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1. Introduction

Number theory is a very old subject, dating back thousands of years. This gave it plenty of
time to develop in many different directions; its branches are classified according to their aims
and methods. The particular branch we are exploring is characterised by the use of abstract
algebra, or more generally by the emphasis on the understanding of the algebraic structures
that occur in problems with an arithmetic focus.
In this section we will attempt to make these vague opening remarks more concrete with

the use of a couple of particular questions. We will take an impressionistic approach and
focus on the storyline rather than the technical details (whose time will come soon enough).
Here’s the start of a well-trodden path: find all integer solutions (x, y, z) to the equation

x2 + y2 = z2 such that the three integers x, y, z have no nontrivial common divisors1. There
is a very beautiful and simple geometric construction that gives a complete answer to this
question, but here I want to set aside geometric intuition and use algebra instead2.
Let’s start by ruling out the possibility that z may be even. That can only happen in two

ways:

• x and y are both even—but then z2 is even, hence z is even and (x, y, z) is not primitive;

• x and y are both odd—in this case we observe that x2 ≡ y2 ≡ 1 (mod 4), hence z2 ≡ 2
(mod 4), which is impossible.

So z is odd, which implies that gcd(z,2x) = 1.
We can rewrite the defining equation as

(1.1) (x + iy)(x − iy) = z2.

Where is this happening though? Well, we could be hasty and place ourselves over C, but
we’re about to say words like “prime element” and “divides” and so on, and these don’t make
much sense over C. Luckily, we don’t need to go all the way to C, when the following is
enough:

Z[i] = {a + ib ∣ a, b ∈ Z}.

Suppose we could convince ourselves that Equation (1.1) forces x + iy to be of the form uα2,
where u is a unit in the ring Z[i] and α is some element of Z[i]. One fact we will see later is
that the set of units of Z[i] is

(Z[i])× = {1,−1, i,−i}.

Writing α =m + in with m,n ∈ Z, we see easily that x and y are of the form ±(m2 − n2) and
±2mn, while z is of the form ±(m2 + n2).
It remains then to prove the claim that x + iy = uα2. It is the case that the ring Z[i] is

a unique factorisation domain, so that every nonzero, non-unit element has an essentially
unique3 factorisation into a finite product of irreducible elements.

1Of course, such solutions (x, y, z) are called primitive Pythagorean triples.
2This argument is borrowed from the introduction to [4].
3Spelling out the precise meaning of essentially unique is a bit more cumbersome than in the case of Z, but
not very hard, see [5, Definition 6.9].
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1. Introduction

It suffices to prove that any irreducible element π of Z[i] that divides x + iy must divide it
an even number of times. Since any π dividing x + iy also divides z, and clearly must divide
z2 an even number of times, it suffices to prove that π does not divide x − iy.
So let’s assume that an irreducible element π of Z[i] divides both x + iy and x − iy. As we

have already seen, π divides z. It also divides 2x = (x+iy)+(x−iy), so it divides gcd(z, 2x) = 1,
contradiction.
Let’s go back and look at some of the features we exploited in this argument. We considered

the smallest field extension Q(i) over which x2 + y2 splits into linear factors. In order to use
divisibility arguments, we imposed an integrality condition leading us to the ring Z[i]. We
used the fact that this ring is a UFD, and that we know the complete list of units.
We will spend most of the semester working out how to properly generalise these objects

and studying their properties. This will involve number fields (Q(i) above), their rings of
integers (Z[i]), the groups of units of these rings of integers, the passage from divisibility
arguments involving elements to splitting arguments involving ideals, and more.
Instead of taking the purely utilitarian view of abstract algebra as a means to the end of

studying arithmetic, we will use this as an excuse to learn the basics of commutative algebra,
which is a very powerful tool that’s best understood in conjunction with one of its main areas
of application (algebraic number theory, algebraic geometry, representation theory).
As a final remark, it would be weird to pretend we’re not in the 21st century. While this

will not be a central theme of the subject, we will on occasion discuss the use of computational
methods.

Exercise 1.1. As mentioned in the discussion above, there is a geometric argument leading
to the parametrisation of the integral points on the curve x2 + y2 = z2. See if you can piece
this argument together.
Here are some hints to get you started, if you need them:

(a) The integral points on x2 + y2 = z2 are in bijective correspondence with the rational
points on X2 + Y 2 = 1, so it’s enough to parametrise the latter.

(b) Find one rational point P on X2 + Y 2 = 1. (This should not require thought; there
are 4 obvious candidates.)

(c) Consider the set of all lines passing through P . Can you characterise those lines that
intersect X2 + Y 2 = 1 in a second rational point?

(d) Put it all together to get formulas for the set of rational points on X2 + Y 2 = 1.

Exercise 1.2 (Project Euler Problem 9). There is a unique Pythagorean triple (x, y, z)
with positive entries, x ≤ y, and the property that x + y + z = 1000. Find it.

Acknowledgements
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2. Number fields and rings of integers

2.1. Algebraicity and integrality

A number field K is a finite extension of the rational numbers Q. Elements of number fields
are called algebraic numbers .
By the Primitive Element Theorem, any number field K contains an element β such that

K = Q(β).
You may well have seen another definition of algebraic numbers, which is fine because of

the following

Exercise 2.1. Let K be a number field and let α ∈K be an algebraic number. Prove that
there exists some nonzero polynomial f ∈ Q[x] such that f(α) = 0.
Conversely, suppose that α ∈ C satisfies f(α) = 0 for some nonzero polynomial f ∈ Q[x].

Show that there exists a number field K such that α ∈K.

In particular, we see that the set of all algebraic numbers is a field, none other than Q.

Example 2.2. The field Q(i) of Gaussian numbers is a number field. Therefore α ∶= 3 − i
2

is an algebraic number. What rational polynomial equation does it solve?

Number fields generalise the field of rational numbers Q. A natural question is: what is the
right generalisation of the ring of integers Z?
This is more subtle than expected:

Example 2.3. The element β1 =
√
−3 is clearly a primitive element for K = Q(

√
−3). So is

β2 =
1 +
√
−3

2
,

in other words Q(β1) = Q(β2).
But Z[β1] ⊊ Z[β2].
The moral being that we cannot use primitive elements to generalise Z.

Given a ring extension R ⊆ S, we say that α ∈ S is an integral element (over R) if there
exists a monic polynomial f ∈ R[x] such that f(α) = 0. We say that S is an integral extension
of R if every α ∈ S is integral over R.

Exercise 2.4. To make some sense of the terminology: show that for the ring extension
Z ⊊ Q, α ∈ Q is integral over Z if and only if α ∈ Z.
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2. Number fields and rings of integers

Let K be a number field. We define the ring of integers OK of K to be

OK ∶= {α ∈K ∣ α is integral over Z}.

Elements of rings of integers are called algebraic integers .
But. . . is OK really a ring? In other words, given α,β ∈ OK , can we conclude that α + β

and αβ are also in OK?
We’ll answer this (in the affirmative) more generally.1 Given a ring extension R ⊆ S, the

set of elements of S that are integral over R is called the integral closure of R in S.

Theorem 2.5. The integral closure of R in S is a ring.

To prove this, the following equivalent formulation of integrality is useful (this is pretty
close to the treatment in [1, Proposition 5.1]):

Proposition 2.6. Let R ⊆ S be rings and α ∈ S. The following are equivalent:

(a) α is integral over R;

(b) R[α] is a finitely-generated R-module (that is, there exists a finite subset Σ of R[α]
such that R[α] = SpanR(Σ));

(c) there exists a ring R′ such that R[α] ⊆ R′ ⊆ S and R′ is a finitely-generated R-module.

Proof. (a) ⇒ (b): The integrality of α gives the existence of an R-linear relation

αn + cn−1α
n−1 + ⋅ ⋅ ⋅ + c1α + c0 = 0, ci ∈ R.

We can then isolate
αn = −cn−1α

n−1 − ⋅ ⋅ ⋅ − c1α − c0,

and continue iteratively to show that αj is in the R-span of {αn−1, . . . , α,1} for all j ≥ n.
Therefore this finite set generates R[α] as an R-module.

(b) ⇒ (c): Obvious, taking R′ = R[α].
(c) ⇒ (a): Let {x1, . . . , xn} be an R-spanning set for R′. At least one of the xi must be

nonzero, as 1 ∈ R′.
Fixing i ∈ {1, . . . , n}, since α ∈ R′ and xi ∈ R′, we have αxi ∈ R′, so we may express this in

terms of the spanning set:
αxi = ci1x1 + ci2x2 + ⋅ ⋅ ⋅ + cinxn.

This defines a matrix C ∈Mn(R) with the property that

α

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮
xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= C

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮
xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⇒ (αI −C)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x1

x2

⋮
xn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= 0.

This implies2 that det(αI −C) = 0.
Expanding out det(αI −C) gives us a monic polynomial with coefficients in R having α as

a root, so α is integral over R.

The other ingredient is the transitivity3 of the property of being finitely-generated:

1For a more direct proof, involving more or less the same arguments, see [4, Theorem 2 in Chapter 2].
2Seeing this is very easy over a field and a bit more involved over a ring; but you can involve the adjugate
matrix of (αI −C) to deduce that det(αI −C)x = 0, and then conclude that det(αI −C) acts as zero on
the whole R-module R′.

3Transitivity is not quite the right term for this, as the three objects involved are not of the same type, but
it’s the best we can do.

8



MAST90136 ANT

Exercise 2.7 ([2, Lemma 1.7] or [1, Proposition 2.16]). Suppose R ⊆ S are rings and M is
an S-module. If M is finitely-generated as an S-module and S is finitely-generated as an
R-module, then M is finitely-generated as an R-module.

We’re finally ready for the

Proof of Theorem 2.5. We have to show that the integral closure A of R in S is a subring of
S.
The only interesting part is showing that if α,β ∈ A then α + β,αβ ∈ A.
If α,β ∈ A then they are both integral over R. In particular, R[α] is a finitely-generated

R-module. Since β is integral over R, it certainly is integral over R[α], so (R[α])[β] is a
finitely-generated R[α]-module, so by “transitivity” we get that R[α,β] is a finitely-generated
R-module.
This means that every element of R[α,β] (for instance α+β and αβ) is integral over R.

Here is a useful integrality criterion:

Exercise 2.8 ([2, Lemma 1.12]). An algebraic number α ∈ Q is an algebraic integer if and
only if its minimal polynomial has integer coefficients.

Example 2.9. Suppose d is a squarefree integer and let K = Q(
√
d). (This is called a

quadratic field .) Show that the ring of integers of K is

OK =

⎧⎪⎪
⎨
⎪⎪⎩

Z[
√
d] if d ≡ 2,3 (mod 4)

Z [1+
√
d

2 ] if d ≡ 1 (mod 4).

We have seen that finite generation is “transitive” in Exercise 2.7. So is integrality:

Exercise 2.10. If R ⊆ S ⊆ T with S integral over R and T integral over S, then T is
integral over R.

Let R be an integral domain and let K = Frac(R), the fraction field of R. We say that R is
integrally closed if any α ∈K that is integral over R automatically lies in R.

Example 2.11. The ring Z is integrally closed. (This is a simple reformulation of Exer-
cise 2.4.)

Proposition 2.12. If K is a number field with ring of integers OK then K = Frac(OK) and
OK is integrally closed.

Proof. Clearly Frac(OK) ⊆ K. If α ∈ K then there is some polynomial f ∈ Q[x] such that
f(α) = 0. By clearing the denominators in the coefficients of f , we may arrange for f to have
integral coefficients:

f(α) = cnα
n + cn−1α

n−1 + ⋅ ⋅ ⋅ + c1α + c0 = 0, ci ∈ Z.

9



2. Number fields and rings of integers

We can multiply this relation by cn−1n and rewrite it as

(cnα)
n + cn−1(cnα)

n−1 + ⋅ ⋅ ⋅ + c1c
n−2
n (cnα) + c0c

n−1
n = 0,

which means that β ∶= cnα satisfies β ∈ OK . Therefore α = β
cn
∈ Frac(OK).

To show that OK is integrally closed, suppose α ∈K is integral over OK . Since OK is an
integral extension of Z, Exercise 2.10 implies that α is integral over Z, but then α ∈ OK .

We record here a side effect of the above proof, for future reference:

Corollary 2.13. For any α ∈ K there exists d ∈ Z such that dα ∈ OK. In particular, there
exists θ ∈ OK such that K = Q(θ).

2.2. Rings of integers are Dedekind domains

The next property we investigate is how OK sits (geometrically) inside the number field K,
viewed as a finite-dimensional Q-vector space.

Proposition 2.14. Let k ∈ {Q,R} and let V be an n-dimensional k-vector space. Suppose
Λ ⊆ V is a Z-module spanning V . The following are equivalent:

(a) Λ is a discrete Z-submodule of V (that is, there exists an open neighbourhood of 0 ∈ V
that only intersects Λ in {0}).

(b) Λ is finitely generated as a Z-module.

(c) Λ has rank n as a Z-module.

(d) Λ ≅ Zn as a Z-module.

Proof. Since Λ ⊆ V , it is torsion-free as a Z-module.
(b) ⇒ (a): Let {λ1, . . . , λm} be a Z-basis for Λ. Consider

U = {
m

∑
i=1

aiλi ∈ V ∣ ∣ai∣ < 1, ai ∈ k} .

This is an open neighbourhood of 0 ∈ V , and U ∩Λ = {0}, so Λ is discrete.
(a) ⇒ (b): Let {v1, . . . , vn} be a k-basis for V , with vi ∈ Λ. Define

Ω = SpanZ{v1, . . . , vn} ⊆ Λ.

Evidently Ω is a finitely-generated Z-module, so if we can show that the index [Λ ∶ Ω] is finite,
we can conclude that Λ is finitely-generated as a Z-module.
Let X = Λ/Ω. Let φ∶kn → V denote the k-linear map (a1, . . . , an) ↦ ∑

n
i=1 aivi. We may

choose the coset representatives in X to lie in the image under φ of the half-open n-cube
C = [0,1)n.
Now we use the assumption that Λ is discrete, so that there exists B ∈ Z>0 such that

{
n

∑
i=1

civi ∣ ∣ci∣ <
1

B
, ci ∈ k} ∩Λ = {0}.

Divide each side [0, 1) of the n-cube C into B equal segments of length 1
B : [0,

1
B ), . . . [

B−1
B , 1).

This partitions C into Bn cubes of side length 1
B .

10
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If x1, x2 are representatives of cosets in X = Λ/Ω that lie in the same small cube, then
x1 − x2 ∈ Λ and

x1 − x2 =
n

∑
i=1

civi with each ∣ci∣ <
1

B
,

implying that x1 = x2 by the choice of B. So each of the small Bn cubes contains at most one
coset representative, therefore [Λ ∶ Ω] ≤ Bn.
Finally, the equivalence of (b), (c), and (d) comes from the fact that a finitely generated

torsion free Z-module is free of finite rank, but this rank must equal the k-dimension n of V ,
since V is spanned by Λ.

A subset Λ of V satisfying the conditions in Proposition 2.14 is called4 a lattice in V . If Λ
is a lattice in V , then Ω ⊆ Λ is a sublattice of Λ if Ω is itself a lattice in V .

Theorem 2.15. If K is a number field then OK is a lattice in K and any nonzero ideal I of
OK is a sublattice of OK.

In order to prove this result, we need to take a short detour and discuss embeddings
(injective homomorphisms) of number fields into C.

Suppose K is a number field of degree n, then the Primitive Element Theorem gives us
some β such that K = Q(β), where the minimal polynomial f of β over Q has degree n. The
complex roots of f are called the conjugates of β. Defining an embedding σ∶K = Q(β)→ C is
equivalent to specifying an element σ(β) ∈ C with the property that f(σ(β)) = 0, in other
words a conjugate of β. So there are precisely n embeddings K ↪ C, often denoted σ1, . . . , σn.

If K ⊆ L are two number fields, then each embedding of K into C can be extended to [L∶K]
distinct embeddings of L into C.
We can now define the trace and the norm functions of the extension K/Q:

TrKQ ∶K → Q TrKQ (α) =
n

∑
i=1

σi(α) for all α ∈K

NK
Q ∶K → Q NK

Q (α) =
n

∏
i=1

σi(α) for all α ∈K.

Exercise 2.16. Let K be a number field of degree n over Q. Given α ∈K, let f ∈ Q[x] be
its minimal polynomial and let d = deg(f). Show that

TrKQ (α) =
n

d
Tr

Q(α)
Q (α) and NK

Q (α) = (N
Q(α)
Q (α))

n/d
.

Conclude from this that TrKQ (α) ∈ Q and NK
Q (α) ∈ Q.

Moreover, if α ∈ OK then TrKQ (α) ∈ Z and NK
Q (α) ∈ Z.

We are ready for the

Proof of Theorem 2.15. In the proof of Proposition 2.12 we saw that for any α ∈K we have
cα ∈ OK for some positive integer c. Therefore we can find a Q-basis {β1, . . . , βn} of K with
βi ∈ OK . In other words, OK spans K over Q.
It remains to show that OK is discrete in K. Given λ ∈ OK ∖ {0}, there exist a1, . . . , an ∈ Q

such that λ = ∑
n
i=1 aiβi. For any embedding σ of K into C, we think of σ(λ) as

σ(λ) =
n

∑
i=1

σ(βi)ai,

4This is fairly standard terminology in number theory, but beware that in other disciplines it would be called
a complete lattice, and a lattice would only be required to span some subspace of V .
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2. Number fields and rings of integers

more precisely as a linear polynomial (function) with complex coefficients in the variables
a1, . . . , an. From this viewpoint, N(λ) = ∏σ σ(λ) is a homogeneous polynomial of degree n
in a1, . . . , an. Therefore we can make N(λ) arbitrarily small, say ∣N(λ)∣ < 1, by substituting
sufficiently small rational values for a1, . . . , an.
But if OK is not discrete in K, for any ϵ > 0 there exist a1, . . . , an ∈ Q such that ∣ai∣ < ϵ

and λ ∶= ∑i aiβi ∈ OK ∖ {0}. In particular, we can get ∣N(λ)∣ < 1 while at the same time
N(λ) ∈ Z ∖ {0}, contradiction.
Finally, we consider a nonzero ideal I of OK . It is discrete since it’s a submodule of OK .
Let {β1, . . . , βn} be a Q-basis of K with βi ∈ OK . Let γ ∈ I ∖ {0}, then c ∶= N(γ) ∈ I ∩Z is a

nonzero integer. Therefore cβi ∈ I for all I, and certainly {cβ1, . . . , cβn} is a Q-basis of K.

Corollary 2.17. If K is a number field and I is a nonzero ideal of OK, then the quotient
OK/I is a finite ring.

Proof. We have just seen that I is a rank n free Z-submodule of the rank n free Z-module
OK . Therefore OK/I is a finitely generated torsion Z-module, hence finite.

Recall that a ring R is Noetherian if every ideal of R is finitely generated, or equivalently if
every ascending chain of ideals of R stabilises (see [5, Exercise 63] or [1, Chapter 7]). (Or
equivalently, if every nonempty set of ideals of R has a maximal element.)

Corollary 2.18. If K is a number field then OK is a Noetherian ring.

Proof. Let I0 ⊆ I1 ⊆ I2 ⊆ . . . be an ascending chain of ideals of OK . If all Ij = 0 then the chain
stabilises.
Otherwise there is a smallest j such that I ∶= Ij ≠ 0. There is a bijection

{ideals of OK/I} ↔ {ideals of OK containing I}

so both sets are finite since Corollary 2.17 says that OK/I is finite. This forces the ascending
chain to stabilise since its elements lie in a finite set of ideals.

The Krull dimension of a ring R is the maximum length of any strict chain of prime ideals
in R:

p0 ⊊ p1 ⊊ ⋅ ⋅ ⋅ ⊊ pn.

Exercise 2.19. Suppose R is an integral domain.

(a) The Krull dimension of R is 0 if and only if R is a field.

(b) The Krull dimension of R is ≤ 1 if and only if every nonzero prime ideal of R is
maximal.

Corollary 2.20. If K is a number field then OK has Krull dimension 1.

Proof. We first rule out the possibility that dimOK = 0: since OK ∩Q = Z, which is not a
field, we know that OK is not a field.
Now we show that every nonzero prime ideal p of OK is maximal (and use Exercise 2.19).

But Corollary 2.17 says that OK/p is a finite ring, in fact a finite integral domain since p is a
prime ideal. However, any finite integral domain is automatically a field, so p is maximal.

12
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Exercise 2.21. Recall (or work out) why a finite integral domain is a field.

A Noetherian integral domain R that is integrally closed of Krull dimension 1 is called a
Dedekind domain. Therefore we have proved that

Theorem 2.22. If K is a number field then OK is a Dedekind domain.

2.3. Unique factorisation into prime ideals

Our next objective is to prove a property of Dedekind domains that is crucial for arithmetic
applications: unique factorisation of ideals into prime ideals. This will be Theorem 2.28, for
which we need a number of intermediate results.

Recall that the sum of two ideals I and J is defined as

I + J = {i + j ∣ i ∈ I, j ∈ J}.

It is the smallest ideal of R containing both I and J .
On the other hand, the product of I and J is defined as

IJ = {
n

∑
k=1

ikjk ∣n ∈ N, ik ∈ I, jk ∈ J} .

In other words, IJ is the smallest ideal of R containing the products ij for all i ∈ I, j ∈ J .
In addition to the concept of ideal, we also make use of the more general concept of

fractional ideal: Let K = Frac(R) with R an integral domain; a fractional ideal of R is an
R-submodule I ⊆K with the property that there exists d ∈ R, d ≠ 0, such that dI ⊆ R. The
sum and product operations for fractional ideals are defined in the same way as for ideals.

Example 2.23. Let I be the Z-submodule of Q generated by 1
2 ,

1
3 , and

1
5 . Then taking

d = 2 ⋅ 3 ⋅ 5 = 30 we have di ∈ Z for all i ∈ I, so I is a fractional ideal of Z that is not an
actual ideal of Z.

Example 2.24. Let K = Frac(R), R an integral domain, J a nonzero ideal of R. Then

J−1 ∶= {α ∈K ∣ αJ ⊆ R}

is a fractional ideal of R that contains R.
(Take d to be any nonzero element of J .)

Here is an ideal version of the defining property of prime ideals:

Exercise 2.25. Let R be a ring, I1, . . . , In ideals of R, and p a prime ideal of R such that
I1 . . . In ⊆ p. Then there exists j ∈ {1, . . . , n} such that Ij ⊆ p.

Lemma 2.26. Let R be a Noetherian ring and I a nonzero ideal of R. There exist nonzero
prime ideals p1, . . . ,pn of R such that p1 . . .pn ⊆ I.

13



2. Number fields and rings of integers

Proof. Suppose the statement is false and let S be the set of all nonzero ideals I of R for
which the statement fails.
Since S is a nonempty set of ideals of R and R is Noetherian, S has a maximal element

Imax ∈ S. This is not a prime ideal, so there exist elements x1, x2 ∈ R such that x1, x2 ∉ Imax

but x1x2 ∈ Imax. Let J1 = Imax + x1R, then J1 properly contains Imax so J1 ∉ S. Similarly for
J2 = Imax + x2R.
So the statement of the Lemma holds for both J1 and J2, and we have a nonzero prime

ideals p1, . . . ,pn,q1, . . . ,qm such that

p1 . . .pn ⊆ J1, q1 . . .qm ⊆ J2 ⇒ p1 . . .pnq1 . . .qm ⊆ J1J2.

However,

J1J2 = (Imax + x1R)(Imax + x2R) = Imax(Imax + x1R + x2R) + x1x2R ⊆ Imax,

implying that Imax ∉ S, contradiction.

Proposition 2.27. Let p be a nonzero prime ideal of a Dedekind domain R.

(a) p−1 ≠ R.

(b) If J is a nonzero ideal of R, then p−1J ≠ J .

(c) p−1p = R.

Proof.

(a) We want to exhibit an element of p−1 that is not in R. Since p is nonzero, it contains
some nonzero element i ∈ p, and I ∶= iR is a nonzero ideal of R. By Lemma 2.26 there
exist nonzero prime ideals p1, . . . ,pn such that p1 . . .pn ⊆ I. Choose these prime ideals
in such a way that n is as small as possible. Now p1 . . .pn ⊆ I ⊆ p, so at least one pk ⊆ p,
say (for the sake of notation) p1 ⊆ p. However R is Dedekind hence of Krull dimension
1, so p1 = p.

If n = 1, we conclude that p = iR, so that p−1 = i−1R. Suppose i−1R = R, then p = iR = R,
contradicting the fact that p is prime.

If n > 1, the minimality of n implies that p2 . . .pn /⊆ iR, so there exists j ∈ p2 . . .pn with
j ∉ iR. However jp = p1j ⊆ p1p2 . . .pn ⊆ iR. Now consider the element x = j

i ∈ K. By
construction xp ⊆ R but x ∉ R.

(b) Suppose p−1J = J and let α1, . . . , αm be a set of generators of J . Given x ∈ p−1 and
i ∈ {1, . . . ,m} we can write

xαi =
m

∑
j=1

cijαj cij ∈ R.

Note that this equality takes place in the fraction field K of R.

Let C = (cij) be the matrix formed by these coefficients, and let A = xIm −C ∈Mm(K);
then

A

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α1

⋮
αm

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= 0,

hence det(A) = 0. But as a polynomial expression in x, det(A) is monic with coefficients
in R, so we conclude that x is integral over R.

Since R is Dedekind, it is integrally closed, so x ∈ R. This implies that p−1 = R,
contradicting the result of part (a).

14
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(c) Since R ⊆ p−1 we have p ⊆ p−1p ⊆ R. But p is a nonzero prime ideal in a ring of Krull
dimension 1, so it is a maximal ideal, hence one of the two inclusions must be an equality
(and the other one strict). By part (b), we know that the first inclusion is strict: p ≠ p−1p.
Therefore p−1p = R.

Theorem 2.28. Any Dedekind domain R has unique factorisation of ideals, that is every
proper ideal I of R can be written uniquely (up to permuting the factors) as a product of
finitely many prime ideals of R.

Proof. We prove the existence claim by contradiction. Let S denote the set of proper ideals
of R that do not have a prime factorisation, and suppose S ≠ ∅. Since R is Noetherian, S
has a maximal element J . In turn, J is contained in some maximal ideal5 p. Starting with
R ⊆ p−1 we get J ⊆ Jp−1 ⊆ pp−1 = R.
But we know that J ≠ Jp−1, so by the maximality of J we must have Jp−1 ∉ S:

Jp−1 = p1 . . .pn.

Multiply both sides by p to get that J ∉ S, contradiction.
For uniqueness, suppose we have

I = p1 . . .pn = q1 . . .qm.

In particular, q1 . . .qm ⊆ p1, which is a prime ideal, so there exists j such that qj ⊆ p1. Without
loss of generality j = 1, so q1 ⊆ p1, but in fact we have equality since R is 1-dimensional. So
we can multiply both sides of the equality by p−1 and reduce it to

p2 . . .pn = q2 . . .qm.

Continue until you conclude that m = n and (after permutation) pj = qj for all j.

We often group together the prime ideals that appear more than once in the factorisation
and write, for a proper ideal I of R:

I =
r

∏
j=1

p
ej
j , pj distinct, ej ∈ Z>0.

We also write ordpj(I) = ej or vpj(I) = ej and extend this notation to elements α ∈ R via
ordp(α) = ordp(αR). This has the property that

ordp(IJ) = ordp(I) + ordp(J).

The following result is part of the first assignment:

Proposition 2.29. Let R be a Dedekind domain and let I ≠ 0 be an ideal of R.

(a) If I = p1 . . .pn is the factorisation of I into prime ideals, then I−1 = p−11 . . .p−1n .

(b) Show that II−1 = R.

Given a Dedekind domain R, let I(R) denote the set of nonzero fractional ideals of R.

Lemma 2.30. I(R) is an abelian group under multiplication, with identity element R.

5We perversely denote this p instead of m, but it’s okay because we’re in a Dedekind domain.

15



2. Number fields and rings of integers

Proof. If J1, J2 are fractional ideals, then d1J1 ⊆ R and d2J2 ⊆ R for some d1, d2 ∈ R ∖ {0}.
Letting d = d1d2, we have d(J1J2) = (d1J1)(d2J2) ⊆ R, so J1J2 is a fractional ideal.
It’s clear that R is the identity element.
If J is a nonzero fractional ideal, with I ∶= dJ ⊆ R, then I is a nonzero ideal of R. Consider

the fractional ideal dI−1:
J dI−1 = (dJ)I−1 = II−1 = R,

so dI−1 is the inverse of J .

Borrowing from the terminology for ideals, we define a principal fractional ideal of R to be
a fractional ideal of the form xR for some x ∈K. Letting P (R) denote the set of all nonzero
principal fractional ideals of R, we have that P (R) is a subgroup of I(R). This leads us to
an essential element in the study of number fields and their rings of integers: the ideal class
group of a Dedekind domain R is defined to be

Cl(R) = I(R)/P (R).

One of our next milestones will be to prove that, for R = OK the ring of integers in a
number field, the class group Cl(OK) is finite. Its cardinality is called the class number of
OK (or by abuse of language, of K). It is an arithmetically important quantity as it measures
how far a ring is from having unique factorisation into irreducibles.
It is also closely related to the notion of Picard group of a ring, or more generally of a

scheme, which plays an important role in algebraic geometry.

2.4. Discriminant

Given a separable field extension L/K, fix an algebraic closureK ofK and let σ1, . . . , σn∶L↪K
be the distinct embeddings. For elements α1, . . . , αn ∈ L, consider the matrix Σ = (σi(αj))
and let ∆ =∆(α1, . . . , αn) ∶= (detΣ)2.

Lemma 2.31. Suppose β ∈ L is a primitive element for L/K, so that L = K(β). Then
∆(1, β, . . . , βn−1) ∈K ∖ {0}.

Proof. We have

Σ = Σ(1, β, β2, . . . , βn−1) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 (σ1(β)) (σ1(β))2 . . . (σ1(β))n−1

1 (σ2(β)) (σ2(β))2 . . . (σ2(β))n−1

⋮ ⋮ ⋮ ⋱ ⋮
1 (σn(β)) (σn(β))2 . . . (σn(β))n−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

a Vandermonde matrix in the variables σ1(β), . . . , σn(β). Therefore

∆ = (detΣ)2 = ∏
1≤i<j≤n

(σi(β) − σj(β)) = (−1)
(
n
2
) ∏
1≤i≠j≤n

(σi(β) − σj(β)).

Since σi ≠ σj and β is a generator of the field extension L/K, we get that σi(β) ≠ σj(β), so
∆ ≠ 0.

Letting G denote the Galois group of the minimal polynomial of β over K, we have that G
is a subgroup of the symmetric group Sn, and ∆ is invariant under the permutation action of
Sn on {σ1, . . . , σn}. Therefore ∆ is invariant under G, hence it takes values in the base field
K.

Proposition 2.32. Let α1, . . . , αn ∈ L. Then ∆ = ∆(α1, . . . , αn) ∈K and ∆ = 0 if and only if
α1, . . . , αn ∈ L are linearly dependent over K.
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Proof. Suppose α1, . . . , αn satisfy a K-linear relation, say there is an K-linear form ϕ in n
variables such that ϕ(α1, . . . , αn) = 0.

Since the embeddings σi are themselves K-linear, for all i we have

ϕ(σi(α1), . . . , σi(αn)) = σi(ϕ(α1, . . . , αn)) = 0,

which implies that the vectors

v1 =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ1(α1)
⋮

σn(α1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

, . . . , vn =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ1(αn)
⋮

σn(αn)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

themselves satisfy the relation ϕ(v1, . . . , vn) = 0. But these are precisely the columns of the
matrix Σ, hence the determinant of Σ is zero.
If α1, . . . , αn are linearly independent, hence a basis of L over K, consider the change of

basis matrix P ∈ GLn(K) satisfying

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

α1

α2

⋮
αn

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

= P

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1
θ
⋮

θn−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

As M has coefficients in the base field K fixed by all the embeddings σi, the above equation
holds after applying these embeddings, and we can package all this into

Σ(α1, α2, . . . , αn) = PΣ(1, θ, . . . , θn−1).

Take determinants on both sides and square to conclude.

The following consequence is immediate:

Corollary 2.33. If K ⊂ L are number fields and ω1, . . . , ωn ∈ OL, then ∆(ω1, . . . , ωn) ∈ OK.
In particular, if K = Q and ω1, . . . , ωn ∈ OL are a Q-basis, then ∆(ω1, . . . , ωn) is a (strictly)

positive integer.

Proposition 2.34. Let K be a number field and α1, . . . , αn ∈ OK a Q-basis for K. Let
∆ =∆(α1, . . . , αn). Then

OK ⊆ Z
α1

∆
+ ⋅ ⋅ ⋅ +Z αn

∆
.

Proof. For a given α ∈ OK , write

α = c1α1 + ⋅ ⋅ ⋅ + cnαn cj ∈ Q.

We want to show that ∆cj ∈ Z for all j.
Let Σ = Σ(α1, . . . , αn) so that ∆ = (detΣ)2. We apply the embeddings σ1, . . . , σn to the

expression for α to get
⎡
⎢
⎢
⎢
⎢
⎢
⎣

σ1(α)
⋮

σn(α)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= Σ

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
⋮
cn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Let δ = detΣ and let Σ′ be the adjugate matrix of Σ, so that ΣΣ′ = δI. Multiply both sides of
the last equality by δΣ′ to get

⎡
⎢
⎢
⎢
⎢
⎢
⎣

m1

⋮
mn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=∆

⎡
⎢
⎢
⎢
⎢
⎢
⎣

c1
⋮
cn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

Each mj is an algebraic integer, but also mj = ∆cj ∈ Q, so mj ∈ Z hence ∆cj ∈ Z, as needed.
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2. Number fields and rings of integers

Proposition 2.35. Let OK be the ring of integers in a number field K. If ω1, . . . , ωn and
ω′1, . . . , ω

′
n are Z-module bases for OK, then

∆(ω1, . . . , ωn) =∆(ω
′
1, . . . , ω

′
n).

Proof. Letting P denote the change of basis matrix, we have P ∈ GLn(Z) and ∆ = (detP )2∆′,
but detP ∈ {−1,1}.

So the value of ∆(ω1, . . . , ωn) ∈ Z is independent of the choice of integral basis. We call it
the discriminant of OK (or, by abuse of language, of K) and denote it ∆K .

Proposition 2.36. Let OK be the ring of integers in a number field K. Let α1, . . . , αn ∈ OK

be a Q-basis for K and let M = Zα1 + ⋅ ⋅ ⋅ +Zαn. Then

∆(α1, . . . , αn) = [OK ∶M]
2∆K .

Proof. Fixing an integral basis ω1, . . . , ωn of OK , we let P be the change of basis matrix so
that

⎡
⎢
⎢
⎢
⎢
⎢
⎣

α1

⋮
αn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= P

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ω1

⋮
ωn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

.

As before, apply the embeddings σi to conclude that

∆(α1, . . . , αn) = (detP )
2∆K .

Finally, note that detP = [OK ∶M].

2.5. Ideal norm and finiteness of the ideal class group

Let OK be the ring of integers in a number field K. Recall that we want to show that the
class group of OK is finite. In order to do this we will define the norm of an ideal I of OK as
N(I) = [OK ∶ I].
The relation between the norm of an element and the norm of the principal ideal it generates

is what we would hope for:

Proposition 2.37. For any α ∈ OK we have N(αOK) = ∣N(α)∣.

Proof. Take an integral basis ω1, . . . , ωn of OK , then αω1, . . . , αωn is a Z-module basis for
αOK . Expressing each αωi as a Z-linear combination of ω1, . . . , ωn gives us

⎡
⎢
⎢
⎢
⎢
⎢
⎣

αω1

⋮
αωn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

= A

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ω1

⋮
ωn

⎤
⎥
⎥
⎥
⎥
⎥
⎦

with A ∈Mn(Z) and ∣detA∣ = [OK ∶ αOK] = N(αOK). Getting the embeddings involved leads
us to

∆(αω1, . . . , αωn) = N(αOK)
2∆K .

However, back to the definition of ∆, we have

∆(αω1, . . . , αωn) = (detΣ(αω1, . . . , αωn))
2 = (σ1(α) . . . σn(α))

2(detΣ(ω1, . . . , ωn))
2 = N(α)2∆K .
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Next we show that the ideal norm function is multiplicative: N(IJ) = N(I)N(J).
You already know this to be true in the case where I and J are relatively prime ideals, by

the ring version of the Chinese Remainder Theorem6.

Lemma 2.38. Let R be a ring of Krull dimension 1, p and q distinct nonzero prime ideals
of R, and s, t ∈ Z>0. Then the ideals ps and qt are relatively prime.

Proof. In the special case s = t = 1, we have p ⊊ p + q ⊆ R (since the ideals are distinct), but p
is maximal (because of Krull dimension 1) so p + q = R, done.
For general s and t, we want to show that 1 ∈ ps + qt. I claim that (p+ q)s+t ⊆ ps + qt, which

will finish the proof by the special case s = t = 1 settled above7.
We need to prove that any product of the form (p1 + q1)(p2 + q2) . . . (ps+t + qs+t) is in fact

in ps + qt. But such product is the sum of products of s + t factors, each of which is either
a pi or a qj. Since the number of pi’s and the number of qj’s adds up to s + t, each of these
products contains ≥ s pi’s or ≥ t qj’s, which puts it in ps or in qt.

Lemma 2.39. Let OK be the ring of integers in a number field K, and let p be a prime ideal
of OK. Then N(pm) = N(p)m for all m ∈ Z≥0.

Proof. There is a chain of ideals

pm ⊊ pm−1 ⊊ ⋅ ⋅ ⋅ ⊊ p ⊊ OK ,

from which we know that

N(pm) = [OK ∶ p
m] =

m−1

∏
j=0

[pj ∶ pj+1].

We claim that, for all j, pj/pj+1 ≅ OK/p, which certainly will imply the desired result.
Pick an element β ∈ OK with ordp(β) = j and define a group homomorphism8 φ∶OK → pj/pj+1

by φ(x) = βx. It remains to sort out two details:

• kerφ = p. This follows from the equality of ideals βOK ∩ pj+1 = βp: it is clear that
βp ⊆ βOK ∩ pj+1. In the other direction, let βx ∈ βOK ∩ pj+1. Therefore

j + ordp(x) = ordp(β) + ordp(x) = ordp(βx) ≥ ordp(p
j+1) = j + 1,

so ordp(x) ≥ 1 and x ∈ p.

• φ is surjective. This follows from the equality of ideals βOK + pj+1 = pj: we have

pj+1 ⊊ βOK + p
j+1 ⊆ pj,

from which we can conclude by considering the unique factorisation of the ideal βOK +
pj+1.

Theorem 2.40. Let OK be the ring of integers in a number field K, and let I and J be ideals
of OK. Then N(IJ) = N(I)N(J).

6Recall that two ideals I and J of a ring R are relatively prime if I + J = R, and that in this situation, the
Chinese Remainder Theorem gives a ring isomorphism R/(IJ) ≅ (R/I) × (R/J).

7I believe that we can lower this a bit more to (p + q)s+t−1 ⊆ ps + qt, but such level of optimisation is not
actually needed in the proof.

8Here we are working with the additive structure of OK .
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Proof. Combine the factorisation of ideals of OK into prime ideals with the two previous
lemmas.

Theorem 2.41. Let OK be the ring of integers in a number field K of degree n, and let p ∈ Z
be a prime number. Consider the unique factorisation of the ideal pOK:

pOK =
g

∏
j=1

p
ej
j ,

where the pj’s are distinct prime ideals and ej ∈ Z>0. Then for each j we have N(pj) = pfj for
some fj ∈ Z>0, and the following relation holds:

g

∑
j=1

ejfj = n.

Proof. This follows from the multiplicativity of the ideal norm and the relation between the
element norm and the ideal norm:

pn = N(p) = N(pOK) =
g

∏
j=1

N(pj)
ej .

This equation forces N(pj) to be a power of p, and gives the desired relation between the
ej’s, the fj’s, and the degree n.

The positive integer ej is called the ramification index of pj over p, while the positive
integer fj is called the residue degree or inertial degree of pj over p.
Our proof of finiteness of the ideal class group follows the strategy described in the following

Proposition 2.42. Let OK be the ring of integers in a number field K.

(a) Given any B > 0, the number of ideals of OK whose norm is less than B is finite.

(b) The ideal class group of OK is finite if and only if there exists a constant B > 0 (depending
only on K) such that every ideal class contains an ideal of norm less than B.

Proof.

(a) Luckily for us, ideal norms are non-negative integers. Therefore it suffices to show, for
every n ≥ 0, that the number of ideals of norm n is finite.

Suppose I is an ideal with norm n, that is #(OK/I) = n. Then nα = 0 for all α ∈ OK/I,
which implies that nOK ⊆ I. But OK/nOK is finite, so there are only finitely many
ideals containing nOK , hence finitely many ideals I of norm n.

(b) Suppose there exists a constant B > 0 such that every ideal class contains an ideal
of norm less than B. By part (a), the number of such ideals is finite, and each ideal
belongs to at most one ideal class, therefore there are finitely many ideal classes.

Conversely, suppose the ideal class group is finite and pick representatives I1, . . . , Ir for
the ideal classes. Let B =max{N(Ij)} + 1, then B satisfies the desired condition.

Theorem 2.43. Let OK be the ring of integers in a number field K. Let ω1, . . . , ωn be an
integral basis for OK and let σ1, . . . , σn be the distinct embeddings of K into C. Set

BK ∶=
n

∏
i=1

n

∑
j=1

∣σi(ωj)∣.
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(a) Every nonzero ideal I of OK contains a nonzero element α such that

∣N(α)∣ ≤ BK N(I).

(b) Every ideal class of OK contains a nonzero ideal of norm less than BK.

Proof.

(a) Let m ∈ Z>0 be maximal with the property that mn ≤ N(I), so that N(I) < (m + 1)n.
We define a subset S of OK by

S = {
n

∑
j=1

mjωj ∣mj ∈ {0,1, . . . ,m}} .

Clearly #S = (m + 1)n > N(I), so the elements of S cannot all be in distinct cosets
modulo I. Let x ≠ y ∈ S be such that α ∶= x − y ∈ I, then

α =
n

∑
j=1

cjωj with ∣cj ∣ ≤m.

What can we say about the norm of α?

∣N(α)∣ =
n

∏
i=1

∣σi(α)∣ =
n

∏
i=1

∣
n

∑
j=1

cjσi(ωj)∣ ≤
n

∏
i=1

n

∑
j=1

∣cj ∣ ∣σi(ωj)∣ ≤m
n

n

∏
i=1

n

∑
j=1

∣σi(ωj)∣ =m
nBK ≤ BK N(I).

(b) Take an arbitrary ideal class c of OK and let I be some (non-fractional) ideal representing
the inverse of c under the group operation of Cl(OK): [I] = c−1. By part (a), there
exists a nonzero element α ∈ I such that ∣N(α)∣ ≤ BK N(I).

Let’s consider the unique factorisation into prime ideals of αOK and of I:

αOK = p1 . . .pr

I = q1 . . .qs.

Since αOK ⊆ I, we have p1 . . .pr ⊆ q1, and the latter is a prime ideal so there exists
j such that pj ⊆ q1, from which we get pj = q1 from Krull dimension 1. This implies
that the prime ideal factorisation of I is a subset of the prime ideal factorisation of
αOK ; letting J denote the ideal defined by the complement (the remaining part of the
factorisation), we have αOK = IJ .

We note that the class [J] of J in Cl(OK) is precisely c, and that

N(J) = ∣N(α)∣/N(I) ≤ BK ,

as wanted.

Putting all the pieces together, we arrive at our goal:

Theorem 2.44. The ideal class group of the ring of integers in a number field is finite.

A side effect of the proof also gives us

Corollary 2.45. Let OK be the ring of integers of a number field K. If every ideal I such
that

N(I) ≤ BK ∶=
n

∏
i=1

n

∑
j=1

∣σi(ωj)∣

is principal, then OK is a principal ideal domain.
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3. Decomposition of primes in ring
extensions

Let OK be the ring of integers in a number field K of degree n over Q. We have seen that,
given any prime number p ∈ Z, there exists a decomposition

pOK =
g

∏
j=1

p
ej
j ,

where the pj’s are distinct prime ideals of OK , ej ∈ Z>0, N(pj) = pfj with fj ∈ Z>0 and

∑
g
j=1 ejfj = n.
We say that pj lies over p (or that pj divides p). Several different situations may arise:

• p is ramified in OK if there exists j such that ej > 1;

• p is totally ramified in OK if pOK = pn for a prime ideal p;

• p is inert in OK if pOK is a prime ideal of OK ;

• p splits completely in OK if g = n.

Example 3.1. Let K = Q(i). Then

• 2OK = (1 + i)2 so 2 is totally ramified;

• if p ≡ 1 (mod 4) then pOK = (a + bi)(a − bi) with a, b such that a2 + b2 = p, so p splits
completely;

• if p ≡ 3 (mod 4) then p is inert.

These claims can be proved using properties of norms, but we’ll get most of them as a
special case of the next result.

Recall that for any prime number p, we have the quadratic residue symbol modulo p, defined
by

(
d

p
) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if p ∣ d

1 if d is a square modulo p

−1 if d is not a square modulo p.

Proposition 3.2. Let K = Q(
√
d) with d ∈ Z squarefree.1 Let p be a prime with gcd(p, 2d) = 1.

(a) If (dp) = 1 then p splits completely in OK. More precisely

pOK = (p, a +
√
d) (p, a −

√
d)

where a2 ≡ d (mod p), the two ideals on the right are prime and distinct.

1Just to be clear, an integer d is called squarefree if d ≠ 1 and d is not divisible by m2 for any m ∈ Z>1. In
particular, −1 is considered squarefree but 1 is not.

23



3. Decomposition of primes in ring extensions

(b) If (dp) = −1 then p is inert in OK.

Proof.

(a) We have

(p, a +
√
d)(p, a −

√
d) = (p2, p(a +

√
d), p(a −

√
d), a2 − d).

Since a2 ≡ d (mod p), all four generators of the ideal on the right are divisible by p, so
(p, a +

√
d)(p, a −

√
d) ⊆ pOK .

Conversely, p2 ∈ (p, a +
√
d)(p, a −

√
d), but also

p(2a) = p(a +
√
d) + p(a −

√
d) ∈ (p, a +

√
d)(p, a −

√
d).

Therefore p = pgcd(p,2a) = gcd(p2, p(2a)) ∈ (p, a +
√
d)(p, a −

√
d).

We now prove that (p, a +
√
d) ≠ (p, a −

√
d). Suppose not, then a −

√
d ∈ (p, a +

√
d),

hence
2a = (a −

√
d) + (a +

√
d) ∈ (p, a +

√
d),

But then 1 = gcd(p,2a) ∈ (p, a +
√
d), forcing (p, a +

√
d) = OK and therefore pOK =

(p, a +
√
d)(p, a −

√
d) = (p, a +

√
d)2 = O2

K = OK , contradiction.

Note also that (p, a +
√
d) = OK if and only if (p, a −

√
d) = OK (and therefore both

these claims are falsified as above): letting σ∶K →K denote the Galois automorphism
σ(
√
d) = −

√
d, we have that

1 = αp + β(a +
√
d) for some α,β ∈ OK

if and only if
1 = σ(1) = σ(α)p + σ(β)(a −

√
d).

At this point we can check that (p, a+
√
d) and (p, a−

√
d) are in fact prime ideals. For

this we use the fact that, whatever prime factorisation pOK has, it satisfies

g

∑
j=1

ejfj = [K ∶Q] = 2.

There’s not much wriggle room here, we must be in one of the following cases:

• g = 1, e1 = 2, f1 = 1; the juxtaposition of this and pOK = (p, a +
√
d)(p, a −

√
d)

would force (p, a +
√
d) = (p, a −

√
d), ruled out above;

• g = 1, e1 = 1, f1 = 2; dismissed in the same way as the previous point;

• g = 2, e1 = e2 = f1 = f2 = 1, implying that both (p, a+
√
d) and (p, a−

√
d) are prime

ideals (of norm p, in fact).

(b) Suppose p is a prime ideal of OK .

I claim that if (dp) = −1, then N(p) ≠ p. To see this, note that x2 − d has a root (
√
d) in

OK , hence it has a root in OK/p. If it were the case that N(p) = p, then OK/p ≅ Z/pZ,
so that x2−d would have a root in Z/pZ, which contradicts the quadratic residue symbol
assumption.

Now consider the ideal pOK . We have N(pOK) = p2. If p is not inert in OK , then the
factorisation of pOK would contain at least one prime ideal p of OK with norm dividing
p2 properly, in other words N(p) = p, contradicting the property we proved above.
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3.1. From polynomial factorisation to prime ideal
decomposition

The following result, attributed to Kummer and Dedekind, gives very detailed information
about prime decompositions under some favourable conditions.

Theorem 3.3. Let OK be the ring of integers in a number field K, and let θ ∈ OK be such
that K = Q(θ). Let h ∈ Z[x] be the minimal polynomial of θ. Let p be a prime number such
that p ∤ [OK ∶Z[θ]] and let ⋅∶Z[x] → Fp[x] be reduction modulo p. Factor the polynomial h
into irreducible polynomials:

h = h
e1
1 . . . h

eg
g , hj ∈ Fp[x] distinct.

Then
pOK = p

e1
1 . . .p

eg
g

where pj = (p, hj(θ)) is a prime ideal, hj ∈ Z[x] is any preimage of hj under ⋅, N(pj) = pfj

with fj = deg(hj), and the pj’s are distinct.

We’ll get to the proof soon, after a few examples and some preparatory results.

Example 3.4. Consider K = Q(
√
10). We know that OK = Z[

√
10], so we may apply

Theorem 3.3 with θ =
√
10 and any prime p. The minimal polynomial is of course x2 − 10.

Taking p = 3, we have

x2 − 10 ≡ (x − 1)(x + 1) (mod 3),

so we conclude that
3OK = (3,

√
10 − 1)(3,

√
10 + 1).

For p = 5 we have
x2 − 10 ≡ x2 (mod 5),

so
5OK = (5,

√
10)2.

Exercise 3.5. Show that the ideals (3,
√
10−1), (3,

√
10+1), and (5,

√
10) are not principal

in Z[
√
10].

Lemma 3.6. Let OK be the ring of integers in a number field K. Let θ ∈ OK with minimal
polynomial h ∈ Z[x]. Let p be a prime number and h0 a factor of h in Fp[x]. Let h0 ∈ Z[x] be
any preimage of h0. Then

Z[x]/(p, h0(x)) ≅ Z[θ]/(p, h0(θ)).

Proof. Let φ be the composition of the homomorphism Z[x] → Z[θ] (given by x ↦ θ) with
the quotient morphism Z[θ]→ Z[θ]/(p, h0(θ)). Since it’s the composition of two surjective
maps, φ is surjective.
Any f ∈ (p, h0(x)) maps to (p, h0(θ)) and hence so zero under φ. So it remains to show

that kerφ ⊆ (p, h0(x)).
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3. Decomposition of primes in ring extensions

Let f ∈ kerφ, then f(θ) ∈ (p, h0(θ)), in other words there exist a, b ∈ Z[x] such that

f(θ) = a(θ)p + b(θ)h0(θ).

With this in mind, define F ∈ Z[x] by

F (x) ∶= f(x) − a(x)p − b(x)h0(x).

We know that F (θ) = 0, so h ∣ F as h is the minimal polynomial of θ. So F (x) = h(x)c(x) for
some c ∈ Z[x].
However, h0 ∣ h, implying that h(x) ∈ (p, h0(x)), hence that F (x) ∈ (p, h0(x)), and finally

that f(x) ∈ (p, h0(x)).

The following result allows us to move certain questions about OK (which may be cumber-
some to compute explicitly) to the much more explicit subring Z[θ].

Lemma 3.7. Let OK be the ring of integers in a number field K and let θ ∈ OK be such that
K = Q(θ). If a prime number p does not divide [OK ∶Z[θ]] then

Z[θ]/pZ[θ] ≅ OK/pOK .

Proof. Let φ be the composition of the inclusion Z[θ] → OK and the quotient morphism
OK → OK/pOK .
We claim that φ is surjective. By the assumption p ∤ [OK ∶Z[θ]], we know that OK/Z[θ] is

a finite abelian group of order not divisible by p. Note that multiplication by p is bijective
as a map from such a group to itself. So given α ∈ OK , there exists α′ ∈ OK such that
αZ[θ] = pα′Z[θ]. Therefore α − pα′ ∈ Z[θ], and φ(α − pα′) = αpOK .
Now we determine kerφ. It is clear that pZ[θ] ⊆ kerφ. Conversely, let α ∈ kerφ, so

α ∈ Z[θ] ∩ pOK . Write α = pβ with β ∈ OK . We have pβ = α ∈ Z[θ] so pβZ[θ] = 0 ∈ OK/Z[θ].
But we’ve seen that multiplication by p is bijective on OK/Z[θ], so we must have βZ[θ] = 0,
in other words β ∈ Z[θ] and α = pβ ∈ pZ[θ].

Proof of Theorem 3.3. We break the conclusion into several parts:

(a) “pj is a prime ideal with norm pfj , where fj = deg(hj).”

Using Lemma 3.7 then Lemma 3.6 we have

OK/pj = OK/(p, hj(θ)) ≅ Z[θ]/(p, hj(θ)) ≅ Z[x]/(p, hj(x)) ≅ Fp[x]/(hj(x)).

But we know that hj ∈ Fp[x] is an irreducible polynomial, so it generates a maximal
ideal, therefore the quotient is a field of degree fj = deg(hj), and pj is prime with the
desired norm.

As a side effect we note something we’ll use later in the proof:

[K ∶Q] = n = deg(h) = deg(h) =
g

∑
j=1

ej deg(hj) =
g

∑
j=1

ejfj.

(b) “pi ≠ pj if i ≠ j.”

We know that hi and hj have no common factors in Fp[x], therefore 1 ∈ (hi, hj) in Fp[x],
hence 1 ∈ (p, hi, hj) in Z[x], so 1 ∈ (p, hi(θ), hj(θ)) in OK . But

(p, hi(θ), hj(θ)) ⊆ (p, hi(θ)) + (p, hj(θ)) = pi + pj,

so 1 ∈ pi + pj, therefore pi ≠ pj.
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(c) “pOK = p
e1
1 . . .p

eg
g .”

Note that in any commutative ring (a, b)(a, c) = (a2, ab, ac, bc) ⊆ (a, bc). So

pe11 . . .p
eg
g = (p, h1(θ))

e1 . . . (p, hg(θ))
eg ⊆ (p, h1(θ)

e1 . . . hg(θ)
eg) = (p, h(θ)) = pOK .

Therefore pe11 . . .p
eg
g = (pOK)J for some ideal J . This forces

pOK = p
e′1
1 . . .p

e′g
g

for some e′j with 0 ≤ e′j ≤ ej for all j and ∑ e′jfj = n = ∑ ejfj. We conclude that e′j = ej
for all j.

The condition p ∤ [OK ∶Z[θ]] in Theorem 3.3 invites some comments:

(a) This holds for any prime p in the case where OK = Z[θ].

(b) This holds for any prime p such that p2 ∤∆(1, θ, . . . , θn−1), since as we have seen

∆(1, θ, . . . , θn−1) = [OK ∶Z[θ]]2∆K .

(c) The condition also holds in case the minimal polynomial h of θ is Eisenstein at p, that
is p divides all the coefficients of h except for the leading one, and p2 does not divide
the constant coefficient.

(d) It is sometimes possible, given p, to tweak the initial choice of θ so that p does not
divide the index. For instance, consider K = Q(α), where α has minimal polynomial
x3 + 2x + 22. Using the formula you are proving in Assignment 1, we see that

∆(1, α,α2) = −22 ⋅ 52 ⋅ 131.

The only primes p such that p2 ∣ ∆(1, α,α2) are 2 and 5. The polynomial x3 + 2x + 22 is
Eisenstein at 2, so that’s sorted.

For p = 5 we need to do something else. Let θ = 1
5 (α

2 + α − 2). Clearly θ ∉ Q (otherwise
α would satisfy a polynomial equation of degree 2 over Q), so Q ⊊ Q(θ) ⊆ K. Since
[K ∶Q] = 3, we must have [K ∶Q(θ)] = 1 so K = Q(θ). You may have doubts that θ is
an algebraic integer, but we can compute its minimal polynomial: x3 + 2x2 + 4x − 2, so
that θ ∈ OK . Finally, ∆(1, θ, θ2) = −22 ⋅ 131, so we can use Theorem 3.3 with θ to deal
with p = 5:

5OK = (5, θ − 1)(5, θ − 3)(5, θ − 4).

Incidentally, had we tried to apply Theorem 3.3 with α for p = 5 we would have gotten
an incorrect answer:

5OK = (5, α − 1)
2(5, α − 3).

(e) Unfortunately, the method used in the previous part is not always successful: there
exist primes p and rings of integers OK such that p ∣ [OK ∶Z[θ]] for all θ ∈ OK .

Corollary 3.8. Suppose the minimal polynomial h of θ is Eisenstein at p. Then p is totally
ramified in OK.
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Theorem 3.3 and, more generally, the explicit factorisation into prime ideals, can be applied
to the computation of the ideal class group, which in turn can be used for solving equations in
integers. This is based on the Minkowski method and the fact that every ideal class contains
an ideal of norm less than

BK =
n

∏
i=1

n

∑
j=1

∣σi(ωj)∣,

where ω1, . . . , ωn is an integral basis of OK . (Note that BK depends on this choice of basis.)
The idea is that the list of all nonzero ideals of OK of norm less than BK contains a set

of representatives of the ideal classes, and smaller norm translates into something easier to
compute with. More precisely, suppose I is an ideal of norm less than BK . This ideal has a
factorisation into prime ideals:

I = p1 . . .pr, pj prime ideal of OK .

Given pj in the above factorisation, there exists a unique prime number p such that p ∈ pj,
which implies that we can find pj in the factorisation of pOK into prime ideals. In particular,
N(pj) is a power of p.
On the other hand, N(pj) divides N(I), which is less than BK . It follows that N(pj) is

less than BK , and therefore p is less than BK .
The conclusion is that we can discover all the possible candidates for prime ideals appearing

in the factorisation of the ideal I by looking at the factorisation of the principal ideals pOK

for all primes p up to the bound BK . Once all possible prime ideal factors are found, we find
all ideals I by taking products that remain under the norm bound BK .
Let’s observe this strategy in action in two simple examples.

Example 3.9. Consider K = Q(
√
2). The integral basis {1,

√
2} gives the bound

BK = (1 +
√
2)2 ≅ 5.8,

so we are looking at the prime numbers less than 5.8. We can apply Theorem 3.3 with
θ =
√
2 and any p, and it tells us that 3 and 5 are inert in OK ; they have norms 9 and 25,

both bigger than 5.8, so we may safely ignore them.
As for p = 2, we have 2OK = (

√
2OK)2. We conclude that the only nonzero ideals of

norm less than 5.8 are OK ,
√
2OK , and 2OK . They are all principal, so we conclude that

every ideal class contains a principal ideal, therefore every ideal class is trivial in the ideal
class group. In other words, Cl(OK) = 1 and OK is a PID.

Example 3.10. Consider K = Q(
√
−5). The integral basis {1,

√
−5} gives the bound

BK = (1 +
√
5)2 ≈ 10.5,

so we are looking at the prime numbers less than 10.5.
We summarise the results of the application of Theorem 3.3 with θ =

√
−5 and p = 2, 3, 5, 7:

p pOK short names

2 (2,1 +
√
−5)2 p22

3 (3,1 +
√
−5)(3,1 −

√
−5) p3p′3

5 (
√
−5OK)2 p25

7 (7,1 +
√
−5)(7,1 −

√
−5) p7p′7
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I leave it as an exercise to check that there are no elements of norm ±2, ±3, or ±7 in OK ,
and therefore that the prime ideals p2, p3, p′3, p7, and p′7 are not principal.
It is then clear that [p2] has order 2 as an element of the ideal class group. We can

relate the classes of the other prime ideals listed above to [p2] in the following way:
N(1+

√
−5) = 6 so we conclude that (1+

√
−5)OK is either p2p3 or p2p′3. It turns out to be

the former. Therefore [p2][p3] = 1, but [p2] has order 2 so [p3] = [p2]. Similar endeavours
yield [p′3] = [p7] = [p

′
7] = [p2].

The conclusion is that every ideal class of OK has a representative whose class is some
power of [p2], so that Cl(OK) is a group of order 2.

Example 3.11. Let’s solve the equation y2 = x3 − 5 in integers.
We start with two elementary observations:

• x is odd; otherwise y is odd and y2 ≡ −1 (mod 4), impossible.

• gcd(x, y) = 1; since 5 = x3 − y2 the only other possible divisor would be 5, but then y2

is divisible by 25 and x3 − 5 is divisible by 5, impossible.

With this out of the way, it is time to factor over OK = Z[
√
−5]:

(y +
√
−5)(y −

√
−5) = x3.

Suppose p is a prime ideal of OK that divides both (y +
√
−5)OK and (y −

√
−5)OK .

Then p divides x3OK , hence divides xOK , and since x is odd, does not divide 2OK . Also
2y ∈ (y +

√
−5)OK + (y −

√
−5)OK , so p divides 2yOK , hence divides yOK . However,

gcd(x, y) = 1, so we have reached a contradiction.
Therefore the ideals (y+

√
−5)OK and (y−

√
−5)OK have no common prime ideal factors.

Taking the prime ideal factorisation of x3OK = (xOK)3 into account, we must have that

(y +
√
−5)OK = I

3, (y −
√
−5)OK = J

3,

for some ideals I and J of OK .
Changing perspective to the ideal class group Cl(OK) now, we have [I]3 = [J]3 = 1, but

the group has order 2 by Example 3.10, forcing [I] = [J] = 1. Moreover, a quick norm
computation tells us that the only units in OK are ±1, both cubes in OK , therefore

y +
√
−5 = (a + b

√
−5)3

for some a, b ∈ Z. Expanding the cube and comparing multiples of
√
−5 on both sides we

conclude that 1 = b(3a2 − 5b2), which is impossible to solve in integers.
Therefore the equation y2 = x3 − 5 has no integer solutions.

3.2. Cyclotomic fields

It’s high time we met our second explicit family of number fields (the first being the quadratic
fields).
Fix m ≥ 3 and let ζ = e2πi/m. We call any root of xm − 1 an m-th root of unity; clearly ζ is

an m-root of unity. We call Q(ζ) a cyclotomic field .
Let Φ ∈ Z[x] denote the minimal polynomial of ζ over Q. It is a divisor of xm − 1. So if ξ is
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a conjugate of ζ (that is, another root of Φ), then ξ is also an m-th root of unity. Moreover, ξ
is not an n-th root of unity for any n <m. (If that were the case then Φ would divide xn − 1,
contradicting the fact that ζn = e2πin/m ≠ 1.) Therefore we have an inclusion

{conjugates of ζ} ⊆ {ζk ∣ k ∈ S}.

where we define
S = {k ∈ Z ∣ 1 ≤ k ≤m,gcd(k,m) = 1}.

We prove that this is actually an equality:

Proposition 3.12. For any k ∈ S, we have that ζk is a conjugate of ζ.

Exercise 3.13. Suppose h ∈ Z[x] is monic and h = fg with f, g ∈ Q[x] monic. Then
f, g ∈ Z[x].

Proof of Proposition 3.12. We will prove that if ξ = ζk with k ∈ S and p is a prime not dividing
m, then ξp is a conjugate of ξ. The claim in the Proposition will then follow by repeated
application of this principle with p running through the prime decomposition of k.
Let f ∈ Z[x] be the minimal polynomial of ξ over Q. Since ξm − 1 = 0, we have xm − 1 =

f(x)g(x) for some g ∈ Q[x]. But Exercise 3.13 tells us that g ∈ Z[x].
We move on to considering ξp now. It also is a root of xm − 1 = f(x)g(x); we are trying to

show that it is a root of f , so let’s assume it’s a root of g, that is g(ξp) = 0. We interpret this as
saying that ξ is a root of the polynomial g(xp), therefore the minimal polynomial f of ξ divides
g(xp) in Q[x], therefore in Z[x] by another application of Exercise 3.13. Reducing modulo
p, g(x)p = g(xp) is divisible by f(x) in Fp[x]. Let h ∈ Fp[x] be an irreducible polynomial

such that h(x) ∣ f(x), then h
2
∣ f(x)g(x) = xm − 1. Therefore h divides the derivative of

xm − 1, which is mxm−1, forcing h(x) to be a scalar multiple of a power of x. However, this
contradicts the fact that h(x) divides xm − 1.
So the assumption that ξp is a root of g leads to a contradiction, which implies that ξp is a

root of f , in other words it is a conjugate of ξ.

Corollary 3.14. The cyclotomic field Q(ζ) has degree φ(m) over Q, and its Galois group is
isomorphic to (Z/mZ)×.

Proof. By Proposition 3.12 we know that ζ has φ(m) conjugates, so that is the degree.
For the statement about the Galois group G of Q(ζ) over Q, note that an element σ ∈ G

is uniquely determined by σ(ζ), which can be any ζk for k ∈ S, which gives us a bijection
between G and (Z/mZ)×.
If σ, τ ∈ G are given by σ(ζ) = ζk and τ(ζ) = ζℓ, then τ ○ σ is given by

(τ ○ σ)(ζ) = τ(σ(ζ)) = τ(ζk) = τ(ζ)k = (ζℓ)k = ζℓk,

in other words the map from G to (Z/mZ)× is a group homomorphism.

Recall (?) that the Euler phi function φ is defined as

φ(m) =#S =#(Z/nZ)×.

It is a multiplicative arithmetic function: φ(mn) = φ(m)φ(n) whenever gcd(m,n) = 1, and

φ(pr) = (p − 1)pr−1.
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For any m ∈ N, let
µm = ⟨ζm⟩ = {ω ∈ C ∣ ωm = 1}

be the group of m-th roots of unity, and let

µ∞ =
∞

⋃
m=1

µm

be the group of all roots of unity.

Proposition 3.15. Given m ≥ 3, let ζ = e2πi/m.

(a) If m is even, Q(ζm) ∩ µ∞ = µm.

(b) If m is odd, Q(ζm) ∩ µ∞ = µ2m.

Proof. We start by remarking that if m is odd, then Q(ζm) = Q(ζ2m), since

( − ζ2m)
m
= −e2πim/2m = −(−1) = 1.

Therefore it suffices to prove part (a) of the Corollary. Suppose m is even and let θ ∈ Q(ζ)
be a primitive k-th root of unity for some k, so that µk = ⟨θ⟩. Then ζθ is a primitive ℓ-th root
of unity with ℓ = lcm(m,k), hence Q(ζθ) ⊆ Q(ζ) and φ(ℓ) ≤ φ(m). The latter forces ℓ = m,
in other words k ∣m so θ ∈ µm.

Corollary 3.16. The m-th cyclotomic fields for m even are all pairwise non-isomorphic.

For any algebraic number α of degree n, set

∆(α) ∶=∆(1, α, . . . , αn−1).

Lemma 3.17. Let m ≥ 3 and let ζ = e2πi/m. Then

∆(ζ) =∆(1 − ζ).

Proof. For any embedding σj ∶Q(ζ)→ C we have σj(1 − ζ) = 1 − σj(ζ), so that

∆(ζ) =∏
i<j

(σi(ζ)−σj(ζ)) =∏
i<j

((1−σi(ζ))−(1−σj(ζ))) =∏
i<j

(σi(1−ζ)−σj(1−ζ)) =∆(1−ζ).

Recall the notation

S = {k ∈ Z ∣ 1 ≤ k ≤m,gcd(k,m) = 1}.

Lemma 3.18. Let ζ = e2πi/p
r
with p prime and r ∈ N. Then

∏
k∈S

(1 − ζk) = p.

In particular,
p

(1 − ζ)#S
∈ Z[ζ].
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Proof. For k ∈ S, ζk is a root of xpr − 1, but not of xpr−1 − 1, therefore it is a root of

f(x) =
xpr − 1

xpr−1 − 1
=

p−1

∑
j=0

xjpr−1 .

Note also that #S = φ(pr) = (p − 1)pr−1 = deg(f), so in fact these are all the complex roots of
f , so that

f(x) =∏
k∈S

(x − ζk).

Now we use f(1) = p.
The last statement follows since we have in Z[ζ]:

1 − ζk = (1 − ζ)(1 + ζ + ζ2 + ⋅ ⋅ ⋅ + ζk−1).

Corollary 3.19. The polynomial f ∈ Z[x] defined in the proof of Lemma 3.18 is the minimal
polynomial of ζ over Q (and, in particular, irreducible).

Proof. We know that ζ is a root of f (as 1 ∈ S), so the minimal polynomial h of ζ divides f .
But deg(h) = [Q(ζ)∶Q] = φ(pr) = deg(f), so we conclude that h = f .

Another way to see that f is irreducible is by looking at f(x + 1) modulo p:

f(x + 1) =
(x + 1)p

r
− 1

(x + 1)pr−1 − 1
≡
(xpr + 1) − 1

(xpr−1 + 1) − 1
= xφ(pr) (mod p),

so f(x + 1) has all but the leading coefficient divisible by p. On the other hand, f(0 + 1) = p
so the constant coefficient of f(x + 1) is not divisible by p2. Therefore f(x + 1) is Eisenstein
at p, and so it is irreducible, hence f itself is irreducible.

Lemma 3.20. Let ζ = e2πi/m and let K = Q(ζ). Then ∆(ζ) ∣mφ(m).

Proof. Let f ∈ Z[x] be the minimal polynomial of ζ over Q. Write xm − 1 = f(x)g(x) with
g ∈ Z[x]. Differentiate:

mxm−1 = f ′(x)g(x) + f(x)g′(x)

and set x = ζ to get

mζm−1 = f ′(ζ)g(ζ) ⇒ m = ζf ′(ζ)g(ζ).

Now we take the norm from K to Q:

mφ(m) = N(m) = N(f ′(ζ))N(ζg(ζ)) = ±∆(ζ)N(ζg(ζ)).

Since ζ, and therefore also ζg(ζ), are algebraic integers, we conclude that ∆(ζ) ∣mφ(m).

Exercise 3.21. Consider the case m = p a prime number and show that ∆(ζ) = ±pp−2.

Theorem 3.22. Let ζ = e2πi/p
r
with p prime and r ∈ N. Let K = Q(ζ). Then OK = Z[ζ].
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Proof. Let n = φ(pr). We start by noting that Z[ζ] = Z[1− ζ], so that it suffices to prove that
OK = Z[1 − ζ]. Also 1,1 − ζ, . . . , (1 − ζ)n−1 ∈ OK is a Q-basis for K. By Proposition 2.34 any
element α ∈ OK can be written in the form

α =
c0 + c1(1 − ζ) + ⋅ ⋅ ⋅ + cn−1(1 − ζ)n−1

∆(1 − ζ)
.

By Lemmas 3.17 and 3.20 we know that the denominator of this expression is a power of p.

Suppose that OK ≠ Z[1 − ζ], then there exists θ ∈ OK of the form

θ =
cj1(1 − ζ)

j1 + ⋅ ⋅ ⋅ + cjs(1 − ζ)
js

p

where {j1 < ⋅ ⋅ ⋅ < js} ⊆ {0, . . . , n − 1} and cji is not divisible by p for all i.

By Lemma 3.18 we know that p
(1−ζ)n ∈ Z[ζ], so

p
(1−ζ)j1+1

∈ Z[ζ] and θ p
(1−ζ)j1+1

∈ OK :

θ
p

(1 − ζ)j1+1
=

cj1
1 − ζ

+ cj2(1 − ζ)
j2−j1−1 + ⋅ ⋅ ⋅ + cjs(1 − ζ)

js−j1−1.

Most of the right hand side is in Z[ζ] ⊆ OK , and the left hand side is in OK , so we conclude
that

cj1
1−ζ ∈ OK . This means that p = N(1 − ζ) ∣ N(cj1) = c

n
j1
, so p ∣ cj1 , contradiction.

3.3. Quadratic Reciprocity, take one

Let ζ = e2πi/p with p an odd prime, and let K = Q(ζ). We have seen that K/Q is a Galois
extension with Galois group G isomorphic to (Z/pZ)× ≅ Z/(p−1)Z. Therefore G has a unique
subgroup of every order dividing p − 1. In particular, by the Galois correspondence there is a
unique subfield L of K of degree 2 over Q. We will determine this subfield explicitly via a
very concrete method, which will also lead us to a proof of the Law of Quadratic Reciprocity.

Consider the following expression, an example of a Gauss sum:

g = ∑
t∈(Z/pZ)×

(
t

p
) ζt ∈ Z[ζ].

Theorem 3.23. The cyclotomic integer g satisfies the relation

g2 = p∗ ∶= (−1)(p−1)/2p.

Therefore the unique quadratic subfield of Q(ζ) is Q(
√
p∗).

Before jumping into this, let’s look at some basic properties of the quadratic residue symbol.

Lemma 3.24. Let p be an odd prime number and a, b ∈ Z.

(a) (Euler’s criterion) a(p−1)/2 ≡ (ap) (mod p).

(b) (multiplicativity) (abp ) = (
a
p) (

b
p).

Proof. The claims are trivially true if a or b is zero modulo p.

Suppose now that a, b /≡ 0 (mod p).
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(a) Using Fermat’s Little Theorem we see that

(a(p−1)/2 − 1)(a(p−1)/2 + 1) = ap−1 − 1 ≡ 0 (mod p).

Since Z/pZ is a field we conclude that a(p−1)/2 ≡ ±1 (mod p).

I claim that x2 ≡ a (mod p) is solvable if and only if a(p−1)/2 ≡ 1 (mod p). For this we
use the fact that (Z/pZ)× is cyclic; let k be a generator (also known as a primitive root
modulo p). Write a ≡ kb (mod p), x ≡ ky (mod p), then we are considering the solvability
of k2y ≡ kb (mod p), which is equivalent to the solvability of 2y ≡ b (mod p − 1).

On one hand, if this congruence is solvable then b = 2c for some c ∈ N (since both 2y

and p − 1 are even), so that a(p−1)/2 ≡ (kc)
p−1
≡ 1 (mod p).

On the other hand, if kb(p−1)/2 ≡ a(p−1)/2 ≡ 1 (mod p), then p − 1 divides b(p − 1)/2, so
that 2∣b, in which case 2y ≡ b (mod p − 1) is clearly solvable.

(b) We use the previous part:

(
ab

p
) ≡ (ab)(p−1)/2 = a(p−1)/2b(p−1)/2 ≡ (

a

p
)(

b

p
) (mod p).

Since both quantities are ±1 and p > 2 we conclude that the quantities are equal.

Lemma 3.25. Given n ∈ Z, we have

∑
t∈Z/pZ

ζnt =

⎧⎪⎪
⎨
⎪⎪⎩

0 if n /≡ 0 (mod p)

p if n ≡ 0 (mod p).

Proof. If n ≡ 0 (mod p) then ζn = 1 and the claim follows.
Otherwise, ζn ≠ 1 and

∑
t∈Z/pZ

ζnt =
ζnp − 1

ζn − 1
=

0

ζn − 1
= 0.

Proof of Theorem 3.23. We place the Gauss sum g into a family by setting, for any a ∈ Z/pZ:

ga =∑ t ∈ (Z/pZ)× ( t
p
) ζat.

Clearly g1 = g. I claim that

ga = (
a

p
) g.

To see that g0 = 0, note that g0 is the sum of the quadratic residue symbol over all nonzero
elements mod p, but half of these contribute +1 and the other half contribute −1.
For the remaining case a ≠ 0, multiplication by a is a bijective map from (Z/pZ)× to itself,

which allows us to reindex the sum:

(
a

p
) ga = ∑

t∈(Z/pZ)×
(
at

p
) ζat = ∑

s∈(Z/pZ)×
(
s

p
) ζs = g.

Consider the sum
S = ∑

a∈Z/pZ
gag−a.
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We will compute this sum in two different ways.

First, we have

gag−a = (
a

p
)(
−a

p
) g2 =

⎧⎪⎪
⎨
⎪⎪⎩

0 if a = 0

(−1p ) g
2 if a ≠ 0.

Summing over a we get

S = ∑
a∈(Z/pZ)×

(
−1

p
) g2 = (p − 1) (

−1

p
) g2.

The other evaluation goes via

gag−a = ∑
x,y∈(Z/pZ)×

(
xy

p
) ζa(x−y),

and summing over a we get

S = ∑
x,y∈(Z/pZ)×

(
xy

p
) ∑
a∈Z/pZ

ζa(x−y) = p(p − 1),

where we used Lemma 3.25 to see that only the summands with x = y are nonzero.

We conclude that

p(p − 1) = S = (p − 1) (
−1

p
) g2.

Theorem 3.26 (Law of Quadratic Reciprocity). Let p ≠ q be odd prime numbers. Then

(
p∗

q
) = (

q

p
) .

Proof. Consider the family of Gauss sums with a ∈ Z/pZ:

ga = ∑
t∈(Z/pZ)×

(
t

p
) ζat ∈ Z[ζ].

Raise g = g1 to the q-th power:

gq ≡ ∑
t∈(Z/pZ)×

(
t

p
) ζtq = gq = (

q

p
) g (mod qZ[ζ]).

Multiply both sides by g:

gq+1 ≡ (
q

p
) g2 (mod qZ[ζ]) ⇒ (p∗)

(q−1)/2
p∗ ≡ (

q

p
)p∗ (mod q),

where we notice that the last congruence only involves integers. We can cancel out the
common p∗ factor as p ≠ q:

(p∗)
(q−1)/2

≡ (
q

p
) (mod q).

Finally, we use Euler’s criterion.
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3. Decomposition of primes in ring extensions

3.4. Extensions of number fields, and the Galois advantage

So far we have been studying properties of finite extensions K/Q where the base field is the
rational numbers. It is useful to generalise this slightly to finite extensions L/K where both
L and K are number fields. Much of what we have discovered to this point extends to this
setting, albeit with more intricate proofs. In particular, we have the following

Theorem 3.27. Let L/K be a finite extension of number fields and let n = [L∶K]. Let p be a
nonzero prime ideal of OK. Then there is a unique factorisation

pOL = q
e1
1 . . .q

eg
g ,

where the qj’s are the distinct prime ideals of OL lying over p, ej ∈ Z≥1, and the uniqueness is
up to permutation of the factors. Moreover, letting fj = [OL/qj ∶OK/p], we have

g

∑
j=1

ejfj = n.

We will not prove this (see [2, Theorem 4.27] for a proof), but parts of the statement could
do with some clarification.
If p is a nonzero prime ideal of a ring of integers OK , we call the quotient OK/p the residue

field of p. We know that p∩Z = pZ for a prime number p, and that OK/p is a finite extension
of Fp. These facts generalise to our setting as follows: a nonzero prime ideal q of OL lies over
p if q contains pOL, the ideal of OL generated by p.

Proposition 3.28. Suppose L/K is a finite extension of number fields and p is a nonzero
prime ideal of OK.

(a) A nonzero prime ideal q of OL lies over p if and only if q ∩OK = p.

(b) pOL ≠ OL.

(c) If q lies over p then the residue field OL/q is a finite extension of the residue field OK/p.

Proof.

(a) One direction is clear: if q ∩OK = p then p ⊆ q so q lies over p.

Conversely, suppose p ⊆ q. Then q ∩OK is a prime ideal containing p, but p is maximal,
so we must have q ∩OK = p.

(b) Let α ∈ OK have p-valuation 1, that is α ∈ p but α ∉ p2. Then αOK = pI, where I is
an ideal that does not contain p. By the maximality of p, this means that p and I are
coprime ideals in OK , so there exist a ∈ p and b ∈ I such that a + b = 1.

Suppose now that pOL = OL, then bOL = bpOL ⊆ αOL, so that b = αc for some c ∈ OL.
We have c = b

α ∈K, so c ∈ OK and b ∈ αOK ⊆ p, implying that 1 = a+ b ∈ p, contradiction.

(c) Consider the composition of the inclusion OK ↪ OL and the quotient map OL → OL/q.
The kernel of this composition is q ∩OK = p (by part (a)), so we get an injective map
OK/p↪ OL/q.

For the finite-dimensionality, let pZ = q∩Z = p∩Z, then we know that both #(OK/p) =
N(p) and #(OL/q) = N(q) are powers of p.
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Now we introduce the additional assumption that L is a Galois extension of K. This
drastically simplifies the picture:

Proposition 3.29. Let L/K be a finite Galois extension of number fields with Galois group
G and let p be a nonzero prime ideal of OK. Let n = [L∶K].

(a) G acts transitively on the set of prime ideals of OL lying above p.

(b) In the context of the prime ideal decomposition of pOL, all the ej’s are equal to a common
value e, all the fj are equal to a common value f , and

efg = n.

Proof.

(a) By definition of the Galois group, G acts on elements of L: σ ⋅α = σ(α). It is clear that
any σ ∈ G, being a field automorphism of L that fixes K pointwise, restricts to a ring
automorphism of OL that fixes OK pointwise. In particular, σ takes prime ideals of OL

to prime ideals of OL. Also, if pOL ⊆ q, then pOL = σ(pOL) ⊆ σ(q), so σ takes prime
ideals lying over p to prime ideals lying over p.

For the transitivity, suppose q1 ≠ q2 are prime ideals lying over p and σ(q1) ≠ q2 for
all σ ∈ G. Then q2 ⊊ σ(q1) + q2 and the latter is forces to be OL by the maximality of
q2. In other words, σ(q1) and q2 are coprime ideals for all σ ∈ G. Similarly, σ(q1) and
τ(q1) are either equal or coprime for any σ, τ ∈ G. We can therefore apply the Chinese
Remainder Theorem to find a solution α ∈ OL to the simultaneous congruences

α ≡ 0 (mod q2)

α ≡ 1 (mod σ(q1)) for all σ ∈ G.

Consider the element
a ∶= NL

K(α) =∏
σ∈G

σ(α).

We have that a ∈ q2 ∩OK = p. However α ∉ σ−1(q1), hence σ(α) ∉ q1 for all σ ∈ G. Since
q1 is a prime ideal, this implies that a ∉ q1, hence a ∉ q1 ∩OK = p, contradiction.

(b) Fix i ≠ j. By the previous part, there exists σ ∈ G such that σ(qi) = qj. Compare now
the two factorisations

pOL = q
e1
1 . . .q

eg
g

pOL = σ(pOL) = σ(q1)
e1 . . . σ(qg)

eg .

By uniqueness, the exponents ei of σ(qi) and ej of σ(qj) must be equal.

For the residue degrees, note that σ gives a ring isomorphism σ∶OL → OL inducing
a ring isomorphism σ∶OL/qi → OL/σ(qi). In particular the cardinalities of these two
residue fields are equal.

Given a prime ideal q of OL lying above p, we consider its decomposition group, defined as
the stabiliser of q with respect to the Galois action:

Dq = {σ ∈ G ∣ σ(q) = q}.
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This is a subgroup of G of order n/g = ef .

We also consider the inertia group, defined by

Iq = {σ ∈ G ∣ σ(α) ≡ α (mod q) for all α ∈ OL}.

We have Iq ⊆Dq. In fact, Iq is the kernel of a group homomorphism φq that we will define
shortly.

First some notation. Let κ = OK/p and λ = OL/q be the respective residue fields. We know
that λ/κ is an extension of degree f of finite fields of characteristic p, where pZ = p ∩Z.
Here is all you need to know about finite extensions of finite fields:

Theorem 3.30. Let λ/κ be a finite extension, with #κ = q. The extension is Galois with cyclic
Galois group generated by the Frobenius automorphism of λ, σq ∶λ→ λ given by σq(x) = xq.

There is a canonical group homomorphism φq∶Dq → Gal(λ/κ), σ ↦ σ, defined as follows:
let σ ∈ Dq and x ∈ λ. Let x ∈ OL be any preimage of x under the quotient map, and let
σ(x) = σ(x) + q. Is this well-defined? Suppose x′ ∈ OL also maps to x, then x − x′ ∈ q, so

σ(x) − σ(x′) = σ(x − x′) ∈ σ(q) = q,

as wanted. Note also that if x ∈ κ ⊆ λ then we can certainly take x ∈ OK ⊆ OL, so that

σ(x) = σ(x) + q = x + q = x,

so σ fixes κ pointwise.

It is clear that Iq = kerφq, so that we have an exact sequence of groups

1→ Iq →Dq

φq

Ð→ Gal(λ/κ).

To show that the map φq is surjective, let’s consider what Galois theory tells us about the
situation. (For simplicity of notation we write simply I and D.)

Exercise 3.31 (Multiplicativity of ramification degree and inertial degree). Let K ⊆ L ⊆M
be number fields. Let m be a nonzero prime ideal of OM , q ∶= m ∩OL, p ∶= m ∩OK . Then

e(m/p) = e(m/q)e(q/p)

f(m/p) = f(m/q)f(q/p).

Theorem 3.32. Let L/K be a finite Galois extension of number fields. Let p be a nonzero
prime ideal of OK and q a prime ideal of OL above p. Let e = e(q/p), f = f(q/p), and g the
number of distinct prime ideals of OL above p, so that efg = [L∶K]. Let D = Dq/p be the
decomposition group at q, I = Iq/p be the inertia group at q, with respective fixed fields LD and
LI . Then the degrees, ramification degrees, and inertial degrees of the various intermediate
extensions are as in the following diagram:
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K

LD

LI

L

g

f

e

p

qD = q ∩OLD

qI = q ∩OLI

q

ramification
degree

1

1

e

inertial
degree

1

f

1

Proof. We have a number of claims to verify:

(a) [LD∶K] = g.
By Galois theory [LD∶K] = [G∶D]. For each σ ∈ G, every element σδ of the coset σD
sends q to σ(δ(q)) = σ(q), and σD = τD if and only if σ(q) = τ(q). Therefore we have
a bijection between {cosets of D in G} and {prime ideals of OL above p}, hence the
cardinality of G/D is g.

(b) e(qD/p) = 1, f(qD/p) = 1.
Start by noting that g(q/qD) = 1, so e(q/qD)f(q/qD) = ef . However we also have
e(q/qD) ∣ e and f(q/qD) ∣ f , so we conclude that they are equal to e and f . This implies
the claim.

(c) f(q/qI) = 1.
It suffices to prove that the Galois group of the extension λ/λI is trivial. Let α ∈ λ. Let
α ∈ OL be any preimage of α and consider the polynomial

h(x) =∏
σ∈I

(x − σ(α)) ∈ OL[x].

This actually has coefficients in OLI , so its reduction h modulo q has coefficients in
(OLI/(q ∩ OLI))[x] = λI[x]. However, for σ ∈ I we have σ(α) ≡ α (mod q), so that

σ(α) = α and we have
h(x) = (x − α)#I .

This means that every element of the Galois group of λ/λI sends α to α, as there are no
other roots of h. Since the Galois group acts trivially on every element of the extension,
both the group and the extension must be trivial.

(d) [LI ∶LD] = f .
From the previous point we know that f(qI/qD) = f , so [LI ∶LD] ≥ f . However, we know
that [D∶ I] ≤ f , so we get equality.

The field LD fixed by the decomposition group is called the decomposition field of q, and
the field LI fixed by the inertia group is called the inertia field of q.
We have been working with the tower of number fields

K ⊆ LD ⊆ LI ⊆ L
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associated with the choice of a prime ideal q of OL lying above a prime ideal p of OK . If we
have some intermediate extension K ′ with K ⊆K ′ ⊆ L, we can take p′ = q ∩OK′ and consider
the inertia and decomposition groups I ′ ⊆ D′ associated with q/p′. If H = Gal(L/K ′) ⊆ G,
then it is clear that

D′ =D ∩H, I ′ = I ∩H.

Also, if H and J are subgroups of G, then LH∩J = LHLJ , the compositum2 of the fields LH

and LJ .

Proposition 3.33.

(a) LD is the largest subextension K ′ of L/K such that e(p′/p) = 1 and f(p′/p) = 1.

(b) LI is the largest subextension K ′ of L/K such that e(p′/p) = 1.

Proof.

(a) We have seen in Theorem 3.32 that LD satisfies the conditions. Suppose now that K ′ is
a subextension satisfying the same conditions. We have K ′ = LH for some H ⊆ G. Then
LD′ = LD∩H = LDK ′. The condition on the degrees gives

#D′ = e(q/p′)f(q/p′) = e(q/p)f(q/p) =#D,

so D′ =D and LDK ′ = LD′ = LD, hence K ′ ⊆ LD.

(b) The proof for this part is similar, using

#I ′ = e(q/p′) = e(q/p) =#I.

Corollary 3.34. Let L1, L2 be finite extensions of a number field K and let p be a nonzero
prime ideal of OK.

(a) p is unramified in both L1 and L2 if and only if it is unramified in L1L2 (compositum
taken inside a fixed algebraic closure of Q).

(b) p splits completely in both L1 and L2 if and only if it splits completely in L1L2.

Proof.

(a) Suppose p is unramified in L1L2. In the tower K ⊆ L1 ⊆
L1L2, the total ramification degree is 1, so by multiplica-
tivity both intermediate ramification degrees are also 1,
hence p is unramified in L1. The same argument shows
that it is also unramified in L2.

Conversely, suppose p is unramified in both L1 and L2.
Let M be the Galois closure of L1L2, q′ a prime ideal of M
lying over p, and q = q′ ∩OL1L2 . Let I = Iq′/p and consider
the inertia field M I . Since q2 = q′ ∩ OL2 is unramified
over p, we have L2 ⊆ M I . Similarly, L1 ⊆ M I , therefore
L1L2 ⊆M I and p is unramified in L1L2.

(b) Similar to part (a).

K

L1 L2

L1L2

M

p

q2

q

q′

2If K1 and K2 are subfields of a field L, then their compositum K1K2 is the smallest subfield of L that
contains both K1 and K2.
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Corollary 3.35. Let L be a finite extension of a number field K and let M be the Galois
closure of L/K. Let p be a nonzero prime ideal of OK.

(a) p is unramified in L if and only if it is unramified in M .

(b) p splits completely in L if and only if it splits completely in M .

Proof.

(a) One direction is clear (if p is unramified in M then it is unramified in L). For the
other direction, assume p is unramified in L. For any σ∶L ↪ C fixing K, p = σ(p) is
unramified in σ(L). But M is the compositum of σ(L) for all σ, hence p is unramified
in M .

(b) Similar to part (a).

Corollary 3.36. The following is a short exact sequence:

1→ Iq →Dq

φq

Ð→ Gal(λ/κ)→ 1.

Proof. Follows directly from Theorem 3.32.

Corollary 3.37. Let L/K be a finite Galois extension of number fields and let p be a nonzero
prime ideal of OK. Let q be a prime ideal of OL lying over p.

(a) The cardinality of the inertia group Iq is equal to the ramification degree e = e(q/p). In
particular, p is unramified in OL if and only if Iq is the trivial group.

(b) The quotient Dq/Iq is cyclic of order f = f(q/p) and there is a canonical element Frobq/p ∈
Dq/Iq that generates the quotient group and maps to the Frobenius automorphism
σp ∈ Gal(λ/κ). In particular, if p is unramified in OL, then the Frobenius is a well-
defined element of the decomposition group Dq.

(c) If p is unramified in OL, then the Frobenius element Frobq/p ∈Dq is the unique element
σ ∈ G = Gal(L/K) with the property that

σ(α) ≡ αN(p) (mod q) for all α ∈ OL.

Proof. Everything follows directly from Theorem 3.32, except for part of (c): if σ ∈ G satisfies
the congruence, then σ(q) = q, so that σ ∈Dq, where we know that the congruence determines
Frobq/p uniquely.

How do the objects we have been working with depend on the choice of prime ideal q above
p?

Proposition 3.38. Let L/K be a finite Galois extension of number fields and let p be a nonzero
prime ideal of OK. Let q,q′ be prime ideals of OL lying over p and let σ ∈ G = Gal(L/K) be
such that q′ = σ(q). Then

Dq′/p = σDq/pσ
−1

Iq′/p = σIq/pσ
−1.

If p is unramified in L, then
Frobq′/p = σFrobq/p σ

−1.
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3. Decomposition of primes in ring extensions

Proof. Here is the calculation for Dq′/p:

Dq′/p = {τ ∈ G ∣ τ(q
′) = q′} = {τ ∈ G ∣ τ(σ(q)) = σ(q)}

= {τ ∈ G ∣ σ−1τσ(q) = q} = {σησ−1 ∈ G ∣ η(q) = q}

= σ{η ∈ G ∣ η(q) = q}σ−1 = σDq/pσ
−1.

We say that L/K is an abelian extension if it is Galois and its Galois group is abelian.

Corollary 3.39. If L is a finite abelian extension of a number field K, then the groups Dq/p

and Iq/p and the Frobenius element Frobq/p depend only on p, not on the choice of prime ideal
q over it.

We’re a little overdue for the following result, but the proof benefits from the transitivity
of the Galois action we have been exploiting lately:

Theorem 3.40. Let K be a number field and p ∈ Z a prime number. Then p is ramified in
OK if and only if p divides the discriminant ∆K of OK.

Proof. Fix an integral basis ω1, . . . , ωn of OK , and let M denote the Galois closure of K.
(⇒): Since p is ramified, there exists a prime ideal p0 of OK such that e(p0/p) > 1. Writing

pOK = p0J , the ideal J is then contained in all the prime ideals of OK above p, and pOK ⊊ J .
Let θ ∈ J ∖ pOK and write

θ = a1ω1 + a2ω2 + ⋅ ⋅ ⋅ + anωn, aj ∈ Z.

Since θ ∉ pOK , there exists j such that p ∤ aj. Without loss of generality j = 1. We have

∆(θ,ω2, . . . , ωn) = a
2
1∆K .

Since p ∤ a1, it suffices to prove that p ∣∆(θ,ω2, . . . , ωn).
In order to do this, let σ1, . . . , σn∶K ↪ C be the embeddings of K into C, extending each of

them to an embedding σj ∶M ↪ C of the Galois closure M . Since θ ∈ J , we know that θ ∈ p
for all p in OK above p. Therefore θ ∈ q for all q in OM above p.
Fix one of the prime ideals q0 of OM above p. For any σ ∈ Gal(M/Q), σ−1(q0) is another

such prime ideal, so θ ∈ σ−1(q0), hence σ(θ) ∈ q0. In particular, σj(θ) ∈ q0 for all embeddings
σj. Therefore

∆(θ,ω2, . . . , ωn) ∈ q0 ∩Z = pZ.

(⇐): Suppose p ∣∆K but p is unramified in K.
Let Σ = Σ(ω1, . . . , ωn) so that ∆K = det(Σ)2 and note that

∆K = det(Σ)
2 = det(ΣT )det(Σ) = det(ΣTΣ) = det([TrKQ (ωiωj)]).

The assumption that p ∣∆K implies that the rows of the reduction modulo p of the matrix
[TrKQ (ωiωj)] are linearly dependent over Fp; in other words there are integers a1, . . . , an ∈ Z,
not all divisible by p, such that

a1

⎡
⎢
⎢
⎢
⎢
⎢
⎣

TrKQ (ω1ω1)
⋮

TrKQ (ωnω1)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

+ ⋅ ⋅ ⋅ + an

⎡
⎢
⎢
⎢
⎢
⎢
⎣

TrKQ (ω1ωn)
⋮

TrKQ (ωnωn)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≡

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(mod p).
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Let θ = a1ω1 + ⋅ ⋅ ⋅ + anωn, then we can rewrite the above as

⎡
⎢
⎢
⎢
⎢
⎢
⎣

TrKQ (ω1θ)
⋮

TrKQ (ωnθ)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≡

⎡
⎢
⎢
⎢
⎢
⎢
⎣

0
⋮
0

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(mod p).

This says that TrKQ (θOK) ⊆ pZ, but θ ∉ pOK since not all aj are divisible by p.
Let’s get back to the other assumption, namely that p is unramified in K. Since θ ∉ pR,

then there exists some prime ideal p of OK above p such that θ ∉ p. By Corollary 3.35 we also
know that p is unramified in the Galois closure M . Letting q be any prime ideal of OM above
p, we have that θ ∉ q.
However

TrMQ (θOM) = Tr
K
Q TrMK (θOM) = Tr

K
Q (θTr

M
K (OM)) ⊆ Tr

K
Q (θOK) ⊆ pZ.

As p is unramified in M , we can use the Chinese Remainder Theorem to find an element
α ∈ OM that is not contained in q but is contained in all the other prime ideals of OM above p.
For all x ∈ OM , we have

TrMQ (θαx) ∈ Tr
M
Q (θOM) ⊆ pZ ⊆ q.

Let D =D(q/p) ⊆ G = Gal(M/Q), then for any σ ∈ G∖D we have that α ∈ σ−1(q) ≠ q, so that
σ(α) ∈ q. This means that for all x ∈ OM we have

σ(θαx) ∈ q.

We conclude then that for all x ∈ OM

∑
σ∈D

σ(θαx) = TrMQ (θαx) − ∑
σ∈G∖D

σ(θαx) ∈ q.

At this point we invoke unramifiedness of p in M once more: this tells us that D is identified
with Gal(µ/Fp), where µ = OM/q is the residue field of q. Using this identification, the last
equation becomes

∑
σ∈Gal(µ/Fp)

σ(θ αx) = 0 for all x ∈ µ.

Since θ ∉ q and α ∉ q, we see that θ α ≠ 0, so we can set y = θ αx to get

∑
σ∈Gal(µ/Fp)

σ(y) = 0 for all y ∈ µ.

This says that

∑
σ∈Gal(µ/Fp)

σ = 0,

where the two sides of the equality are thought of as functions from µ to µ. However, this
contradicts linear independence of characters (see below).

Exercise 3.41 (Linear independence of characters).

(a) Let G be a group and µ a field. A character of G with values in µ is a group
homomorphism χ∶G→ µ×. We say that characters χ1, . . . , χn are linearly independent
if there are no nontrivial relations

a1χ1 + ⋅ ⋅ ⋅ + anχn = 0,

where both sides are viewed as functions G→ µ.

Prove that if χ1, . . . , χn are distinct characters then they are linearly independent.
(See [3, Theorem 7 in Section 14.2] if you get stuck.)
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3. Decomposition of primes in ring extensions

(b) Deduce that if σ1, . . . , σn are distinct embeddings of a field κ into a field µ, then they
are linearly independent.

(c) Deduce that if σ1, . . . , σn are distinct automorphisms of a field µ, then they are linearly
independent.

Corollary 3.42. Let L/K be a finite extension of number fields. There are only finitely many
prime ideals p of OK that ramify in L.
In particular, for any number field L, there are only finitely many primes p ∈ Z that ramify

in L.

Example 3.43. The primes that ramify in the quadratic extension Q(
√
d) with d squarefree

are precisely

(a) the primes that divide 4d, if d ≡ 2,3 (mod 4);

(b) the primes that divide d, if d ≡ 1 (mod 4).

3.5. Cyclotomic fields redux, and more Quadratic
Reciprocity

Now, as promised, let’s have another look at cyclotomic fields. I will once again restrict to
the case m = pr, but a lot of what we will say holds for arbitrary m.

Theorem 3.44. Let m = pr with p ∈ Z prime and r ∈ Z≥1. Let ζ = e2πi/m, K = Q(ζ) so that
OK = Z[ζ]. Let ℓ ∈ Z be prime such that ℓ ≠ p and let f denote the order of ℓ as an element
of (Z/mZ)×. Then the ideal ℓOK has the decomposition

ℓOK = l1 . . . lg,

where l1, . . . , lg are distinct prime ideals of OK, f(lj/ℓ) = f for all j, and fg = φ(m).

Proof. We know from Lemma 3.20 that ∣∆K ∣ is a power of p, so ℓ does not ramify in K. As
K/Q is a Galois extension, we know that f(lj/ℓ) = f ′ for some integer f ′ and that f ′g = φ(m).
Moreover, if l is any prime ideal of OK above ℓ, we know that the decomposition group
D =D(l/ℓ) is cyclic of order f ′, generated by the Frobenius element Frobℓ ∈ G.
I claim that Frobℓ ∈ G is given explicitly by Frobℓ(ζ) = ζℓ. To see this, recall that Frobℓ is

the unique element σ ∈ G such that σ(x) ≡ xℓ (mod ℓ) for all x ∈ OK = Z[ζ]. But the map
ζ ↦ ζℓ has precisely this property:

a0 + a1ζ + ⋅ ⋅ ⋅ + an−1ζ
n−1 ↦ a0 + a1ζ

ℓ + ⋅ ⋅ ⋅ + an−1ζ
ℓ(n−1)

≡ (a0 + a1ζ + ⋅ ⋅ ⋅ + an−1ζ
n−1)ℓ (mod ℓ),

where we made use of the binomial theorem modulo ℓ.
However, the order of ζ ↦ ζℓ inside G ≅ (Z/mZ)× is precisely the order of ℓ in (Z/mZ)×,

therefore f ′ = f .

Corollary 3.45. A prime ℓ ∈ Z splits completely in Z[ζ] if and only if ℓ ≡ 1 (mod m).
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Example 3.46. Let m = 52, so that φ(m) = 20. Here is a table of primes together with
the factorisation of the cyclotomic polynomial Φ = x20 + x15 + x10 + x5 + 1 over Fℓ:

ℓ ℓ (mod 52) order of ℓ in (Z/52Z)× factorisation of Φ over Fℓ

101 1 1 (x + 4)(x + 9)(x + 13)(x + 20)(x + 21)
×(x + 22)(x + 23)(x + 30)(x + 33)(x + 43)
×(x + 45)(x + 47)(x + 49)(x + 64)(x + 70)
×(x + 76)(x + 77)(x + 82)(x + 85)(x + 96)

149 24 2 (x2 + 39x + 1)(x2 + 49x + 1)
×(x2 + 55x + 1)(x2 + 75x + 1)
×(x2 + 90x + 1)(x2 + 97x + 1)
×(x2 + 106x + 1)(x2 + 120x + 1)
×(x2 + 129x + 1)(x2 + 134x + 1)

7 7 4 (x4 + 2x3 + 4x2 + 2x + 1)
×(x4 + 4x3 + 4x + 1)
×(x4 + 4x3 + 3x2 + 4x + 1)
×(x4 + 5x3 + 5x2 + 5x + 1)
×(x4 + 6x3 + 5x2 + 6x + 1)

31 6 5 (x5 + 15)(x5 + 23)(x5 + 27)(x5 + 29)
29 4 10 (x10 + 6x5 + 1)(x10 + 24x5 + 1)
3 3 20 x20 + x15 + x10 + x5 + 1

Let’s revisit the law of quadratic reciprocity. Take an odd prime number p and let L = Q(ζ).
Recall that the Galois group G = Gal(L/Q) ≅ (Z/pZ)× is cyclic of even order, so L has a
unique quadratic subfield K. Consider the tower of extensions Q ⊆K ⊆ L. We know that p
is the unique prime that ramifies in L, therefore it is the unique prime that ramifies in K.
This implies that ∆K = ±p, and comparing this with the explicit discriminant formula for
quadratic fields we conclude that ∆K = (−1)(p−1)/2p, which we denote by p∗.

On the other hand, let H ⊆ (Z/pZ)× be the subset of the squares in (Z/pZ)×. It is easy to
see that this is a subgroup, and we know it has index 2 in G. Therefore its fixed field LH has
degree 2 over Q, so it must be the same as the quadratic subfield K described above.

We can play these two descriptions against each other to obtain:

Theorem 3.47 (Law of Quadratic Reciprocity, Take Two). If p and q are distinct odd primes,
then

(
p∗

q
) = (

q

p
) .

Proof. As above, let ζ = e2πi/p, L = Q(ζ), K the unique quadratic subfield of L.

Since K = Q(
√
p∗) and p∗ ≡ 1 (mod 4), we know that [OK ∶Z[

√
p∗]] = 2. Letting θ =

√
p∗

and recalling that q is odd, we have q ∤ [OK ∶Z[θ]] so we may apply Theorem 3.3 to conclude
that q splits completely in K if and only if the minimal polynomial x2 − p∗ of θ factors into

linear factors modulo q, in other words if and only if (p
∗

q ) = 1.

Now let q be any prime ideal of OL lying above q, and let D = Dq/q ⊆ (Z/pZ)× be the
decomposition group at q. Since q ≠ p, it is unramified in L, and we have seen in the proof
of Theorem 3.44 that the Frobenius element at q can be identified with q ∈ (Z/pZ)×. So
D = ⟨q⟩. Of course, the decomposition field LD is the largest subextension of L in which q
splits completely. So q splits completely in K if and only if K ⊆ LD. But K = LH , so q splits
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3. Decomposition of primes in ring extensions

completely in K if and only if D ⊆H. But D = ⟨q⟩, so q splits completely in K if and only if
q ∈H, which is the subgroup of squares in (Z/pZ)×.
Therefore q splits completely in K if and only if ( qp) = 1.
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4. Some finiteness results

In an earlier chapter, we looked at OK sitting as a lattice inside Qn via

OK ⊆K ≅ Qn

Recall that in our terminology, a lattice in Qn or in Rn is a discrete Z-submodule of rank n.
We are going to construct a canonical embedding

ι∶OK ↪ Rn

and show that ι(OK) is a lattice in Rn.
Split the list of n distinct embeddings K ↪ C into the real embeddings σ1, . . . , σr1 ∶K ↪ R

and the pairs of conjugate complex embeddings τ1, τ 1, . . . , τr2 , τ r2 ∶K ↪ C with τj(K) /⊆ R. We
have n = r1 + 2r2. The pair (r1, r2) is called the signature of K.
We combine these embeddings into ι∶K ↪ Rn as the composition of

K ↪ Rr1 ×Cr2 ∼Ð→ Rr1+2r2 = Rn

by

α ↦ (σ1(α), . . . , σr1(α), τ1(α), . . . , τr2(α))

↦ (σ1(α), . . . , σr1(α),Re(τ1(α)), im(τ1(α)), . . . ,Re(τr2(α)), im(τr2(α))).

Proposition 4.1. ι(OK) is a lattice in Rn.

Proof. We know that OK , and hence ι(OK), are finitely generated over Z. We need to show
that given a Z-basis α1, . . . , αn of OK , the vectors ι(α1), . . . , ι(αn) are linearly independent
over R.
TODO: huge matrix!
The determinant D of this matrix is (−2i)r2 times the determinant of the original matrix;

on the other hand, D2 =∆K ≠ 0. We conclude that the determinant of the original matrix is
nonzero, so the vectors are linearly independent.

We will quantify how big a lattice Λ ⊆ Rn is by considering the quotient Rn/Λ.
A fundamental domain for (the action on Rn by translations by) Λ is a set F ⊂ Rn of the

form

F = {
n

∑
i=1

aivi∶ai ∈ [0,1)} ,

where v1, . . . , vn is a Z-basis for Λ.
There is a bijection of sets

F
∼
Ð→ Rn/Λ.

TODO: picture of fundamental domain for a Λ ⊆ R2.
We define the covolume of Λ and the volume of Rn/Λ to be the volume of the fundamental

domain F :
covol(Λ) = vol(F) = ∣det([v1 v2 . . . vn])∣.
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Corollary 4.2. covol(ι(OK)) = 2−r2
√
∣∆K ∣.

If Ω ⊆ Λ ⊆ Rn is a sublattice, then

covol(Ω) = [Λ∶Ω]covol(Λ).

Corollary 4.3. For any non-zero ideal I of OK,

covol(ι(I)) = 2−r2
√
∣∆K ∣N(I).

Given a signature (r1, r2), we define a function N ∶Rr1+2r2 → R by

N(a1, . . . , ar, x1, y1, . . . , xr2 , yr2) = a1 . . . ar(x
2
1 + y

2
1) . . . (x

2
r2 + y

2
r2).

If α ∈K, then
N(ι(α)) = NK

Q (α).

4.1. The Convex Body Theorem

A subset S ⊆ Rn is convex if

x, y ∈ S and λ ∈ [0,1] ⇒ λx + (1 − λ)y ∈ S.

We say S ⊆ Rn is symmetric if whenever x ∈ S, −x ∈ S.
Convex sets are (Lebesgue) measurable.
Let S ⊆ Rn be bounded and measurable. A function T ∶S → Rn is:

• volume-preserving if vol(T (S)) = vol(S);

• piecewise volume-preserving if we can write S = ∐
∞
j=1 Sj such that T ∣Sj

is volume-
preserving for all j.

Lemma 4.4. Let S ⊆ Rn be bounded and measurable, and let T ∶S → Rn be piecewise volume-
preserving. If vol(S) > vol(T (S)), then T is not injective.

Proof. Write S = ∐
∞
j=1 Sj so that T ∣Sj

is volume-preserving. If T is injective, then T (S) =

∐
∞
j=1 T (Sj). Then

vol(S) > vol(T (S)) =
∞

∑
j=1

vol(T (Sj)) =
∞

∑
j=1

vol(Sj) = vol(S),

contradiction.

Lemma 4.5. Let Λ be a lattice in Rn and let F ⊆ Rn be a fundamental domain. Define
T ∶Rn → F as follows: for any x ∈ Rn, let T (x) ∈ F be the unique representative of x +Λ in
F = Rn/Λ. (So that x − T (x) ∈ Λ.)
Then T is a piecewise translation, in particular it is piecewise volume-preserving.

Proof. Fix a Z-basis v1, . . . , vn of Λ and let F be the fundamental domain defined by v1, . . . , vn.
For m = (m1, . . . ,mn) ∈ Zn, let

wm =
n

∑
j=1

mjvj ∈ Λ.

Then
Rn = ∐

m∈Zn

(F +wm)

and T ∣F+wm ∶F +wm → F is translation by −wm.
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Theorem 4.6 (Minkowski). Let Λ be a lattice in Rn and let S ⊆ Rn be a bounded, convex,
symmetric set. If vol(S) > 2ncovol(Λ), then S contains a nonzero element of Λ.

If, in addition, S is compact, then: if vol(S) ≥ 2ncovol(Λ), then S contains a nonzero
element of Λ.

Proof. Consider the sublattice 2Λ ⊆ Λ. We know that covol(2Λ) = 2ncovol(Λ). Let F be a
fundamental domain for 2Λ. Let T ∶Rn → F be the piecewise volume-preserving map from
Lemma 4.5.
By hypothesis

vol(S) > vol(F) ≥ vol(T (S))

(the second inequality due to T (S) ⊆ F), so by Lemma 4.4, T is not injective. Therefore there
exist elements x ≠ y of S such that T (x) = T (y). Let

z = x − y = (x − T (x)) − (y − T (x)) = (x − T (x)) − (y − T (y)) ∈ 2Λ,

with z ≠ 0. So z = 2w for w ∈ Λ, w ≠ 0.
Since S is symmetric, we know that −y ∈ S, therefore

w =
1

2
z =

1

2
x −

1

2
y =

1

2
x + (1 −

1

2
) (−y),

and the latter is in S because S is convex.
Assume now that S is also compact, and suppose that vol(S) = 2ncovol(Λ). For each n ∈ N,

consider (1 + 1
n
)S. We get a sequence of elements λ1, λ2, ⋅ ⋅ ⋅ ∈ Λ ∩ 2S. Since 2S is compact,

there exists a subsequence that converges to some λ ∈ Λ ∩ 2S. But

λ ∈ ⋂
n∈N
(1 +

1

n
)S = S = S,

since S is compact, hence closed.

Define
B1 = {x ∈ Rn ∣ ∣N(x)∣ ≤ 1}.

Proposition 4.7. Let S ⊆ B1 be a symmetric, convex, compact set. For any nonzero ideal I
in OK, there exists α ∈ I, α ≠ 0, such that

∣NK
Q (α)∣ ≤

2n2−r2
√
∣∆K ∣

vol(S)
N(I).

Proof. For any t > 0, consider the set tS: it is bounded, symmetric, convex, with volume
vol(tS) = tnvol(S), and

tS ⊆ {x ∈ Rn ∣ ∣N(x)∣ ≤ tn}.

Fixing now

t = 2(
covol(ι(I))

vol(S)
)

1/n

,

then tS = 2ncovol(ι(I)), so by Minkowski’s Convex Body Theorem, tS contains a nonzero
element of ι(I). So there exists α ≠ 0, α ∈ I such that ∣NK

Q (α)∣ ≤ t
n, then use

covol(ι(I)) = 2−r2
√
∣∆K ∣N(I).

How good the resulting bound is depends on how large we can make the volume of S. It
would be great to take S = B1 itself, but what does the latter really look like?
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Example 4.8. Let K = Q(
√
d) be a real quadratic field (so d > 0 is squarefree). The

signature of K is (r1, r2) = (2,0). We have

B1 = {(a, b) ∈ R2 ∣ ∣ab∣ ≤ 1}.

Consider the hyperbolas with equations ab = 1 and ab = −1; altogether there are 4 curves
that divide the plane into 5 connected regions. The set B1 is the connected region that
contains the origin (0,0). It is symmetric, but clearly neither convex nor compact.
A “large” subset S of B1 that is symmetric, convex, compact, is the filled square defined

by
S = {(a, b) ∈ R2 ∣ ∣a∣ + ∣b∣ ≤ 2}.

We can see that S ⊆ B1 on the graph, or symbolically by noting that

√
∣a∣ ∣b∣ ≤

∣a∣ + ∣b∣

2
,

and therefore

∣ab∣ ≤
(∣a∣ + ∣b∣)2

4
≤
4

4
= 1.

In the general case, we define S ⊆ Rn by

S = {x ∈ Rr1+2r2 ∣ ∣a1∣ + ⋅ ⋅ ⋅ + ∣ar1 ∣ + 2 (
√
x2
1 + y

2
1 + ⋅ ⋅ ⋅ +

√
x2
r2 + y

2
r2) ≤ n} .

S is clearly symmetric, bounded, and closed (hence compact). One can show that it is also
convex, and a subset of B1. Moreover, some super fun multivariable calculus shows that

vol(S) =
nn

n!
2r1 (

π

2
)
r2

.

Given all this, we define the Minkowski constant of the number field K:

MK =
n!

nn
(
4

π
)
r2√
∣∆K ∣.

Theorem 4.9. Every ideal class in OK contains a nonzero ideal of norm at most MK.

Proof. Follows from Proposition 4.7 since

2n2−r2
√
∣∆K ∣

vol(S)
=MK .

Example 4.10. Was this worth the effort?
Take K = Q(

√
−5), then

MK =
2!

22
4

π

√
∣20∣ =

4
√
5

π
≈ 2.85,

so every ideal class has a representative of norm ≤ 2. We just need to check that the ideal
above 2 is not principal to conclude that K has class number 2. (With the methods of the
previous chapters, the norm bound was 10.5, so we had to consider p = 2,3,5,7.)
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Corollary 4.11. For any number field we have
√
∣∆K ∣ ≥ (

π

4
)
r2 nn

n!
.

Proof. The smallest possible norm of a nonzero ideal of OK is 1, so MK ≥ 1, hence the
bound.

Corollary 4.12. If K ≠ Q then ∣∆K ∣ ≥ 2.

Proof. Clearly r2 ≤ (n/2), so (π/4)r2 ≥ (π/4)n/2. One can show by induction that

nn

n!
≥ 2n−1 for all n ≥ 2.

So if n ≥ 2 then √
∣∆K ∣ ≥ π

n/22−1 ≥
π

2
> 1.

Corollary 4.13. If K ≠ Q, then the set of prime numbers that ramify in K is nonempty.

4.2. Dirichlet’s Unit Theorem

Theorem 4.14. Let K be a number field of signature (r1, r2), let O×K denote the multiplicative
group of OK, and let WK be the torsion subgroup of O×K, that is

WK =K ∩ µ∞.

Then WK is a finite cyclic group and

O×K ≅WK ×Zr,

where r = r1 + r2 − 1.

Before giving the proof of Dirichlet’s Theorem, we look at some examples.

Example 4.15. Let K = Q, then (r1, r2) = (1,0) so r = 0.
We have WQ = {±1} and Z× =WQ = {±1}.

Example 4.16. Let K = Q(
√
d) be an imaginary quadratic field, then (r1, r2) = (0,1) so

once again r = 0.
We have

O×K =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

{±1} if d ≤ −5 or d = −2

{±1,±i} if d = −1

{±1,±ω,±ω2} if d = −3, where ω2 + ω + 1 = 0.

Example 4.17. Let K = Q(
√
d) be a real quadratic field, then (r1, r2) = (2,0) so r = 1.

We have K ⊆ R so WK = {±1} since R ∩ µ∞ = {±1}. So O×K ≅ {±1} ×Z, in other words

O×K = {±u
m ∣m ∈ Z}

for some u ∈ O×K .

For instance, letting u = 1 +
√
2, we have O×

Q(
√
2)
= {±1} × ⟨u⟩.
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Example 4.18. Let K = Q(ζm) with m = pr > 2. This has signature (r1, r2) = (0, φ(m)/2).
We have seen that

WK =

⎧⎪⎪
⎨
⎪⎪⎩

µm if m is even

µ2m if m is odd.

It is easy to see that for any k with gcd(k,m) = 1 the element

1 − ζk

1 − ζ

is a unit (its norm is 1), but in general the group of units contain other elements that are
more difficult to describe.

In order to prove the Unit Theorem, we need a multiplicative analogue of the embedding

ι∶OK ↪ Rr1+2r2

that we used to study the class group.
Define L∶K× → Rr1+r2 by

L(α) = ( log ∣σ1(α)∣, . . . , log ∣σr1(α)∣, log ∣τ1(α)∣
2, . . . , log ∣τr2(α)∣

2).

This is a group homomorphism (multiplication on K× and addition on Rr1+r2) and it is related
to the norm map via

log ∣NK
Q (α)∣ = S(L(α)),

where S∶Rr1+r2 → R is the sum function S(x1, . . . , xr1+r2) = x1 + ⋅ ⋅ ⋅ + xr1+r2 .
The following result, attributed to Kronecker, will allow us to deduce some properties of

the map L.

Proposition 4.19. (a) For M > 0 and n ≥ 1, let S≤M(n) ⊆ C consist of all algebraic integers
α whose minimal polynomial f has degree n and such that all the roots αj of f satisfy
∣αj ∣ ≤M . Then S≤M(n) is a finite set.

(b) ∐n≥1 S≤1(n) = µ∞.

Proof. (a) Write

f(z) =
n

∏
j=1

(z − αj) = z
n + an−1z

n−1 + ⋅ ⋅ ⋅ + a0 ∈ Z[z].

As we expand the product, the coefficient aj is a sum of (nj) monomials of total degree
n − j in the variables α1, . . . , αn, so

∣aj ∣ ≤ (
n

j
)Mn−j for j = 0, . . . , n − 1.

As the degree is fixed and the coefficients are restricted to a finite set, the set of possible
polynomials f is finite, hence the set S≤M(n) of possible α’s is finite.

(b) In one direction, if ζ ∈ µ∞ has order n, then clearly ζ ∈ S≤1(n) (as all the conjugates of a
root of unity are roots of unity, and we have an explicit description of these as complex
numbers of absolute value 1).

In the other direction, let α ∈ S≤1(n) and let K = Q(α). Then {α,α2, α3, . . .} ⊆ K so
{α,α2, . . .} ⊆∐d∣n S≤1(d), a finite set. Hence there exist k1 ≠ k2 such that αk1 = αk2 , and
we are done.
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Corollary 4.20. ker(L∣O×K) =WK and #WK <∞.

Proof. Let α ∈ O×K , then α is in ker(L) if and only if ∣σ(α)∣ = 1 for all embeddings K ↪ C. In
other words, α ∈ S≤1(n) for n ≤ deg(K), hence by part (a) of Proposition 4.19, ker(L∣O×K) is
finite, and by part (b) of Proposition 4.19, α ∈ µ∞ ∩K =WK .

Corollary 4.21. Let Λ = L(O×K), then Λ is a discrete subset of the hyperplane

H = {x ∈ Rr1+r2 ∣ x1 + ⋅ ⋅ ⋅ + xr1+r2 = 0}.

Proof. That Λ ⊆H follows directly from log ∣NK
Q (α)∣ = S(L(α)) where S is the sum function.

Now fix some M > 1 and consider

T = {x ∈H ∣ x ∈ Λ and ∣x∣ ≤ log(M)}.

We want to prove that T is finite. Consider

L−1(T ) = {α ∈ O×K ∣ L(α) ∈ T}

⊆ {α ∈ O×K ∣ ∣σ(α)∣ ≤M for all σ∶K ↪ C}
= ∐

1≤n≤deg(K)

S≤M(n),

which is finite by Proposition 4.19. Hence T is finite, and Λ is discrete in H.

Lemma 4.22. Let A ∈Mn(R) be such that

• each row sums to 0;

• all the diagonal entries are strictly positive;

• all the non-diagonal entries are strictly negative.

Then A has rank n − 1.

Proof. Since each row sums to 0, the vector consisting of all 1’s is in the kernel of A, hence
the rank of A is strictly less than n.
Let v1, . . . , vn denote the columns of A. I claim that v1, . . . , vn−1 are linearly independent.

Suppose that is not the case and consider a nontrivial linear relation

c1v1 + ⋅ ⋅ ⋅ + cn−1vn−1 = 0, not all cj = 0.

Let k be the index of the largest cj in absolute value. Divide the relation by ck so that the
new ck = 1 and cj ≤ 1 for all j ≠ k. Therefore cjajk ≥ ajk for all j ≠ k.
Also

n−1

∑
j=1

akj >∑
j=1

akj + ak,n−1 = k-th row sum = 0.

But then in the k-th row we have

0 =
n−1

∑
j=1

cjakj ≥
n−1

∑
j=1

akj > 0,

contradiction.
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Recall the embedding ι∶OK ↪ Rr1 ×Cr2 given by

ι(α) = (σ1(α), . . . , σr1(α), τ1(α), . . . , τr2(α)).

We can restrict it to O×K and relate it to L via the function π∶ (R×)r1 × (C×)r2 → Rr1+r2 given
by

π(x1, . . . , xr1 , z1, . . . , zr2) = ( log ∣x1∣, . . . , log ∣xr1 ∣, log ∣z1∣
2, . . . , log ∣zr2 ∣

2),

so that L = π ○ ι.

Lemma 4.23. Let K be a number field with signature (r1, r2). Fix k with 1 ≤ k ≤ r1 + r2.
There exists a constant C such that for any α ∈ OK, α ≠ 0, there exists β ∈ OK, β ≠ 0 with
∣NK

Q (β)∣ ≤ C and if

L(α) = (a1, . . . , ar1+r2), L(β) = (b1, . . . , br1+r2),

then bi < ai for all i ≠ k.

Proof. Let

C = (
2

π
)
r2√
∣∆K ∣.

Let a′i ∈ R be such that a′i < ai for all i = 1, . . . , r1 + r2. Define a subset S ⊆ Rr1 ×Cr2 by

∣xi∣
ϵi ≤ Ci,

where

ϵi =

⎧⎪⎪
⎨
⎪⎪⎩

1 if 1 ≤ i ≤ r1

2 if r1 + 1 ≤ i ≤ r1 + r2,

Ci = e
a′i for i ≠ k,

Ck =
C

∏i≠kCi

.

Then S is symmetric, compact, and convex. We have

vol(S) = 2r1πr2C = 2n covol(ι(OK)).

By the Convex Body Theorem, S contains a nonzero element of ι(OK). Let β be the
corresponding element of OK .

Proof of Dirichlet’s Unit Theorem. It remains to show that Λ = L(O×K) is a lattice in H. This
requires r1 + r2 − 1 linearly independent vectors in Λ, which we get from Lemma 4.22, by
producing units u1, . . . , ur1+r2 ∈ O

×
K such that

A =

⎡
⎢
⎢
⎢
⎢
⎢
⎣

L(u1)
⋮

L(ur1+r2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

satisfies the conditions of Lemma 4.22.
In other words, let 1 ≤ k ≤ r1 + r2. We want u ∈ O×K such that L(u) = (a1, . . . , ar1+r2) with

ak > 0 and ai < 0 for all i ≠ k. For this we use Lemma 4.23. Start with any nonzero α0 ∈ OK .
Apply Lemma 4.23 iteratively to get elements αj ∈ OK , αj ≠ 0, L(αj) = (a1(j), . . . , ar1+r2(j)),
with ∣N(αj)∣ ≤ C and ai(j) < ai(j − 1) for all i ≠ k. Consider the principal ideals αjOK . They
all have norm bounded by C, so there are only finitely many such ideals, hence αj1OK = αj2OK

for some j2 > j1. Then u ∶= αj1/αj2 ∈ O
×
K satisfies the desired properties.
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4.3. Continued fractions and units in real quadratic fields

We give a quick overview of continued fractions and describe how they relate to fundamental
units of real quadratic fields.
A continued fraction is a limiting process summarised in the form

a1 +
1

a2 +
1

a3+
1

a4+...

=∶ [a1, a2, a3, a4, . . . ],

where aj ∈ Z>0. The truncation [a1, a2, . . . , an] is called the n-th convergent and the value of
the continued fraction is by definition

lim
n→∞
[a1, a2, . . . , an] ∈ R.

This limit always exists.
Every irrational α ∈ R>1 has a unique continued fraction expansion. This expansion is

periodic if and only if [Q(α)∶Q] = 2.

Example 4.24. Let α = [1,1,1,1, . . . ]. We have

α = 1 +
1

α
,

so α2 − α − 1 = 0, hence

α =
1 +
√
5

2
≈ 1.618033 . . . ,

also known as the golden ratio.

Given α ∈ R>1, the continued fraction expansion is obtained as follows: let α1 ∶= α and
a1 ∶= ⌊α1⌋, then for each n ∈ Z>0:

αn+1 ∶=
1

αn − an
, an+1 ∶= ⌊αn+1⌋.

This gives rise to the expansion
α = [a1, a2, a3, . . . ].

Given a continued fraction [a1, a2, . . . ], define matrices

An ∶= [
an 1
1 0

]

and

[
p0 p−1
q0 q−1

] ∶= P0 ∶= [
1 0
0 1
] , [

pn pn−1
qn qn−1

] ∶= Pn ∶= A1A2 . . .An.

Then for all n ≥ 0 we have

pn+1 = an+1pn + pn−1

qn+1 = an+1qn + qn−1
pn
qn
= [a1, . . . , an].
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In fact,

pnqn−1 − pn−1qn = det(Pn) = (−1)
n,

from which we conclude that gcd(pn, qn) = 1 for all n ≥ 1.
If α ∈ R>1 is irrational then

∣α −
pn
qn
∣ <

1

q2n
,

which starts to explain why continued fractions play a crucial role in diophantine approxima-
tion.
Our interest, however, lies with the role they play in the description of fundamental units

for real quadratic fields.

Theorem 4.25. Let d ∈ Z>0 be squarefree with d ≡ 2,3 (mod 4). Let k be the period of the
continued fraction expansion for

√
d. Then the fundamental unit in the ring of integers of

Q(
√
d) is

ε = pk + qk
√
d.

Example 4.26. Take K = Q(
√
19). We have

√
19 = [4,2,1,3,1,2,8] ≈ 4.35889 . . . ,

so k = 6. We compute

P6 = [
4 1
1 0
] [

2 1
1 0
] [

1 1
1 0
] [

3 1
1 0
] [

1 1
1 0
] [

2 1
1 0
] = [

170 61
39 14

]

and conclude that the fundamental unit is

ε = 170 + 39
√
19.

There is another approach that does not require any congruence assumptions on d. Let
θ > 1 be a quadratic irrational, that is [Q(θ)∶Q] = 2. We say that θ is reduced if

−
1

σ(θ)
> 1,

where σ is the non-identity Galois element.
Galois proved that θ is reduced if and only if its continued fraction expansion is purely

periodic, that is of the form θ = [a1, a2, . . . , ak].

Example 4.27. Consider α = [1] = [1,1,1, . . . ]. We have seen that

α =
1 +
√
5

2
> 1.

We check

−
1

σ(α)
= −

2

1 −
√
5
=
2(
√
5 + 1)

4
= α > 1,

so α is indeed reduced.
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Theorem 4.28. Let K = Q(
√
d), d > 0 squarefree. Let θ ∈K be a reduced element with the

property that ∆(θ) =∆K. Let θ = [a1, . . . , ak] be the continued fraction expansion and let

ε = qk−1 + qkθ.

Then ε is the fundamental unit of K.

Finding a reduced element as needed above can be done as follows:

Proposition 4.29. Given d > 0 squarefree, set

ω ∶=

⎧⎪⎪
⎨
⎪⎪⎩

1+
√
d

2 if d ≡ 1 (mod 4)
√
d if d ≡ 2,3 (mod 4).

Then

θ ∶=
1

ω − ⌊ω⌋

is a reduced element.

Example 4.30. We reconsider the case K = Q(
√
19) from this point of view. We have

ω =
√
19 and

θ =
1

√
19 − 4

≈ 2.78629 ⋅ ⋅ ⋅ = [2,1,3,1,2,8].

The period is k = 6, so we compute

P6 = [
2 1
1 0
] [

1 1
1 0
] [

3 1
1 0
] [

1 1
1 0
] [

2 1
1 0
] [

8 1
1 0
] = [

326 117
39 14

]

and conclude that the fundamental unit is

ε = 14 + 117θ = 14 +
117
√
19 − 4

= 170 + 39
√
19.
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Up to this point, we have been studying arithmetic from a global perspective. It turns out
that certain questions become (sometimes much) easier when considered locally. We will
spend some time exploring what this means. In the process we will introduce (or review)
some more commutative algebra.
Let’s start with a bit of notation: given a commutative1 ring A, we let Spec(A) denote the

set2 of prime ideals of A.

5.1. Local rings

A ring A is a local ring if it has a unique maximal ideal m. It is easy to see that, in this case,
A× = A ∖m. (If u ∉ m, what ideal does m ∪ {u} generate?)
A handy result for local rings is

Lemma 5.1 (Nakayama). Let A be a local ring, M a finitely generated A-module, and I ⊊ A
a proper ideal. Consider the A-module

IM = {∑aixi ∣ ai ∈ I, xi ∈M} .

(a) If IM =M then M = 0.

(b) If N ⊆M and N + IM =M , then N =M .

Proof.

How do we get a local ring? Any field is a local ring with unique maximal ideal 0, but that
is boring. To get a local ring that is not a field, we can use localisation.
Let A be an integral domain and let K = Frac(A). We say that S ⊆ A is a multiplicative

set if 0 ∉ S, 1 ∈ S, and S is closed under multiplication.
Given a multiplicative set S, define

S−1A = {
a

b
∈K ∣ b ∈ S} .

There is a canonical injective ring homomorphism

A↪ S−1A given by a↦
a

1
.

Example 5.2. Let p be a nonzero prime ideal of A and let S = A ∖ p, then S is a
multiplicative set and S−1A is denoted

Ap = {
a

b
∈K ∣ b ∉ p}

1All our rings are commutative unless explicitly declared otherwise, but the beginning of a new chapter is a
good place to recall this convention.

2Yes, this has way more structure than just being a set. All in due time.
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and called the localisation of A at p.
An instance of this is

Z(p) = {
a

b
∈ Q ∣ p ∤ b} .

Proposition 5.3. Let S be a multiplicative set in an integral domain A. There is a bijective
correspondence

Spec(S−1A)
≅
Ð→ {p ∈ Spec(A) ∣ p ∩ S = ∅}

given by q↦ q ∩A for any q ∈ Spec(S−1A) and3 p↦ p(S−1A) for any p ∈ Spec(A) such that
p ∩ S = ∅.

Now the name “localisation of A at p” is finally justified:

Corollary 5.4. Ap is a local ring with maximal ideal pAp.

5.2. Discrete valuation rings

A discrete valuation ring (DVR) is a PID with exactly one nonzero prime ideal4. (Equivalently,
it is a PID that is a local ring but not a field.)

Proposition 5.5. An integral domain A is a DVR if and only if:

(a) A is Noetherian.

(b) A is integrally closed.

(c) A has exactly one nonzero prime ideal.

This is quite close to the definition of Dedekind domains, modulo the gap between condition
(c) and having Krull dimension 1. Indeed:

Proposition 5.6. If A is a Dedekind domain and p is a nonzero prime ideal, then Ap is a
DVR.

An important special case is of course that where A = OK is the ring of integers in a number
field.
This may be a good moment to stop and take stock of what we have found: by “localising

at p” in the manner we discussed, we end up with a ring where

• the units are determined in a straightforward way: A×p = Ap ∖ pAp;

• the class number is 1.

Considering that the corresponding concepts for rings of integers are highly nontrivial gives
some credence to the initial claim that arithmetic questions are easier locally.
It is weird for something to be called a discrete valuation ring without having defined

discrete valuations. We remedy this now: Let K be a field. A discrete valuation is a nonzero
group homomorphism v∶K× → Z such that

v(a + b) ≥min{v(a), v(b)} for all a, b ∈K×.

We call the valuation v normalised if v(K×) = Z. Occasionally we may extend to v∶K → Z∪{∞}
by setting v(0) =∞.

3Here, as in previous chapters, p(S−1A) signifies the ideal generated by p ⊆ S−1A, where we view p as sitting
inside S−1A via the canonical embedding A↪ S−1A.

4It is clear that a DVR has Krull dimension 1. The converse is of course not true: Z is a PID of Krull
dimension 1, but not a DVR.
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Example 5.7. Let A be a PID and K = Frac(A). Let π be an irreducible element of A.
Define vπ ∶K× → Z by

vπ(x) =m, where x = πm a

b
,m ∈ Z, a, b ∈ A coprime to π.

For a concrete example, take A = Z and π = p a prime number, getting the p-adic valuation
vp.

Example 5.8. Let A be a Dedekind domain and K = Frac(A). Let p be a prime ideal
of A. For x ∈K×, consider the fractional ideal xA and let pvp(x) be the power of p in the
factorisation of xA into prime ideals of A. Then vp is called the p-adic valuation on K.

Lemma 5.9. Let v be a discrete valuation. If v(a) > v(b) then v(a + b) = v(b).

Proof. If ω ∈K× has finite order, then v(ω) = 0 because Z is a torsion-free group and v is a
group homomorphism. In particular v(−1) = 0, so that v(−a) = v(−1) + v(a) = v(a).
If v(a) > v(b) then

v(b) = v((a + b) − a) ≥min{v(a + b), v(a)} ≥min{v(a), v(b)} = v(b),

so the inequalities are in fact equalities, and v(a + b) = v(b).

An absolute value on a field K is a function ∣ ⋅ ∣∶K → R≥0 such that

• ∣x∣ = 0 if and only if x = 0;

• ∣xy∣ = ∣x∣ ∣y∣;

• ∣x + y∣ ≤ ∣x∣ + ∣y∣.

If, in addition, we have

(5.1) ∣x + y∣ ≤max{∣x∣, ∣y∣},

we say that the absolute value is non-archimedean. (Otherwise we say that it is archimedean.)
An argument very similar to that of Lemma 5.9 shows that equality in Equation (5.1) holds

if ∣x∣ ≠ ∣y∣.

Example 5.10. (a) For any field K, take ∣0∣ = 0 and ∣x∣ = 1 for all x ∈K×. This is called
the trivial absolute value on K.

(b) On K = C we have, for z = x + iy:

∣z∣C =
√
x2 + y2.

This is an archimedean absolute value on C; its restriction to R is an archimedean
absolute value on R.

(c) For any number field K and any embedding σ∶K → C, we have an archimedean
absolute value on K defined by

∣x∣ = ∣σ(x)∣C.
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(d) Given a discrete valuation v∶K → Z ∪ {∞} on a field K, and a number b ∈ R>1, set

∣x∣v = b
−v(x).

This defines a non-archimedean absolute value on K.

Two special cases are particularly popular:

(i) vp∶Q→ Z ∪ {∞} gives the p-adic absolute value on Q:

∣x∣p = p
−vp(x).

(ii) For any number field K and any prime ideal p of OK , we get the p-adic absolute
value on K:

∣x∣p = (N(p))
−vp(x)

.

There is a converse of sorts for the passage from discrete valuation to non-archimedean
absolute value discussed in (d) above: if ∣ ⋅ ∣ is a non-trivial non-archimedean absolute value
on K, define v∶K× → R by

v(x) = − log ∣x∣ for all x ∈K×.

Then

v(xy) = v(x) + v(y)

v(x + y) ≥min{v(x), v(y)}.

If v(K×) is discrete in R, then v is a scalar multiple of a discrete valuation on K.
An absolute value on K defines a metric on K via (a, b)↦ ∣a − b∣, hence a topology on K.

For instance, ∣ ⋅ ∣p on Q defines the p-adic topology , with respect to which we have

lim
n→∞

pn = 0.

Two absolute values that define the same topology are said to be equivalent.

Theorem 5.11 (Ostrowski). Let ∣ ⋅ ∣ be a non-trivial absolute value on Q.

(a) If ∣ ⋅ ∣ is archimedean, then it is equivalent to ∣ ⋅ ∣∞, the restriction of ∣ ⋅ ∣C to Q.

(b) If ∣ ⋅ ∣ is non-archimedean, then it is equivalent to ∣ ⋅ ∣p for exactly one prime number p.

An equivalence class of non-trivial absolute values on K is called5 a place w of K. In this
terminology, Ostrowski’s Theorem says that the set of places of Q is indexed by

{prime numbers p ∈ Z} ∪ {∞}.

This can be generalised to

Theorem 5.12. Let K be a number field. The set of places of K is indexed by

(a) the non-zero prime ideals p of OK;

5Confusingly, places are typically denoted by the letter v in the literature, despite the fact that they are
absolute values, not valuations. Also confusing is the fact that places are often called primes. I will break
with tradition and denote a place by w, and never call it a prime of K in this subject.
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(b) the real embeddings of K;

(c) the conjugate pairs of complex embeddings of K.

Theorem 5.13 (The Product Formula for Q). For any x ∈ Q× we have

∏
w place of Q

∣x∣w = 1.

Proof. Write x = a
b with a, b ∈ Z ∖ {0}. For any prime number p we have

∣x∣p = 1 unless p divides a or b.

So the product is actually finite, despite appearances.
Set φ(x) =∏w ∣x∣w. This is a group homomorphism φ∶Q× → R×. By unique factorisation in

Z, a generating set for the group Q× is

{−1} ∪ {p prime number}.

So to prove that φ is identically 1, it suffices to show that φ(−1) = 1 and φ(p) = 1 for any
prime number p.
We know that ∣ − 1∣ = 1 for any absolute value, so φ(−1) = 1.
If p is prime,

∣p∣w =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

p if w =∞
1
p if w = p

1 if w ≠ p is prime,

so φ(p) = 1.

The product formula also holds for arbitrary number fields K; to prove it, one needs to
study how places of Q extend to places of K.

5.3. Completions

A valued field is a pair (K, ∣ ⋅ ∣) where K is a field and ∣ ⋅ ∣ is an absolute value. We say that
a valued field is complete if it is complete as a metric space with respect to the absolute
value. A compatible homomorphism6 between valued fields (K, ∣ ⋅ ∣K) and (L, ∣ ⋅ ∣L) is a ring
homomorphism f ∶K → L such that

∣f(x)∣L = ∣x∣K for all x ∈K.

Since K and L are fields, such a map f is automatically injective.
Given a valued field (K, ∣ ⋅ ∣), there exists a complete valued field7 (K̂, ∥ ⋅ ∥) and a com-

patible homomorphism i∶K → K̂ that are universal in the following sense: any compatible
homomorphism f ∶K → L to a complete valued field (L, ∣ ⋅ ∣L) factors uniquely through i, that
is, there exists a unique compatible homomorphism g∶ K̂ → L such that f = g ○ i.
Concretely, we take

K̂ = {equivalence classes of ∣ ⋅ ∣-Cauchy sequences in K}

∥(xn)∥ = lim
n→∞
∣xn∣

i(x) = (x,x, . . . ).

6The term “compatible homomorphism” is not standard in this setting.
7We write ∥ ⋅ ∥ for the absolute value on the completion K̂ in the definition to prevent confusing it with ∣ ⋅ ∣,
but in practice one uses the same symbol for the absolute value on K and its canonical extension to the
completion.
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Example 5.14. (a) Take Q and ∣ ⋅ ∣∞, then the completion is R with its customary
absolute value.

(b) Take Q and ∣ ⋅ ∣p, then the completion is denoted Qp and is called the field of p-adic
numbers .

Let us consider the non-archimedean case more carefully.
Let v∶K× → Z be a normalised discrete valuation and let ∣ ⋅ ∣∶K → R>0 be a corresponding

absolute value on K. We have the valuation ring and valuation ideal:

A = {x ∈K ∣ v(x) ≥ 0} = {x ∈K ∣ ∣x∣ ≤ 1}

m = {x ∈K ∣ v(x) > 0} = {x ∈K ∣ ∣x∣ < 1}.

Consider x ∈K× and let (xn) be a representing Cauchy sequence. Then ∥x∥ = limn→∞ ∣xn∣ is a
limit point of the set ∣K×∣, which is discrete hence closed in R. Therefore ∥x∥ ∈ ∣K×∣, from
which we conclude ∥K̂×∥ = ∣K×∣, so that ∥ ⋅ ∥ is a discrete absolute value on K̂.

Let v̂∶ K̂× → Z denote the corresponding normalised discrete valuation; we have

Â = {x ∈ K̂ ∣ v̂(x) ≥ 0} = {x ∈ K̂ ∣ ∥x∥ ≤ 1}

m̂ = {x ∈ K̂ ∣ v̂(x) > 0} = {x ∈ K̂ ∣ ∥x∥ < 1}.

Both A and Â are DVRs hence PIDs, so the two ideals m and m̂ are principal. A generator
of m is called a uniformiser .

Exercise 5.15. If π ∈ A satisfies m = πA, then m̂ = πÂ.

Exercise 5.16. The composition A↪ Â→ Â/m̂ induces an injective ring homomorphism
A/m→ Â/m̂. Prove that this is surjective, hence an isomorphism. (The same holds for the
similarly defined map A/mn → Â/m̂n for any n ∈ Z≥1.)

Proposition 5.17. Let K be a valued field with valuation ring A and valuation ideal m. Fix
a uniformiser π of A and a set S of representatives for A/m = Â/m̂. The sequence of partial
sums of the series

a−nπ
−n + ⋅ ⋅ ⋅ + a0 + a1π + a2π

2 + ⋅ ⋅ ⋅ + akπ
k + . . . , ai ∈ S,

is Cauchy, hence defines an element of the completion K̂. Conversely, every element of K̂
has a unique expression of the above form.

Proof. Let xM = ∑
M
i=−n aiπ

i. Then for M < N we have

∣xM − xN ∣ = ∣
N

∑
i=M+1

aiπ
i∣ = ∣π∣M+1∣aM+1 + aM+2π + ⋅ ⋅ ⋅ + aNπ

N−M−1∣ ≤ ∣π∣M+1,

and ∣π∣M+1 → 0 as M →∞ since ∣π∣ < 1. So (xM) is Cauchy.
Conversely, let x ∈ K̂. Write x = πny with y ∈ Â, n ∈ Z. There exists a unique a0 ∈ S such

that y − a0 ∈ m̂ = πÂ (this a0 represents the coset y +m).
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Therefore (y − a0)/π ∈ Â, hence there exists a unique a1 ∈ S such that (y − a0)/π − a1 =
(y − a0 − a1π)/π ∈ m̂ = πÂ.
Continue in this manner. In the limit, we have

x = πny = πn(a0 + a1π + a2π
2 + . . . ).

The process was uniquely determined by x, with no choices involved, so the resulting expression
is uniquely determined.

5.4. p-adic numbers

Restricting to the special case of the field Qp (the completion of Q with respect to the p-adic
absolute value), we get that every element of Qp has a unique representative of the form

a−np
−n + ⋅ ⋅ ⋅ + a0 + a1p + a2p

2 + . . . , 0 ≤ ai < p.

The corresponding valuation ring is Zp, the elements of which have no negative powers on p
in their representation. Its unique maximal ideal is pZp.

Example 5.18. In Q2, we have

1 + 2 + 22 + ⋅ ⋅ ⋅ = −1.

To see this, note that
1 + 2 + 22 + ⋅ ⋅ ⋅ + 2n−1 = 2n − 1,

which converges 2-adically to 0 − 1 = −1 as n→∞.

Example 5.19. I claim that −1 is a square in Q5 (in fact, in Z5).
To show this, we construct a0 + a15 + a252 + . . . such that

(a0 + a15 + a25
2 + . . . )

2
+ 1 = 0.

Starting to expand the square, the first step is

a20 + 1 ≡ 0 (mod 5),

which has two solutions: 2 and 3. Let’s pick a0 = 2, plug it into our mystery 5-adic number
and continue:

4 + 20a1 + 1 ≡ 0 (mod 52) ⇒ 1 + 4a1 ≡ 0 (mod 5),

which has the unique solution a1 = 1.
We continue in this manner, one coefficient at the time. Why don’t we get stuck with an

equation that we cannot solve? Suppose we have

bn = a0 + a15 + ⋅ ⋅ ⋅ + an5
n

such that b2n + 1 ≡ 0 (mod 5n+1). Let c = (b2n + 1)/5
n+1. We are looking for an+1 such that

(bn + an+15
n+1)2 + 1 ≡ 0 (mod 5n+2),

which can be worked into

5n+1(c + 2bnan+1) ≡ 0 (mod 5n+2) ⇒ c + 2bnan+1 ≡ 0 (mod 5).

Since bn ≡ a0 ≡ 2 (mod 5), there is a unique solution an+1 ≡ c (mod 5).
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We will soon see that the iterative process used in this example gives a general method for
solving polynomial equations in complete DVRs, courtesy of Hensel’s Lemma.

5.5. Some weirdness of the p-adic topology

We give a few examples of counter-intuitive behaviour encountered in non-archimedean
settings.

Example 5.20 (Every triangle is isosceles). This is a geometric interpretation of the fact
that the non-archimedean triangle inequality

∣x ± y∣p ≤max{∣x∣p, ∣y∣p}

is an equality if ∣x∣p < ∣y∣p:
∣x ± y∣p = ∣y∣p.

The triangle with vertices 0, x, and y has side lengths ∣x∣p, ∣y∣p, ∣x − y∣p.

Example 5.21 (Any point in a disc is a centre). Let a ∈ Qp and consider the open disc of
radius r > 0:

Br(a) = {x ∈ Qp ∣ ∣x − a∣p < r}.

Now take b ∈ Br(a). For any x ∈ Br(a) we have

∣x − b∣p = ∣(x − a) + (a − b)∣p ≤max{∣x − a∣p, ∣a − b∣p} < r,

so that x ∈ Br(b).
The same argument shows that Br(b) ⊆ Br(a), so that Br(b) = Br(a) and b is a centre

of the disc.

Moving on to more analytic matters, we have

Lemma 5.22. A series ∑
∞
n=0 an converges in Qp if and only if

lim
n→∞
∣an∣p = 0.

Proof. The interesting direction is the one that fails in the archimedean setting: suppose the
general term converges p-adically to 0.
Let SM = ∑

M
n=0 an, then for M < N we have

∣SM − SN ∣p = ∣aM+1 + ⋅ ⋅ ⋅ + aN ∣p ≤max{∣aM+1∣p, . . . , ∣aN ∣p}→ 0 as M →∞.

Since the sequence of partial sums is Cauchy, it converges in Qp.

Example 5.23. Consider the power series

exp(x) = 1 + x +
x2

2!
+ ⋅ ⋅ ⋅ +

xn

n!
+ . . .

Where does this converge?
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It is not hard to see that for n = a0 + a1p + ⋅ ⋅ ⋅ + arpr,

vp(n!) = ⌊
n

p
⌋ + ⌊

n

p2
⌋ + ⋅ ⋅ ⋅ + ⌊

n

pr
⌋ =

n −∑ai
p − 1

.

Therefore

vp (
xn

n!
) = n(vp(x) −

1

p − 1
) +
∑ai
p − 1

.

As n→∞, the second term has growth proportional to log(n), so the behaviour is dictated
by the first term. In particular, ∣xn/n!∣p → 0 if and only if vp(x) > 1/(p − 1).
We conclude that the exponential series converges in the disc ∣x∣p < p−1/(p−1).

5.6. Hensel’s Lemma

Lemma 5.24 (Not Hensel’s Lemma). Let A be a commutative ring, f ∈ A[x] and a, b ∈ A.
Then

f(a + b) = f(a) + bf ′(a) + b2y

for some y ∈ A.

Proof. We have

f(x) = cnfn(x) + ⋅ ⋅ ⋅ + c1f1(x) + c0f0(x),

where cj ∈ A and fj(x) = xj.
Since the relation we are trying to prove is A-linear in f , it suffices to prove it for all the

elements fj(x) = xj. By the binomial theorem we have

fj(a + b) = (a + b)
j = aj + jaj−1b + b2y = fj(a) + bf

′
j(a) + b

2y,

where

y =
j

∑
i=2

(
j

i
)aj−ibi−2 ∈ A.

Theorem 5.25 (Hensel’s Lemma). Let A be a complete DVR with maximal ideal m = πA.
Let f ∈ A[x] and suppose α0 ∈ A is a simple root of f modulo π, that is

f(α0) ≡ 0 (mod π), f ′(α0) /≡ 0 (mod π).

Then there exists a unique α ∈ A such that f(α) = 0 and α ≡ α0 (mod π). (We sometimes
express this as: every simple root in A/m lifts to a unique root in A.)

Proof. I claim that there exists a sequence of elements α0, α1, α2, . . . of A such that for all
n ≥ 0 we have

f(αn) ≡ 0 (mod πn+1)

f ′(αn) /≡ 0 (mod π)

αn ≡ αn−1 (mod πn),

where we set α−1 ∈ A to an arbitrary value (say, α−1 = 1), and the congruence α0 ≡ α−1
(mod π0) is vacuously true.
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Assuming that the claim is correct, we have for M < N :

αN ≡ αM (mod πM+1),

so ∣αN − αM ∣ ≤ ∣π∣M+1 → 0 as M →∞. Therefore the sequence (αn) is Cauchy and converges
to some α ∈ A. Polynomial functions are continuous so f(α) = limn→∞ f(αn) = 0.
It remains to prove the claim, which we do by induction on n.
The base case n = 0 is clear.
For the induction step, assume that the statement holds for an arbitrary, fixed n ≥ 0. Let

β ∈ A be an as-of-yet-unspecified parameter, and let αn+1 = αn + βπn+1. Then αn+1 ≡ αn

(mod πn+1) and by Lemma 5.24

f(αn+1) = f(α + βπ
n+1) ≡ f(αn) + βπ

n+1f ′(αn) (mod πn+2).

Write f(αn) = γπn+1 with γ ∈ A, then

f(αn+1) ≡ 0 (mod πn+2) ⇔ β ≡ −
γ

f ′(αn)
(mod π).

So we take any β ∈ A satisfying the above congruence modulo π. The congruence class modulo
πn+2 of αn+1 is uniquely determined. Since αn+1 ≡ αn (mod π) we have f ′(αn+1) ≡ f ′(αn) /≡ 0
(mod π).

There are numerous applications of this result. Here is one:

Proposition 5.26. Let p be an odd prime number. Then

µ∞ ∩Qp = µp−1.

Proof. Fix n ∈ N and consider the polynomial f(x) = xn − 1. We distinguish two cases:

(a) gcd(n, p) = 1. Then f ′(x) = nxn−1 and for any α0 /≡ 0 (mod p) we have f ′(α0) /≡ 0
(mod p). So by Hensel’s Lemma, each root of f in F×p gives rise to precisely one root
of f in Zp. But by Fermat’s Little Theorem, ap−1 ≡ 1 (mod p) for all a ∈ F×p , in other
words each element of F×p is a (p − 1)-st root of 1.

(b) gcd(n, p) > 1. I claim that µn ∩Qp = {1}. It suffices to prove this in the case n = p.

Let x ∈ Zp be a p-th root of 1. Writing x = x0 + py with y ∈ Zp and x0 ∈ {0,1, . . . , p − 1},
we see that we must have x0 = 1, since xp

0 ≡ x0 (mod p). By the binomial theorem

1 = xp = (1 + py)p = 1 + p2y +
p−1

∑
k=2

(
p

k
)(py)k + ppyp.

If y ≠ 0 then

−p2y =
p−1

∑
k=2

(
p

k
)(py)k + ppyp,

so by taking p-valuations we get

vp(y)+2 = vp(−p
2y) ≥ min

2≤k≤p−1
{vp(

p

k
) + k + kvp(y), p + pvp(y)} ≥min{3+2vp(y), p+pvp(y)},

which leads us to a contradiction since p ≥ 3.
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5.7. Non-archimedean completions via algebra

There is another construction of the completion of a field with respect to a non-archimedean
valuation, which is based on the concept of inverse limit of rings.

An inverse system (also known as projective system) consists of a sequence (An)n∈N of rings
and homomorphisms

fn+1∶An+1 → An for all n ∈ N.

Example 5.27. Take a prime p, let An = Z/pnZ and consider the quotient maps fn+1∶An+1 →
An given by fn+1(a + pn+1Z) = a + pnZ.

The inverse limit (or projective limit) is

A ∶= lim
←Ð
n∈N

An ∶= {(a1, a2, a3, . . . ) ∈∏
n∈N

An ∣ an = fn+1(an+1) for all n ∈ N} .

This is a ring equipped with natural projections πn∶A → An given by πn((ak)) = an. The
elements of A are called coherent sequences .
The data (A, (πn)) satisfies a universal mapping property, which gives another way of

defining the inverse limit (and shows that it is unique up to unique isomorphism).

Example 5.28. I claim that Zp is the inverse limit of the inverse system from the previous
example.
An element x ∈ Zp can be written in the form

x0 + px1 + p
2x2 + . . . , 0 ≤ xi ≤ p − 1.

This corresponds to the coherent sequence (a1, a2, . . . ) defined by the “partial sums”:

a1 = x0 ∈ Z/pZ
a2 = x0 + px1 ∈ Z/p2Z
a3 = x0 + px1 + p

2x2 ∈ Z/p3Z
⋮

A more general example is obtained by taking A to be a ring and I an ideal in A, then
setting An = A/In and fn+1∶A/In+1 → A/In, f(x + In+1) = x + In. The resulting inverse limit
Â is called the I-adic completion of A. There is a natural ring homomorphism φ∶A→ Â given
by φ(a) = (a + In)n.

Exercise 5.29. Show that
kerφ = ⋂

n∈N
In.

Example 5.30. If A = k[x] and I = (x), then Â = k[[x]], the ring of formal power series
with coefficients in k.
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Given an A-module M , set Mn =M/InM and fn+1∶M/In+1M →M/InM given by fn+1(m+
In+1M) =m + InM . The inverse limit M̂ is the I-adic completion of M and is an Â-module.
This applies, in particular, to ideals J of A, giving rise to ideals Ĵ of Â.

Example 5.31. Take A = Z, I = pZ.

(a) Let J = I, we have:

J1 = (pZ)/(p2Z) = p(Z/pZ) = 0
J2 = (pZ)/(p3Z) = p(Z/p2Z)
⋮

Jn = p(Z/pnZ).

So Ĵ = Î = pZp.

(b) Let J = qZ, q prime not equal to p.

J1 = qZ/pqZ = q(Z/pZ) = Z/pZ
J2 = qZ/p2qZ = q(Z/p2Z) = Z/p2Z
⋮

So Ĵ = qZp = Zp.

(c) Generally, if J =mZ, let v = vp(m), then Ĵ = pvZp = Îv.

Proposition 5.32. If A is a ring and m is a maximal ideal then the m-adic completion Â is
a local ring with maximal ideal m̂.

An important special case is that where A = OK is the ring of integers in a number field
and m is any nonzero prime ideal of OK .
Completion has nice algebraic properties. For instance, if A is Noetherian, I is any ideal,

then Â is Noetherian, and if we restrict to finitely generated modules M , then M ↦ M̂ is an
exact functor.

5.8. Arithmetic of p-adic fields

A p-adic field (not standard terminology) is a finite extension K of Qp. Letting n = [K ∶Qp],
we have the absolute value

∣x∣K = ∣N
K
Qp
(x)∣

1/n
p ,

which has the property ∣x∣K = ∣x∣p for x ∈ Qp. The field K is complete with respect to ∣ ⋅ ∣K .
Here is one example of how p-adic fields are simpler than number fields:

Proposition 5.33. If L/K is an extension of p-adic fields, then there exists α ∈ OL such that
OL = OK[α].

If K/Q is a number field and p is a nonzero prime ideal of OK , then Kp is a p-adic field,
where pZ = Z ∩ p. Conversely, if F /Qp is a p-adic field then there exists a number field K/Q
and a nonzero prime ideal p of OK such that Kp ≅ F .
Viewing both Qp and K as subfields of Kp, we have Qp ∩K = Q. There is an injective

group homomorphism Gal(Kp/Qp)→ Gal(K/Q) given by restriction to K. The image of this
homomorphism is precisely the decomposition group Dp/p.
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5.8.1. Prime ideal decomposition in p-adic fields

Let K be a p-adic field. Let AK be its valuation ring and pK the unique maximal ideal of AK .

Qp

K

Zp

A

pZp

peK

Fp = Zp/pZp

κ = AK/pK

If we let f = [κ∶Fp], then ef = n = [K ∶Qp].

We say that K/Qp is

• unramified if e = 1 (so f = n);

• totally ramified if e = n (so f = 1).

Unramified extensions

Fix an algebraic extension L of Qp, with valuation ring A = AL and residue field λ. There is a
bijective correspondence

{K/Qp finite unramified, K ⊆ L}↔ {κ/Fp finite, κ ⊆ λ}.

To go from the left to the right, simply map K to AK/pK . To go from the right to the left,
choose a primitive element α0 so that κ = Fp[α0], and let f0 ∈ Fp[x] be the minimal polynomial
of α0. Let f ∈ AL[x] be any lift of f0. By Hensel’s Lemma, there exists a unique α ∈ AL such
that α ≡ α0 (mod p) and f(α) = 0. Finally let K = Qp[α].

This reduces the study of unramified extensions of Qp to the study of finite extensions of
Fp. Recall that, for each n ∈ N, there is a unique (up to Fp-isomorphism) extension κn = Fpn

of Fp of degree n, namely the splitting field of the polynomial xpn − x ∈ Fp[x]. The Galois
group Gal(κn/Fp) is cyclic of order n, generated by a↦ ap.

So for each n ∈ N there is a unique unramified extension Kn = Qpn of Qp of degree n,
namely the splitting field of xpn − x ∈ Zp[x]. The Galois group Gal(Kn/Qp) is cyclic of order
n, generated by the Frobenius element characterised by

Frob(β) ≡ βp (mod p) for all β ∈ AKn .

Example 5.34. Let p = 3 and n = 2. In F3[x] we have the decomposition into irreducible
factors

x9 − x = x(x − 1)(x + 1)(x2 + 1)(x4 + 1).

Then κ2 = F3[i], i2 = −1. This splits x2 + 1, but how about x4 + 1? Over κ2 we have

x4 + 1 = (x2 + i)(x2 − i) = (x − (1 + i))(x + (1 + i))(x − (2 + i))(x + (2 + i)).

So K2 = Q3[i], i2 = −1, is the unique unramified quadratic extension of Q3.

Exercise 5.35. Describe the unique unramified quadratic extension of Q5.
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Totally ramified extensions

Before we start:

Lemma 5.36. Let A be a DVR, n ≥ 2, and y1 ≠ 0, y2, . . . , yn ∈ Frac(A) be such that

v(y1) < v(yj) for all j ≥ 2.

Then
y1 + y2 + ⋅ ⋅ ⋅ + yn ≠ 0.

Proof. Without loss of generality, y1 = 1. (Otherwise, divide all yj by y1.)
So for all j ≥ 2 we have v(yj) ≥ 1, that is yj ∈ m, the unique maximal ideal of A. Therefore

y2 + ⋅ ⋅ ⋅ + yn ∈ m,

which, since y1 = 1 ∉ m, implies that

y1 + y2 + ⋅ ⋅ ⋅ + yn ∉ m.

A monic polynomial f ∈ Qp[x] is Eisenstein if

f(x) = xn + an−1x
n−1 + ⋅ ⋅ ⋅ + a1x + a0

with ai ∈ pZp for i = 0, . . . , n − 1 and a0 ∉ p2Zp.

Proposition 5.37. Let K be a p-adic field. Then K/Qp is totally ramified if and only if
K = Qp[α], where α is a root of an Eisenstein polynomial.

Proof. Proof of the forward direction: Let π ∈ AK be a uniformiser. The minimal polynomial
of π has coefficients in Zp:

f(x) = xn + an−1x
n−1 + ⋅ ⋅ ⋅ + a1x + a0,

so
anπ

n + an−1π
n−1 + ⋅ ⋅ ⋅ + a1π + a0 with an = 1.

Let v denote the discrete valuation on K. We have v(π) = 1 and v(a) ≡ 0 (mod n) for a ∈ Zp.
So v(ajπj) = v(aj) + j for j = 0, . . . , n.
Let m = minj{v(ajπj)}. By Lemma 5.36 there exist 0 ≤ i < j ≤ n such that m = v(aiπi) =

v(ajπj). But v(aiπi) = v(ai) + i ≡ i (mod n), and similarly v(ajπj) ≡ j (mod n), so we must
have i = 0 and j = n.
We conclude that v(a0) = v(a0π0) = v(anπn) = v(πn) = n, hence vp(a0) = 1.
Also, for all k = 1, . . . , n − 1 we have v(ak) + k = v(akπk) ≥ n, so v(ak) ≥ n − k > 0, so

vp(ak) > 0.
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A. Revision: Algebra

Algebraic number theory is the application of algebraic methods to arithmetic questions. This
requires the reader to live and breathe algebraic structures such as groups, rings, fields, vector
spaces, modules, ideals. We also lean pretty heavily on the Galois theory of field extensions.
The purpose of this appendix is to give a summary of things you are expected to be

familiar with. Use this as an opportunity to reconnect with your knowledge in algebra and/or
to diagnose any gaps that need filling. Good places to go for help are your notes from
MAST20022+MAST30005 and [3].

A.1. Rings

In this subject all rings are commutative and have 1.
If R ⊆ S are two rings, we say that S is a ring extension of R. In this case S is an R-algebra.
Given a ring extension R ⊆ S and an element α ∈ S, we write R[α] for the smallest (under

inclusion) subring of S that contains both R and α, and refer to R ⊆ R[α] as the ring extension
generated by α.

Exercise A.1. Show that the notation R[α] makes sense, in that R[α] can be identified
with the set of all polynomial expressions in α with coefficients in R. More precisely, let
ev∶R[x] → S denote the ring homomorphism “evaluation at α” uniquely determined by
ev(x) = α. Show that im(ev) = R[α].

A.2. Fields

If E ⊆ F are two fields, we say that F is a field extension of E, often (confusingly) denoted
F /E. In this case F is a vector space over E, and we say that that F /E is a finite field
extension if F is a finite-dimensional E-vector space.

Given a field extension F /E and an element α ∈ F , we write E(α) for the smallest (under
inclusion) subfield of F that contains both E and α, and refer to E(α)/E as the field extension
generated by α.

Exercise A.2. Suppose that α is algebraic over E, that is there exists f ∈ E[x] such that
f(α) = 0. Show that E(α) = E[α].

The Primitive Element Theorem (see [5, Proposition 27.12] or [3, Theorem 25 in Section
14.4]) says that for any finite separable field extension F /E there exists α ∈ F such that
F = E(α).
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