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e All problems are of equal value.
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Question 1.

(a) State the definitions of a Cauchy sequence and a complete metric
space.

(b) Let (X,dx) and (Y,dy) be metric spaces, and let f : X — YV be
continuous with f(X) =Y. Assume that (X, dyx) is complete and for
all z, 2" € X

dx(z,2") < dy(f(z), f(z")).
Glve a brief proof that (Y, dy) is complete.

Question 2.

Let (X,dx) and (Y, dy) be metric spaces, and let {f,} be a sequence
of continuous functions f, : X —» Y.
(a) Give the definition of uniform convergence of the sequence {f,}
to a function f: X — Y.
(b) Define f, : [0,1] — R for each n € N by

2
f"(x) B 1+nz

Find the pointwise limit f of the sequence {f,} and determine
whether the sequence converges uniformly to f. Give brief jus-
tifications for your answers.

for z € [0,1].

Question 3.

Let (X, d) be a metric space.
(a) Prove from the axioms for a metric, that if z,2',y,y’ € X then

|d(z,y) — d(=',y)| < d(z,2) + d(y,y).
(b) Let A be a non-empty compact subset of X. Prove that there exist
points a,b € A such that
d(a7 b) = Sup{d(x>y) 1T,y € A}

Question 4.

Let 1% denote the Hilbert space of square summable complex se-
quences (a1, ag, . .. ) with inner product

< (al,az, .. .), (bl,bg, - ) >= Zanbn.
Let {\1, A2,...} be a bounded sequence of complex numbers.
Define T : 1> — 1? by T'(ay,a9,...) = (A1ag, Aaad, , . . ., AnGop, . . . )
(a) Show that 7" is a bounded linear operator.
(b) Compute (T
(c) Find the adjoint operator T™.
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Question 5.

(a) Let (X,T) and (Y, 7") be topological spaces and let f: X — Y
be a continuous map. Prove that if X is connected then so is f(X).
(b) Consider the following pairs of spaces. Are these spaces homeo-
morphic or not? Give brief explanations.

(1) The circle {(z,y) : 22 + y? = 1} and the interval [0, 1] with the
topologies induced from R? R respectively;

(2) The intervals [0,1] and (0,1) with the topology induced from
R.

(3) The intervals [0,1] and [0, 2] with the topology induced from R.

Question 6.

Suppose that (H,< - >) is a real Hilbert space and fix an element
veH.
(a) Prove that the functional f : H — R given by f(z) =< z,v >
is a bounded linear operator. Compute || f|| for this functional.
(b) State the Riesz representation theorem and use it to prove that
the dual space H' is isometric to H, viewed as a Banach space.

Question 7.

(a) Give the definition of a compact self adjoint linear operator
T:V — W where V, W are Hilbert spaces.

(b) Prove that any eigenspace of a bounded linear operator is a
closed subspace.

(c) Prove that any sequence of different non-zero eigenvalues of a
compact self adjoint operator must have a subsequence converg-
ing to zero.

Question 8.

(a) State the Banach fixed point theorem.
(b) Verify that the mapping
1, 1
f(z) = —p% tTtg
satisfies the conditions of the Banach fixed point theorem on the
metric space ([1,2], d), where d is the usual Euclidean metric.
(c) Find directly the unique fixed point for f.

End of the examination paper





