simply use division by F = (f1, . . . , fs),
where f1, . . . , fs are arbitrary generators of the ideal I.

The extra property that we need to make this work is encompassed by the following
definition: Fix a monomial order on k[x1, . . . , xn] and let I be an ideal. A Gröbner basis for
I is a finite set G = {g1, . . . , gt} ⊂ I such that for every f ∈ I, LT (f) is divisible by LT (gi) for
some i.

Here are some useful (not necessarily obvious) facts about Gröbner bases:

(a) A Gröbner basis for I is a set of generators of I.

(b) For every ideal I and every choice of monomial order, there is a Gröbner basis. (For the
zero ideal ⟨0⟩, by convention ∅ is a Gröbner basis.)

(c) There are algorithms (the first one of which was due to Buchberger) that start with a
generating set f1, . . . , fs for the ideal I and produce a Gröbner basis for I.

(d) Even with a fixed choice of monomial order, there is not a unique Gröbner basis for
each ideal I. It is possible to impose some extra conditions on the generators to arrive
at the notion of a monic Gröbner basis. Then it is true that, a monomial order having
been fixed, every ideal in k[x1, . . . , xn] has a unique monic Gröbner basis.

(e) If G is a Gröbner basis for I and f ∈ I, then the remainder of the division of f by
G is zero. (This of course gives us a solution for the ideal membership problem in
k[x1, . . . , xn].)

Example 4.5. Going back to Example 4.4, {f1, f2} is a Gröbner basis for the ideal I =

⟨f1, f2⟩ ⊂ Q[x1, x2, x3], and we can conclude that f ∉ I since the remainder −6x1x2x3 ≠ 0.

25

5 Hypergeometric summation machine

Did you know that for any n ∈ N

∑
k

(−1)k (
2n

k
)
3

= (−1)n
(3n)!

(n!)3
?

(The exclamation marks are of course factorials; the question mark is honest.)
In this chapter we’ll not only see that this is true, but how to get your computer to prove

this and many other identities that are too tedious to do by hand.

5.1 Hypergeometric stuff

We will consider definite sums of the form

F =
∞

∑
k=−∞

tk

especially when the general term tk has finite support, i.e. it is zero for all but finitely many
values of k. As a prototype for this, fix n ∈ N and think of

∞

∑
k=−∞

(
n

k
)

A hypergeometric series is a sum as above in which the ratio tk+1
tk

is a rational function of k,
that is

tk+1
tk

=
P (k)

Q(k)

with P and Q both polynomials in k. We then refer to tk as a hypergeometric term.

Example 5.1. If tk = (
n
k
) then

tk+1
tk

=
n − k

k + 1

So the sum
∞

∑
k=−∞

(
n

k
)

is hypergeometric.

Every hypergeometric series has a representation in terms of the generalised hypergeometric
function

pFq[
α1, . . . , αp
β1, . . . , βq

;x] =
∞

∑
k=0

Akx
k =

∞

∑
k=0

(α1)k . . . (αp)k
(β1)k . . . (βq)k

xk

k!
,

where (y)k denotes the Pochhammer symbol, aka the rising factorial

(y)k = y(y + 1) . . . (y + k − 1)

26

MAST90053 ExpMath

We note that none of the lower parameters βi are allowed to be negative integer or zero
(otherwise we get a zero appearing in the denominator).

In the cases we’ll consider the convergence of pFq will not be an issue. We think of pFq as a
function of x, and most of the time it will be a polynomial.

Noting that
(y)k+1
(y)k

= y + k,

we can investigate whether pFq really is hypergeometric

Ak+1xk+1

Akxk
=

(k + α1) . . . (k + αp)

(k + β1) . . . (k + βq)

x

(k + 1)

This is indeed a rational function of k (with some parameters thrown in).

Example 5.2 (Geometric series). For ∣x∣ < 1 we have

1

1 − x
=

∞

∑
k=0

xk = 1F0[
1

−
;x]

Example 5.3 (Exponential).

ex =
∞

∑
k=0

xk

k!
= 0F0[

−

−
;x]

Example 5.4. Life is not always so accommodating. Consider

n

∑
k=0

k(
n

k
)

which is certainly hypergeometric as the ratio of consecutive terms is

tk+1
tk

=
n − k

k

a rational function of k. But direct pattern matching would give us a lower parameter of 0,
which is not allowed.

Here we need a shift: let uk = tk+1, then

uk+1
uk

=
n − k − 1

k + 1
=
k + 1 − n

1

−1

k + 1
,

so that, since u0 = t1 = n,

n

∑
k=0

tk =
n+1

∑
k+1=1

uk = u1 + u2 + ⋅ ⋅ ⋅ + un+1 = u0 (
u1
u0

+
u2
u0

+ ⋅ ⋅ ⋅ +
un+1
u0

) = n ⋅ 1F0[
1 − n

−
;−1]

5.2 Celine Fasenmyer’s algorithm for finding recurrence
relations

Let’s consider, for n ∈ N,

sn =
∞

∑
k=−∞

f(n, k)

with

f(n, k) = k(
n

k
)

27

MAST90053 ExpMath

Our aim is to find a recurrence relation for sn (as a function of n). The approach is to first
find a k-free recurrence relation for the summand f(n, k), that is a relation of the form

I

∑
i=0

J

∑
j=0

aij(n) f(n + j, k + i) = 0,

for suitable I and J and coefficients aij(n) that are polynomials in n (but do not depend on
k).

In our example, we’ll try with I = J = 1 and we are looking for

a00f(n, k) + a01f(n + 1, k) + a10f(n, k + 1) + a11f(n + 1, k + 1) = 0,

or more precisely

a00k(
n

k
) + a01k(

n + 1

k
) + a10(k + 1)(

n

k + 1
) + a11(k + 1)(

n + 1

k + 1
) = 0.

Divide through by k(nk) to get something involving rational functions of k and n:

a00 + a01
n + 1

n + 1 − k
+ a10

n − k

k
+ a11

n + 1

k
= 0

Get rid of the denominators by multiplying the whole thing by k(n + 1 − k):

a00k(n + 1 − k) + a01k(n + 1) + a10(n − k)(n + 1 − k) + a11(n + 1)(n + 1 − k) = 0

Next rewrite the left hand side as a polynomial in k:

(−a00+a10)k
2+(a00(n+1)+a01(n+1)−a10(2n+1)−a11(n+1))k+(a10n(n+1)+a11(n+1)2) = 0.

If we equate coefficients we get the system of linear equations

⎡
⎢
⎢
⎢
⎢
⎢
⎣

−1 0 1 0
n + 1 n + 1 −2n − 1 −n − 1

0 0 n n + 1

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a00
a01
a10
a11

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
0
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

The space of solutions is one-dimensional with free parameter a11. Taking a11 = 1 we have the
solution

a00 = −
n + 1

n
a01 = 0 a10 = −

n + 1

n
a11 = 1,

which gives the k-free recurrence relation

−(n + 1)f(n, k) − (n + 1)f(n, k + 1) + nf(n + 1, k + 1) = 0

It remains to turn this into a relation for sn. Note that

sn =
∞

∑
k=−∞

f(n, k) =
∞

∑
k=−∞

f(n, k + 1)

so summing the k-free relation over k we get

−2(n + 1)sn + nsn+1 = 0

This was the original objective, but we can push this a little further to get a simple expression
for sn. We have s1 = 1 and

sn+1 = 2
n + 1

n
sn

28

MAST90053 ExpMath

and by unrolling this recursion we conclude that

sn = 2n−1 n

So

∑
k

k(
n

k
) = 2n−1 n.

In the example we looked at, we were able to find a k-free recurrence relation with I = J = 1.
In general this may not be possible, i.e. the resulting homogeneous linear system may have no
nonzero solutions. In that case, we increase I and/or J and try again.

But how do we know that suitably large I and J will work? The answer is that it is
possible to write down explicit bounds for I and J that guarantee success, if f(n, k) is a
proper hypergeometric term:

(a) f has finite support

(b) f can be written in the form

f(n, k) = P (n, k)
Q(n, k)

R(n, k)
wn zk,

where P is a polynomial in n and k and Q and R are finite products of Γ-factors of the
form Γ(αn + βk + γ).

5.3 Indefinite hypergeometric summation

Let’s move temporarily from the discrete to the continuous. A basic task in calculus is, given
a function f(x), finding an antiderivative F (x) such that

f(x) = F ′(x)

If we can solve this indefinite integral problem, then we can trivially solve the definite integral
problem using the fundamental theorem of calculus:

∫

b

a
f(x)dx = F (b) − F (a)

Our interest is in the discrete realm. Here the continuous (real) variable x is replaced
by the discrete (integer) variable k, the function f(x) is replaced by the sequence (ak), the
differentiation operation

F ′(x) = lim
h→0

F (x + h) − f(x)

h

is replaced by the difference operation

∆Ak = Ak+1 −Ak,

and the integration

∫

∞

−∞
f(x)dx

is replaced by the summation
∞

∑
k=−∞

ak

29

MAST90053 ExpMath

What is the equivalent of the fundamental theorem of calculus? Suppose we are given a
sequence (ak) and we can find an antidifference (Ak) for it, so that

ak = ∆Ak = Ak+1 −Ak

Then the definite summation problem is a simple case of telescoping:

c

∑
k=b

ak = (Ac+1 −Ac) + (Ac −Ac−1) + ⋅ ⋅ ⋅ + (Ab+1 −Ab) = Ac+1 −Ab

So how do we find an antidifference (Ak) of (ak)? This is the problem of indefinite summation,
and we will discuss an algorithmic solution for it in the hypergeometric case.

More precisely, we say that (ak) is Gosper-summable if there exists an antidifference (Ak)
that is a hypergeometric term. Gosper’s algorithm is a procedure that decides whether (ak)
is Gosper-summable, and if yes, produces an antidifference hypergeometric term.

Here is an outline of this algorithm:

(a) Identify the ratio ak+1/ak as a rational function in k:

ak+1
ak

=
n(k)

d(k)
,

where n and d are polynomials in k.

(b) Using Lemma 5.5, find polynomials p, q, r in k with the property that

ak+1
ak

=
p(k + 1)

p(k)

q(k + 1)

r(k + 1)

and gcd(q(k), r(k + j)) = 1 for all j ∈ Z⩾0.

(c) Compute a degree bound N for the auxiliary polynomial f , using Lemma 5.6. If N < 0,
stop because no antidifference hypergeometric term exists.

(d) Take a general polynomial of degree at most N in k

f(k) = c0 + c1k + ⋅ ⋅ ⋅ + cNk
N ,

plug it into the equation

p(k) = q(k + 1)f(k) − r(k)f(k − 1),

and solve the resulting system of linear equations in the unknowns cj.

If the system has no solution, stop because no antidifference hypergeometric term exists.

(e) Calculate

Ak =
r(k)

p(k)
f(k − 1)ak, (5.1)

the solution to the antidifference problem.

Lemma 5.5. The functions p(k), q(k), and r(k) can be chosen in such a way that

gcd(q(k), r(k + j)) = 1 for all j ∈ Z⩾0.

30

MAST90053 ExpMath

We’re not going to prove this, but here is the idea of how it works: we have already from
step (a) an expression

ak+1
ak

=
n(k)

d(k)

So as a first approximation we can take p(k) = 1, q(k) = n(k − 1), and r(k) = d(k − 1). If the
gcd condition is satisfied, we’re done!

If not, there exists j such that

gcd(q(k), r(k + j)) = g(k) with deg g(k) > 0.

For such a j, we can fix our original choice by putting

p′(k) = p(k)g(k)g(k − 1) . . . g(k − j + 1), q′(k) =
q(k)

g(k)
, r′(k) =

r(k)

g(k − j)

and we can easily check that

p′(k + 1)

p′(k)

q′(k + 1)

r′(k + 1)
=
p(k + 1)

p(k)

q(k + 1)

r(k + 1)
=
ak+1
ak

and the gcd condition holds for q′ and r′.

Lemma 5.6. The polynomial f(k) has degree ⩽ N , where N is determined as follows.
Define polynomials σ, δ by σ(k) = q(k + 1) + r(k) and δ(k) = q(k + 1) − r(k). Let s be the

degree of σ and d the degree of δ. If s ⩽ d, then

N = deg p(k) − d.

Otherwise, let a be the coefficient of ks in σ(k) and let b be the coefficient of ks−1 in δ(k).
If (−2b/a) ∉ Z⩾0 then

N = deg p(k) − s + 1.

If (−2b/a) ∈ Z⩾0 then

N = max{−
2b

a
,deg p(k) − s + 1} .

Note: In applying Lemma 5.6 we hay find ourselves in the situation where one of the
polynomials is the constant zero. Here the degree convention is that

deg(nonzero constant) = 0 but deg(0) = −∞.

Looking at Equation (5.1), we see that when (ak) is Gosper-summable, then the hypergeo-
metric term antidifference Ak is a rational function multiple of ak:

Ak = R(k)ak where R(k) =
r(k)

p(k)
f(k − 1)

We call the rational function R(k) the rational certificate of ak, as it allows us to certify
the result Ak without going through all the work of determining Ak in the first place:

Ak = R(k)ak if and only if
R(k) + 1

R(k + 1)
=
ak+1
ak

31

MAST90053 ExpMath

5.4 Definite hypergeometric summation via the
Wilf–Zeilberger method

Gosper’s algorithm for indefinite summation can be used in certain circumstances to evaluate
definite summations.

Proposition 5.7. Suppose a(n, k) is a hypergeometric term with respect to both variables
n ∈ Z⩾0 and k ∈ Z, Gosper-summable with respect to k, and with finite support (i.e. for any
n ∈ Z⩾0, a(n, k) ≠ 0 for finitely many k ∈ Z). Then

∑
k

a(n, k) = 0

for all but finitely many n ∈ Z⩾0.
More precisely, if A(n, k) = R(n, k)a(n, k) is an antidifference of a(n, k) with respect to k,

then the above definite sum is zero for all n ∈ Z⩾0 for which the denominator of R(n, k) is not
identically zero.

Proof. This is quite straightforward. If n ∈ Z⩾0 is not a singular point of R(n, k) then

a(n, k) = A(n, k + 1) −A(n, k)

so after summing over k

∑
k

a(n, k) = ∑
k

(A(n, k + 1) −A(n, k))

and the sum has only finitely many nonzero terms as a(n, k) has finite support. But the right
hand side is telescoping so we get zero.

Example 5.8. The term

a(n, k) = (−1)k (
n

k
)

is Gosper-summable with antidifference

A(n, k) = −
k

n
a(n, k)

So for n > 0 the proposition gives

n

∑
k=0

(−1)k (
n

k
) = ∑

k

(−1)k (
n

k
) = 0.

If n = 0 the proposition does not apply and we can check manually that

0

∑
k=0

(−1)k (
0

k
) = (−1)0 (

0

0
) = 1.

Example 5.9. The term

a(n, k) =
(
n
k
)(
n+1
k
)

(
2n
2k
)

is Gosper-summable with

A(n, k) =
(2n − 2k + 1)k

n + 1
a(n, k)

32

MAST90053 ExpMath

As it stands though, a(n, k) is undefined for k < 0 or k > n. The alternative representation

b(n, k) =
(−n − 1)k (2k)!

(−n + 1/2)k 4k (k!)2

can be seen to be equal to a(n, k) in the cases where the latter is defined and zero outside
these cases. It also has finite support {0,1, . . . , n + 1}.

Gosper’s algorithm gives us the antidifference

B(n, k) =
(2n − 2k + 1)k

n + 1
b(n, k)

Since the denominator in the rational certificate does not vanish for any n ∈ Z⩾0, the
proposition says that for all n ⩾ 0 we have

n+1

∑
k=0

(
n
k
)(
n+1
k
)

(
2n
2k
)

= ∑
k

b(k,n) = 0.

In addition to this direct application of Gosper’s algorithm to definite summation, we have
the Wilf–Zeilberger (WZ for those in the know) method for proving identities of the form

sn = ∑
k

a(n, k) = 1, (5.2)

where a(n, k) is hypergeometric in both n and k and has finite support.
The idea is to apply Gosper’s algorithm not to a(n, k) directly, but to the difference

dk = a(n + 1, k) − a(n, k)

with respect to k. If (dk) is Gosper-summable, we get an antidifference Dk so that

a(n + 1, k) − a(n, k) = dk =D(n, k + 1) −D(n, k)

and we have effectively moved the difference operator from the variable n to the variable k.
It remains to sum over k and get

sn+1 − sn = ∑
k

(a(n + 1, k) − a(n, k)) = ∑
k

(D(n, k + 1) −D(n, k)) = 0

This means that sn is constant to respect to n, so sn = s0, and it only remains to show that
s0 = 1.

Example 5.10. Suppose we want to prove the well-known identity

n

∑
k=0

(
n

k
) = 2n.

Of course there’s a very quick proof using the binomial expansion theorem. But let’s instead
try the WZ method. To do so we have to rewrite the identity in the form

n

∑
k=0

1

2n
(
n

k
) = 1.

We let

a(n, k) =
1

2n
(
n

k
)

dk = a(n + 1, k) − a(n, k) =
1

2n+1
(
n + 1

k
) −

1

2n
(
n

k
)

33

MAST90053 ExpMath

We apply Gosper’s algorithm to (dk) and get the antidifference

Dk =
k

n + 1 − 2k
dk

We encounter a potential problem as the denominator n + 1 − 2k is zero at k = (n + 1)/2, so
when n is odd this is in the set {0,1, . . . , n} over which we are summing. We are in luck
however as

dk =
1

2n+1
(

(n + 1)!

k!(n + 1 − k)!
−

2n!

k!(n − k)!
) =

n!

2n+1k!(n + 1 − k)!
(2k − n − 1) ,

which is zero at k = (n + 1)/2 and cancels out the zero in the denominator of Dk, leaving Dk

well-defined for all k.
It remains to check out the case n = 0, where the sum is trivially 1.

As the WZ method is derived from Gosper’s algorithm, it also has the advantage of a
certificate. We know that Gosper’s result is of the form

Dk = R(k)dk

where R(k) is a rational function of k.
The WZ certificate of a(n, k) is defined to be

R̃(n, k) =
Dk

a(n, k)
= R(k)(

a(n + 1, k)

a(n, k)
− 1)

Given R̃(n, k), the WZ identity (5.2) is equivalent to

a(n + 1, k)

a(n, k)
− 1 + R̃(n, k) − R̃(n, k + 1)

a(n, k + 1)

a(n, k)
= 0,

which is a simple exercise in arithmetic with rational functions.

Example 5.11. For the binomial identity in Example 5.10, the WZ certificate is

R̃(n, k) = −
k

2(n + 1 − k)
,

so to certify the identity we need to check that

1
2n+1

(
n+1
k
)

1
2n

(
n
k
)

− 1 −
k

2(n + 1 − k)
+

k + 1

2(n − k)

1
2n

(
n
k+1

)

1
2n

(
n
k
)

= 0,

which may look scary but really is not.

5.5 Zeilberger’s method

Given a sum of the form

sn =
∞

∑
k=−∞

F (n, k)

where F (n, k) is hypergeometric with respect to both n and k, and has finite support, we
wish to find a recurrence relation of the form

J

∑
j=0

Pj(n)sn+j = 0,

34

MAST90053 ExpMath

where the coefficients Pj are polynomials in Q[n]. (Such a recurrence relation is called
holonomic.)

Zeilberger’s method consists of applying Gosper’s algorithm to the sequence (ak) defined by

ak = F (n, k) +
J

∑
j=1

σj(n)F (n + j, k)

where σj ∈ Q(n) are indeterminates that we wish to compute. Like in Fasenmyer’s algorithm,
we would start with J = 1 and increase its value until we find a solution or we decide that it’s
not worth the trouble.

One can check easily that (ak) is indeed a hypergeometric term, so we can pass it to
Gosper’s algorithm.

Here are the steps of Zeilberger’s algorithm:

(a) Set J = 1.

(b) Set

ak = F (n, k) +
J

∑
j=1

σj(n)F (n + j, k)

(c) Apply Gosper to (ak), but in the step where we solve for the coefficients of the auxiliary
polynomial f , solve also for the unknown σj’s.

If Gosper succeeds, look at the denominator of the rational certificate to determine any
singular values of n.

If Gosper fails, increment J and try again.

(d) Once we have achieved success, we have a recurrence

sn +
J

∑
j=1

σj(n)sn+j = 0

with σj ∈ Q(n).

Clear the denominators to get a holonomic recurrence relation.

Example 5.12. Consider

sn = ∑
k

(
n

k
)

We try J = 1, setting

ak = F (n, k) + σ1F (n + 1, k) = (
n

k
) + σ1(

n + 1

k
)

After simplifications
ak+1
ak

=
(n + 1 − k)(n − k + σ1n + σ1)

(k + 1)(n + 1 − k + σ1n + σ1)

The polynomial representation in Gosper algorithm is then

p(k) = n + 1 − k + σ1n + σ1, q(k) = n + 2 − k, r(k) = k

The upper bound on the degree of the auxiliary polynomial f is N = 0, so we put f(k) = b0.
It has to satisfy

p(k) = q(k + 1)f(k) − r(k)f(k − 1),

35

MAST90053 ExpMath

which in this example becomes

n + 1 − k + σ1n + σ1 = (n + 1 − k)b0 − kb0

Equating coefficients gives

−1 + 2b0 = 0, (n + 1)(1 + σ1 − b0) = 0,

so b0 = 1/2, σ1 = −1/2.
The resulting recurrence relation is

sn −
1

2
sn+1 = 0,

which gives sn+1 = 2sn, and since s0 = 1 we conclude that sn = 2n.

To recap, we proved the identity
n

∑
k=0

(
n

k
) = 2n

We had already proved this using Wilf–Zeilberger in the last section, but with Zeilberger we
didn’t need to know a priori what the right hand side is, as it was found in the process!

5.6 More hypergeometric goodness

There is much more that can be said about hypergeometric identities. I recommend looking
at [PWZ96] and [Koe14] for improvements and variants on the algorithms we discussed.
Another reference that is related but also addresses other aspects is [GKP94].

36

Some answers/solutions/hints/more
questions

Exercise (2.2). For example:

113sage: lst = [binomial(n, m) % 2 for n in range(2^8) for m in range(2^8)]

114sage: mat = matrix(2^8, lst)

115sage: p = mat.plot()

Exercise (2.3). Here’s one approach for modulo k.

116sage: def pascalmod(k, size=16, multicolour=True):

117....: p = list_plot([])

118....: for r in range(1, k):

119....: lstr = [(m, n) for m in range(size) for n in range(size) \

120....: if binomial(m, n) % k == r]

121....: if multicolour:

122....: colour = hue(r/k)

123....: else:

124....: colour = ’blue’

125....: pr = list_plot(lstr, color=colour)

126....: p = p + pr

127....: return p

128sage: p5 = pascalmod(5, 5^3, False)

129sage: p5.show()

130None

20 40 60 80 100 120

20

40

60

80

100

120

37

MAST90053 ExpMath

Exercise (3.1). See [Sil13, Theorem 47.2].

38

Bibliography

[Cox84] David A. Cox. The arithmetic-geometric mean of Gauss. Enseign. Math. (2),
30(3-4):275–330, 1984.

[Cox85] David A. Cox. Gauss and the arithmetic-geometric mean. Notices Amer. Math.
Soc., 32(2):147–151, 1985.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete mathematics.
Addison-Wesley Publishing Company, Reading, MA, second edition, 1994. A
foundation for computer science.

[Koe14] Wolfram Koepf. Hypergeometric summation. Universitext. Springer, London, second
edition, 2014. An algorithmic approach to summation and special function identities.

[LLL82] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials with
rational coefficients. Math. Ann., 261(4):515–534, 1982.

[PWZ96] Marko Petkovšek, Herbert S. Wilf, and Doron Zeilberger. A = B. A K Peters, Ltd.,
Wellesley, MA, 1996. With a foreword by Donald E. Knuth, With a separately
available computer disk.

[Sal76] Eugene Salamin. Computation of π using arithmetic-geometric mean. Math. Comp.,
30(135):565–570, 1976.

[Sil13] Joseph H. Silverman. A friendly introduction to number theory. Pearson, fourth
edition, 2013.

[Sta12] Richard P. Stanley. Enumerative combinatorics. Volume 1, volume 49 of Cambridge
Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second
edition, 2012.

[Ste95] Ian Stewart. Four encounters with Sierpiński’s gasket. Math. Intelligencer, 17(1):52–
64, 1995.

39

	Gauss's agM
	Two sequences, one limit
	An elliptic integral
	Built-in agM commands

	Introduction to Sage and Mathematica
	Lines on a plane
	Pascal mod 2

	Constant recognition
	Finding the fraction
	Finding the integer relation
	Lattice reduction

	Polynomial systems and Gröbner bases
	Polynomial rings and ideals
	Linear systems
	Single variable higher degree case
	Monomial orders
	Multivariate polynomial division
	Gröbner bases

	Hypergeometric summation machine
	Hypergeometric stuff
	Celine Fasenmyer's algorithm for finding recurrence relations
	Indefinite hypergeometric summation
	Definite hypergeometric summation via the Wilf–Zeilberger method
	Zeilberger's method
	More hypergeometric goodness

	Some answers/solutions/hints/more questions

