
MAST90136 Algebraic Number Theory 2022

Assignment 3

1. Show that the set S ⊆ Rn defined in the lectures is convex:

S =

{
(a1, . . . , ar1 , x1, y1, . . . , xr2 , yr2) : |a1|+ · · ·+ |ar1|+ 2

(√
x2
1 + y21 + · · ·+

√
x2
r2
+ y2r2

)
≤ n

}
.

For the purposes of this exercise, it is useful to work in Rr1 × Cr2 ∼= Rn, with zj = xj + iyj.

Then
√

x2
j + y2j = |zj|, which has the advantage that it satisfies the triangle inequality, just

like the absolute value of a real number. Now given s = (a1, . . . , ar1 , z1, . . . , zr2) ∈ S and
t = (b1, . . . , br1 , w1, . . . , wr2) ∈ S, as well as λ ∈ [0, 1], we put these triangle inequalities to
work:

r1∑
j=1

|λaj + (1− λ)bj|+
r2∑
j=1

|λzj + (1− λ)wj|

≤ λ

r1∑
j=1

|aj|+ (1− λ)

r1∑
j=1

|bj|+ λ

r2∑
j=1

|zj|+ (1− λ)

r2∑
j=1

|wj|

≤ λn+ (1− λ)n = n.

2. Prove that as the degree n of a number field K goes to infinity, so does |∆K |, the absolute
value of its discriminant.

By Minkowski and using n = r1 + 2r2, we have

|∆K | ≥
(π
4

)2r2 n2n

(n!)2
≥

(π
4

)n n2n

(n!)2

Therefore
log |∆K | ≥ n log(π/4) + 2n log(n)− 2 log(n!)

Stirling’s approximation tells us that

log(n!) ∼ 1

2
log(2πn) + n

(
log(n)− 1

)
,

so that log |∆K | is bounded below by a function of n asymptotic to

n
(
2 + log(π/4)

)
− log(2πn),

which in turn diverges to ∞ as n → ∞. (Crucial point is 2 + log(π/4) > 0.)

3. For m ≥ 3, set ζ = e2πi/m and ω = eπi/m.

(a) Show that for all k ∈ Z:
1− ζk = −2iωk sin(kπ/m).

Conclude that
1− ζk

1− ζ
= ωk−1 sin(kπ/m)

sin(π/m)
.

Use the venerable eiθ = cos(θ) + i sin(θ) to get

ω−k − ωk = −2i sin(kπ/m)

then multiply by ωk. The second identity follows immediately.
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(b) Show that if k and m are not both even, then ωk−1 = ±ζh for some h ∈ Z.
If k is odd we have ωk−1 = ζ(k−1)/2 with (k − 1)/2 ∈ Z.
If k is even then m is odd.
Note that ωm = eiπ = −1, so that ωk−1 = −ωm+k−1 = −ζ(m+k−1)/2 with (m+k−1)/2 ∈ Z
since k is even and m is odd.

(c) Show that if gcd(k,m) = 1 then

uk =
sin(kπ/m)

sin(π/m)

is a unit in Z[ζ].
Since gcd(k,m) = 1 we can use part (b):

uk = ω1−k 1− ζk

1− ζ
= ±ζ−h1− ζk

1− ζ
.

The other consequence of gcd(k,m) = 1 is that ζ and ζk are Galois-conjugate, so
N(1− ζk) = N(1− ζ) so that

N(uk) = N(±ζ−h)
N(1− ζk)

N(1− ζ)
= 1,

hence uk is a unit.

4. Let p > 2 be a prime number. Let x = pnu ∈ Q×
p with n ∈ Z and u ∈ Z×

p . Show that x is a
square if and only if n is even and the reduction of u modulo p is a nonzero square.

First, suppose x = y2 with y ∈ Qp. Since x ̸= 0, we have y ̸= 0. Write y = pmv where
m = vp(y) ∈ Z so that v ∈ Z×

p . Letting n = 2m and u = v2, we have x = p2mv2 = pnu, and
since v ∈ Z×

p we know that the reduction v̄ of v modulo p is nonzero. Hence the reduction
ū = v̄2 of u modulo p is a nonzero square.
In the other direction, suppose x = pnu as stated. Since n is even, it suffices to show that
u has a square root in Z×

p . We want to prove that y2 − u = 0 is solvable in Zp. Over Fp

we have y2 − ū = 0, which we are told has a nonzero root in Fp; this is not a root of the
derivative 2y, so by Hensel’s Lemma it can be lifted to a root in Z×

p .
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