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Question 1 (8 marks)
Let (X, d) be a metric space.

(a) Define the concept “D is a dense subset of X”.

(b) Show that D ⊆ X is a dense subset of X if and only if D∩U 6= ∅ for all nonempty open
sets U in X.

(c) Prove that the intersection of two dense open sets U1 and U2 is dense.

(a) (1 marks) X = D.

(b) (2 marks) Suppose D is dense and let U be nonempty open. Let
x ∈ U . As U is open, there exists Br(x) ⊆ U with r > 0. If x ∈ D,
we are done. Otherwise, x ∈ X \D = D \D, so it is a limit point of
D, so there exists a ∈ Br(x) ∩D such that a 6= x, hence a ∈ U ∩D.
(2 marks) Conversely, suppose D∩U is nonempty for any nonempty
open U . Let x ∈ X \ D. For every r > 0, U := Br(x) is open so
D∩Br(x) is nonempty, and x is not in this intersection so there must
be a point distinct from x in it, hence x ∈ D.

(c) (3 marks) Let U12 = U1 ∩ U2.
To show that U12 is dense, we use the previous part and show that
U12 ∩ U 6= ∅ for all nonempty open U :

U12 ∩ U =
(
U1 ∩ U2

)
∩ U = U1 ∩

(
U2 ∩ U

)
.

Since U2 is dense and open, U2 ∩ U is nonempty and open. Since U1

is dense, U1 ∩
(
U2 ∩ U

)
is nonempty. So U12 ∩ U 6= ∅, hence U12 is

dense.
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Question 2 (10 marks)
Let (X, d) be a metric space.

(a) Define the concept “D is a disconnected subset of X”.

(b) Prove that a subset D of X is disconnected if and only if there exists a surjective
continuous function g : D −→ {0, 1}, where {0, 1} is given the discrete metric.

(c) Suppose A ⊆ X is a connected subset and {Ci : i ∈ I} is an arbitrary collection of
connected subsets of X such that A ∩ Ci 6= ∅ for all i ∈ I. Prove that

B := A ∪
⋃
i∈I

Ci

is a connected subset of X.

(a) (2 marks) There exist open subsets U and V of D such that

D = U ∪ V, U ∩ V = ∅, U 6= ∅, V 6= ∅.

(b) (2 marks) If such a function g exists, let U = g−1(0) and V = g−1(1),
then U 6= ∅, V 6= ∅ since g is surjective. As {0} ∩ {1} = ∅, we have
U ∩ V = ∅. Clearly D = U ∪ V , and both U and V are open since
{0} and {1} are open. This implies that D is disconnected.
(2 marks) For the other direction, suppose that D is disconnected
and write D = U∪V with U, V as in the definition. Define g : X −→
{0, 1} by

g(x) =

{
0 if x ∈ U

1 if x ∈ V.

This is well-defined since U ∩ V = ∅. It is continuous as g−1(0) = U
and g−1(1) = V are open. It is surjective since it takes both values
0 and 1 (as both U and V are nonempty).
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(c) (4 marks) Let g : B −→ {0, 1} be an arbitrary continuous function.
Its restriction g|A : A −→ {0, 1} cannot be surjective, since A is
connected. So g|A is constant, let’s say 0 for concreteness.
Now let i ∈ I. The restriction g|Ci

: Ci −→ {0, 1} must be constant,
for the same reason as before. But A∩Ci 6= ∅ and g is zero on A, so
g must be zero on Ci.
As this holds for all i ∈ I, we conclude that g is zero on B.
So there is no surjective continuous map B −→ {0, 1}, hence B must
be connected.
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Question 3 (9 marks)
Let (X, d) be a metric space.

(a) Define the concept “K is a compact subset of X”.

(b) Let C be a closed subset of a compact subset K of X. Prove that C is compact.

(c) Let K and L be compact subsets of X. Prove that K ∪ L is compact.

(a) (2 marks) Given any open cover of K:

K ⊆
⋃
i∈I

Ui,

there exists a finite subset {i1, . . . , in} ⊆ I such that

K ⊆
n⋃

j=1

Uij .

(b) (4 marks) Consider an arbitrary open cover of C:

C ⊆
⋃
i∈I

Ui.

Then we have

K ⊆ X = C ∪
(
X \ C

)
⊆

(⋃
i∈I

Ui

)
∪
(
X \ C

)
,

which is an open cover of K. As K is compact, there is a finite
subcover, so that

K ⊆

(
N⋃
n=1

Uin

)
∪
(
X \ C

)
, in ∈ I,

hence

C ⊆
N⋃
n=1

Uin.
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(c) (3 marks) Consider an arbitrary open cover of K ∪ L:

K ∪ L ⊆
⋃
i∈I

Ui.

This is also an open cover of K, so there is a finite subcover that still
covers K:

K ⊆
N⋃
n=1

Uin, in ∈ I.

Similarly, we get a finite subcover that covers L:

L ⊆
M⋃

m=1

Ujm, jm ∈ I.

Letting S = {i1, . . . , iN}∪{j1, . . . , jM}, we get a finite subcover that
covers K ∪ L:

K ∪ L ⊆
⋃
s∈S

Us.
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Question 4 (9 marks)
Consider the equation

x3 − x− 1 = 0. (1)

(a) Show that Equation (1) must have at least one solution in the interval [1, 2].

(b) Show that the function f : [1, 2] −→ [1, 2] given by

f(x) = (1 + x)1/3

is a contraction.
(c) Show that Equation (1) has a unique solution ξ in the interval [1, 2] and describe a

sequence of real numbers that converges to ξ.

(a) (2 marks) We can use the Intermediate Value Theorem, as x3−x−1
is clearly continuous. At x = 1, x3−x− 1 = −1 < 0, while at x = 2,
x3 − x − 1 = 5 > 0, so there must be at least one point x in [1, 2]
such that x3 − x− 1 = 0.

(b) (4 marks) The derivative of f is

f ′(x) =
1

3
(1 + x)−2/3 =

1

3

1

(1 + x)2/3
.

As x ∈ [1, 2], we have f ′(x) > 0 and

1 6 x ⇒ 2 6 1 + x ⇒ 1

1 + x
6

1

2
⇒ 1

(1 + x)2/3
6

1

22/3
6 1,

so that
f ′(x) 6

1

3
.

Now let x, y be such that 1 6 x < y 6 2 and apply the Mean Value
Theorem to f on [x, y] to deduce that there exists c ∈ (x, y) such
that
f(y)− f(x)

y − x
= f ′(c) ⇒ |f(y)− f(x)| = |f ′(c)| |y − x| 6 1

3
|y − x|.

We conclude that f is a contraction.
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(c) (3 marks) Observe that x3 − x − 1 = 0 is equivalent to f(x) = x,
so the solutions of Equation (1) are precisely the fixed points of f .
As f is a contraction and [1, 2] is complete, the Banach Fixed Point
Theorem says that there is a unique fixed point ξ in [1, 2]. It also
tells us that we can start with any x1 ∈ [1, 2], for instance x1 = 1,
and iteratively apply f to get a sequence (xn) converging to ξ:

x1 = 1, x2 = f(x1) = 21/3, x3 = f(x2) =
(
1 + 21/3

)1/3
, . . .
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Question 5 (7 marks)

(a) Let f ∈ L(V,W ) be a continuous linear map between normed spaces. Prove that if U is
a closed subspace of W , then its preimage f−1(U) is a closed subspace of V .

(b) Prove that the following set of sequences

S =

{
(an) ∈ `1 :

∞∑
n=1

an = 0

}

is a closed subspace of the Banach space `1:

`1 =

{
(an) ∈ FN :

∞∑
n=1

|an| < ∞

}
.

(a) (2 marks) Clear since f is linear so the inverse image of a subspace
is a subspace; and f is continuous so the inverse image of a closed
set is a closed set.

(b) (5 marks) Consider the function f : `1 −→ F given by

f
(
(an)

)
=

∞∑
n=1

an.

First note that this is a reasonable definition, because the infinite
series on the right hand side converges in F:∣∣∣∣∣

N∑
n=1

an

∣∣∣∣∣ 6
N∑
n=1

|an|,

and the latter converges as N −→ ∞ since (an) ∈ `1.
The function f is linear. It is also continuous, because as we have
just seen:

∣∣f((an))∣∣ =
∣∣∣∣∣

∞∑
n=1

an

∣∣∣∣∣ 6
∞∑
n=1

|an| = ‖(an)‖`1.

Hence f ∈ L(`1,F) = (`1)∨ and its kernel is S, so S is a closed
subspace of `1.
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Question 6 (9 marks)
Let

(
V, 〈·, ·〉

)
be an inner product space.

(a) Given a subset S of V , define the concept “the orthogonal complement S⊥ of S”.

(b) Prove that S ⊆
(
S⊥)⊥.

(c) Prove that if V is a Hilbert space and W is a closed subspace of V , then
(
W⊥)⊥ = W .

(a) (2 marks) S⊥ = {v ∈ V : 〈v, s〉 = 0 for all s ∈ S}.

(b) (3 marks) Let s ∈ S. For any x ∈ S⊥, we have

〈s, x〉 = 〈x, s〉 = 0,

so s ∈
(
S⊥)⊥.

(c) (4 marks) We have seen above that W ⊆
(
W⊥)⊥.

Let x ∈
(
W⊥)⊥. By the Hilbert Projection Theorem, we can decom-

pose
H = W ⊕W⊥.

So we have x = y + z with y ∈ W and z ∈ W⊥. Then

0 = 〈x, z〉 = 〈y + z, z〉 = 〈y, z〉+ 〈z, z〉 = 0 + ‖z‖2,

implying that z = 0 and x = y ∈ W .
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Question 7 (9 marks)

(a) State the Cauchy–Schwarz Inequality for inner product spaces.

(b) Let V be an inner product space. Prove that for any u ∈ V we have

‖u‖ = sup
‖v‖=1

∣∣〈u, v〉∣∣.
(c) Now let W be a second inner product space and let f ∈ L(V,W ) be a continuous linear

map. Prove that
‖f‖ = sup

‖v‖V =1=‖w‖W

∣∣〈f(v), w〉W ∣∣.
(a) (2 marks) For any u, v in an inner product space V we have∣∣〈u, v〉∣∣ 6 ‖u‖ ‖v‖.

Equality holds if and only if u and v are linearly dependent.

(b) (3 marks) If u = 0 then the equality is obvious.
So assume now that u 6= 0. Applying Cauchy–Schwarz with v ∈ V
such that ‖v‖ = 1, we have∣∣〈u, v〉∣∣ 6 ‖u‖,

so that
sup
‖v‖=1

∣∣〈u, v〉∣∣ 6 ‖u‖.

To get equality, take v = 1
‖u‖ u and see that the LHS is indeed ‖u‖.

(c) (4 marks) From the previous part:

‖u‖W = sup
‖w‖W=1

∣∣〈u,w〉W ∣∣ for all u ∈ W.

Setting u = f(v) for some v ∈ V , we get

‖f(v)‖W = sup
‖w‖W=1

∣∣〈f(v), w〉W ∣∣ for all v ∈ V.

Therefore

‖f‖ = sup
‖v‖V =1

‖f(v)‖W = sup
‖v‖V =1=‖w‖W

∣∣〈f(v), w〉W ∣∣.
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Question 8 (7 marks)
Consider the function g : `2 −→ F given by

g(x) =

∞∑
n=1

xn
n2

.

(a) Find y ∈ `2 such that
g(x) = 〈x, y〉 for all x ∈ `2.

(b) Deduce that g is linear and continuous and find its norm ‖g‖.

[Hint: You may use without proof the fact that
∞∑
n=1

1

n4
=

π4

90
.]

(a) (4 marks) Setting y = (yn) with

yn =
1

n2
,

we certainly have for all x = (xn) ∈ `2:

〈x, y〉 =
∞∑
n=1

xnyn =
∞∑
n=1

xn
n2

= g(x).

We should check that y ∈ `2:

‖y‖2`2 =
∞∑
n=1

y2n =
∞∑
n=1

1

n4
=

π4

90
.

(b) (3 marks) From the previous part we know that g = y∨, so certainly
g is linear and continuous. We also have

‖g‖ = ‖y∨‖ = ‖y‖`2 =
π2

3
√
10

,

as we have seen in the previous part.
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Question 9 (12 marks)
Let (an) be a decreasing sequence of non-negative real numbers. Consider f : `2 −→ FN given
by

f(x) =
(
a1x1, a2x2, . . . , anxn, . . .

)
.

(a) Prove that the image of f is contained in `2 and that f : `2 −→ `2 is linear and
continuous.

(b) Find the norm ‖f‖.

(c) Find the adjoint f∗ of f .

(d) How much can you relax the conditions on the sequence (an) and still retain the statement
in part (a)? Make an educated guess and describe briefly how/if the answers to parts (b)
and (c) change.

(a) (2 marks) We have

‖f(x)‖2`2 =
∞∑
n=1

a2n |xn|2 6 a21

∞∑
n=1

|xn|2 = a21 ‖x‖2`2,

so if x ∈ `2 then f(x) ∈ `2.
It is straightforward that f is linear. It is clear that f is continuous
from the inequality above.

(b) (3 marks) We have

‖f‖ = sup
‖x‖=1

∥∥f(x)∥∥ 6 a1

from the previous part.
Taking x = e1 = (1, 0, 0, . . . ) we have ‖e1‖ = 1 and f(e1) =
(a1, 0, 0, . . . ) so ‖f(e1)‖ = a1, therefore ‖f‖ = a1.

(c) (3 marks) We have

〈
f(x), y

〉
=

∞∑
n=1

an xn yn =
∞∑
n=1

xn
(
an yn

)
=
〈
x, f(y)

〉
,

where we used the fact that an ∈ R for all n ∈ N.
Therefore f ∗ = f .

(d) (4 marks) We can take (an) to be any bounded sequence of complex
numbers and (a) still holds. In (b) we get ‖f‖ = ‖(an)‖`∞, and in
(c) we get

f ∗(y) =
(
a1y1, a2y2, . . . , anyn, . . .

)
.
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