
Assignment 1 Solutions

Experimental Mathematics 2020

Exercise 1. This appears in the second volume (Section 4.5.3, Exercise 39) of Donald Knuth’s
masterpiece The Art of Computer Programming.

There is a brute-force way to do this:

def batting_average(p, q):

return (1000*p/q).round()

def smallest_q(avg, start_at=0, end_before=1000):

for q in range(start_at, end_before):

for p in range(q):

if batting_average(p, q) == avg:

return p/q

sage: smallest_q(334)

96/287

sage: smallest_q(334, start_at=288)

97/290

So the smallest number of times at bat is 287, and the second smallest is 290.
Alternatively, a more refined approach is looking for the fraction

.3335 ⩽ p
q
< .3345

with the smallest possible q.
This can be done with continued fractions as follows:

def minimal_denominator(a, b):

"""

Given positive real numbers a and b, return the fraction a <= p/q < b

with smallest possible denominator q.

"""

ca = continued_fraction(a)

cb = continued_fraction(b)

ell = min([len(ca), len(cb)])

j = 0

while (j <= ell) and (ca[j] == cb[j]):

j += 1

if ca[j] < cb[j]:

c = ca[j] + 1

1

MAST90053 ExpMath

else:

c = cb[j] + 1

cc = continued_fraction(list(ca)[:j] + [c])

return cc.value()

sage: minimal_denominator(.3335, .3345)

96/287

To get the second smallest denominator, we need to replace the +1 by +2 in two places:

if ca[j] < cb[j]:

c = ca[j] + 2

else:

c = cb[j] + 2

Exercise 2. Here’s the experiment with default precision:

def ex2alpha(j, N):

res = sum([1/RR(16^k*(8*k+j)) for k in range(N+1)])

return res

sage: xlst = [ex2alpha(j, 100) for j in range(1, 8)]

sage: xlst

[1.00718447641468,

0.506476876667430,

0.339230245245199,

0.255412811882995,

0.205002557636424,

0.171317070666497,

0.147201934672635]

sage: xlst.append(RR(pi))

sage: intrel(xlst, 10^6)

(-4, 0, 0, 2, 1, 1, 0, 1)

sage: intrel(xlst, 10^8)

(-4, 0, 0, 2, 1, 1, 0, 1)

sage: intrel(xlst, 10^10)

(-4, 0, 0, 2, 1, 1, 0, 1)

The result persists if we increase the precision, for instance using R = RealField(1000).
The experiment suggests that

π =
∞

∑
k=0

4

16k(8k + 1) −
∞

∑
k=0

2

16k(8k + 4) −
∞

∑
k=0

1

16k(8k + 5) −
∞

∑
k=0

1

16k(8k + 6)
This is known as the BBP (Bailey–Borwein–Plouffe) formula for π and was discovered in

1995.

2

MAST90053 ExpMath

Exercise 3. The idea is of course to use the logarithm function to translate the multiplicative
relation into a standard integer relation:

m1 log(α1) +m2 log(α2) + ⋅ ⋅ ⋅ +mn log(αn) = 0

We apply this in the setting required in the question:

sage: xlst = [RR(log(p)) for p in prime_range(18)]

sage: xlst.append(RR(log(pi)))

sage: xlst.append(RR(log(zeta(14))))

sage: intrel(xlst, 10^6)

(0, 1, 1, -1, 3, 0, -2, -2, 1)

sage: intrel(xlst, 10^8)

(1, 0, -2, 5, 4, -3, -2, -3, 1)

sage: intrel(xlst, 10^9)

(-6, 0, 3, -1, -4, 6, -2, 1, 1)

sage: intrel(xlst, 10^10)

(-6, 0, -4, 1, 1, -4, 3, 7, -2)

sage: intrel(xlst, 10^11)

(-1, 6, 2, 1, 1, 1, 0, -14, 1)

sage: intrel(xlst, 10^12)

(-1, 6, 2, 1, 1, 1, 0, -14, 1)

sage: intrel(xlst, 10^13)

(-1, 6, 2, 1, 1, 1, 0, -14, 1)

sage: intrel(xlst, 10^14)

(-1, 6, 2, 1, 1, 1, 0, -14, 1)

sage: intrel(xlst, 10^15)

(-1, 6, 2, 1, 1, 1, 0, -14, 1)

So we appear to have settled on the integer relation

− log(2) + 6 log(3) + 2 log(5) + log(7) + log(11) + log(13) − 14 log(π) + log(ζ(14)) = 0

or, written multiplicatively,
36 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13 ⋅ ζ(14)

2π14
= 1

This is starting to look very familiar, especially if we rewrite it as

ζ(14)
π14

= 2

36 ⋅ 52 ⋅ 7 ⋅ 11 ⋅ 13
= 2

18243225

Trust, but verify:

sage: alpha = zeta(14.0)/RR(pi)^14

The ugliness (compared to zeta(14)/pi^14) is needed to work around Sage being too clever;
we don’t want to be using what we are trying to verify.

sage: alpha

1.09629739259369e-7

sage: continued_fraction(alpha)

[0; 9121612, 2, 41146564]

The huge denominator following the 2 indicates a possible roundoff error (which we could
investigate further by increasing the working precision), so we stop short of it:

3

MAST90053 ExpMath

sage: continued_fraction(alpha).convergents()[-2]

2/18243225

sage: continued_fraction(alpha).convergents()[-2].factor()

2 * 3^-6 * 5^-2 * 7^-1 * 11^-1 * 13^-1

Exercise 4. Here is one possible implementation:

IntRel[x_, A_] :=

Drop[LatticeReduce[

Transpose[

Append[IdentityMatrix[Length[x]],

Table[Round[A*x[[j]]], {j, 1, Length[x]}]]]][[1]], -1]

IntRel[{ArcTan[1], ArcTan[1/5], ArcTan[1/239]}, 10^6]

{1, -4, 1}

FindIntegerNullVector[{ArcTan[1], ArcTan[1/5], ArcTan[1/239]}]

{1, -4, 1}

Exercise 5. Using the syntax from the documentation of mpmath:

sage: from mpmath import *

sage: mp.dps = 15; mp.pretty = True

sage: for a in range(2, 1001):

....: for b in range(a, 1001):

....: res = pslq([pi, acot(a), acot(b)])

....: if res is not None and res[0] != 0:

....: print(a, b, res)

2 3 [1, -4, -4]

2 7 [1, -8, 4]

3 7 [1, -8, -4]

5 239 [1, -16, 4]

139 688 [1, -527, 447]

245 981 [1, -715, -219]

But... we should always ask ourselves whether what the computer gives us is accurate. For
this question, we could do this by increasing the mpmath precision, and/or by using LLL to
independently verify the results. Since the entire search with higher precision would take
somewhat long, we can decide to verify only the candidate relations found above:

sage: mp.dps = 20

sage: for (a, b) in [(2, 3), (2, 7), (3, 7), (5, 239), (139, 688), (245, 981)]:

....: res = pslq([pi, acot(a), acot(b)])

....: print(a, b, res)

2 3 [1, -4, -4]

2 7 [1, -8, 4]

3 7 [1, -8, -4]

4

MAST90053 ExpMath

5 239 [1, -16, 4]

139 688 None

245 981 None

Aha, so the last two were just noise. Further experiments with the precision will indicate that
the other four relations seem to be genuine, so we get:

π = 4 arccot(2) + 4 arccot(3)
π = 8 arccot(2) − 4 arccot(7)
π = 8 arccot(3) + 4 arccot(7)
π = 16 arccot(5) − 4 arccot(239)

(One can prove that these are the only Machin-type formulas of this particular form.)

Exercise 6. I had a lot of fun reading through what you came up with here.
The aim was open-ended exploration of something that does not really have (as far as I

know) a fully satisfactory “nice” and complete answer (something like: 42).
Here are the culprits:

def ex6alpha(n):

if n == 1:

return 1 + sqrt(2)

return 1 + sqrt(ex6alpha(n-1))

sage: ex6alpha(1)

sqrt(2) + 1

sage: ex6alpha(2)

sqrt(sqrt(2) + 1) + 1

sage: ex6alpha(3)

sqrt(sqrt(sqrt(2) + 1) + 1) + 1

sage: ex6alpha(4)

sqrt(sqrt(sqrt(sqrt(2) + 1) + 1) + 1) + 1

Now we can go the LLL way (which will get us the first few polynomials, if we are careful).
We could also just ask Sage for the minimal polynomial:

sage: ex6alpha(1).minpoly()

x^2 - 2*x - 1

sage: ex6alpha(2).minpoly()

x^4 - 4*x^3 + 4*x^2 - 2

sage: ex6alpha(3).minpoly()

x^8 - 8*x^7 + 24*x^6 - 32*x^5 + 14*x^4 + 8*x^3 - 8*x^2 - 1

sage: ex6alpha(4).minpoly()

x^16 - 16*x^15 + 112*x^14 - 448*x^13 + 1116*x^12 - 1744*x^11 + 1552*x^10 - 384*x^9

- 700*x^8 + 736*x^7 - 160*x^6 - 128*x^5 + 64*x^4 - 2

sage: ex6alpha(5).minpoly()

x^32 - 32*x^31 + 480*x^30 - 4480*x^29 + 29112*x^28 - 139552*x^27 + 509600*x^26

- 1441024*x^25 + 3166616*x^24 - 5345344*x^23 + 6668992*x^22 - 5473536*x^21

+ 1494624*x^20 + 3005056*x^19 - 4820608*x^18 + 3037184*x^17 + 17422*x^16

- 1528032*x^15 + 1062432*x^14 - 104576*x^13 - 254648*x^12 + 138656*x^11

- 7200*x^10 - 15616*x^9 + 5496*x^8 - 1472*x^7 + 320*x^6 + 256*x^5 - 128*x^4 - 1

sage: ex6alpha(6).minpoly()

5

MAST90053 ExpMath

x^64 - 64*x^63 + 1984*x^62 - 39680*x^61 + 575344*x^60 - 6443072*x^59

+ 57968448*x^58 - 430309888*x^57 + 2685669232*x^56 - 14288028800*x^55

+ 65452677504*x^54 - 260075751936*x^53 + 900910582592*x^52 - 2728832570624*x^51

+ 7234443234560*x^50 - 16764539801600*x^49 + 33812992871516*x^48

- 58848371601728*x^47 + 86960795528384*x^46 - 105685514369792*x^45

+ 98051282625712*x^44 - 53067489947712*x^43 - 21007808658112*x^42

+ 92582655379968*x^41 - 121819299884272*x^40 + 89311309437312*x^39

- 15328304678016*x^38 - 51609241549312*x^37 + 71545318517632*x^36

- 43166742440448*x^35 - 679835956736*x^34 + 25508347363328*x^33

- 22322048910012*x^32 + 6094442977152*x^31 + 5264750043008*x^30

- 6305324475904*x^29 + 2290553846240*x^28 + 697575188352*x^27

- 1114394206592*x^26 + 421011123200*x^25 + 57590707552*x^24 - 120433993984*x^23

+ 45135577856*x^22 - 67318784*x^21 - 6876739200*x^20 + 3366873600*x^19

- 731986432*x^18 - 165322752*x^17 + 207753280*x^16 - 65356800*x^15

- 467968*x^14 + 5869568*x^13 - 2058240*x^12 + 540672*x^11 - 16384*x^10

- 65536*x^9 + 16384*x^8 - 2

I’ll stop there, as this is enough to notice a few things:

• the degree of pn is 2n;

• the leading coefficient of pn is 1 (i.e. αn is an algebraic integer);

• the constant coefficient of pn is −1 if n is odd and −2 if n is even;

• the coefficient of x2
n
−1 in pn is −2n;

• there’s also a nice closed form formula for the following coefficient, I invite you to look
it up on OEIS;

• at the other end of the polynomial, there a sparsity that can be quantified (a lot of
coefficients are zero in the terms of small degree);

• other interesting things that some of you observed and I hadn’t thought of;

• possibly most crucial: the coefficients are getting big and complicated; it’s a mess!

Considering the last point, one remaining hope for a simple description of the polynomials
is to find a recursive formula for them. It turns out there are two of them:

pn(x) = pn−1 ((x − 1)2)
pn = p2n−1 + 2pn−1 − 1

This is kind of cool. We can use this to generate a few more of the polynomials (but not
many of them, obviously, since the mere size of the polynomials is exponential in n):

sage: R.<x> = ZZ[]

def pol(n):

if n == 1:

return x^2 - 2*x - 1

return pol(n-1).subs({x: (x-1)^2})

6

