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1. Introduction
The next few exercises are about countability/uncountability. See Section 1.2 for clarification
on our use of the term “countable”. You may assume without proof that any subset of a
countable set is finite or countable.

Exercise 1.1. Let f ∶ X Ð→ Y be a function, with X a countable set. Then im(f) is
finite or countable.

[Hint: Reduce to the case f ∶ NÐ→ Y is surjective; construct a right inverse g ∶ Y Ð→N,
which has to be injective, of f .]

Solution. Without loss of generality, we may assume that f is surjective and we want to
show that Y is finite or countable.

Also without loss of generality (by pre-composing f with any bijection NÐ→X), we
may assume that f ∶ NÐ→ Y is surjective.

As f ∶ N Ð→ Y is surjective, there exists a right inverse g ∶ Y Ð→ N, in other words
f ○ g ∶ Y Ð→ Y is the identity function idY : given y ∈ Y , the pre-image f−1(y) ⊆ N is
nonempty, so it has a smallest element ny; we let g(y) = ny. For any y ∈ Y , we have
f(g(y)) = f(ny) = y as ny ∈ f−1(y). So f ○ g = idY .

In particular, this forces g ∶ Y Ð→N to be injective, hence realising Y as a subset of
the countable set N. We conclude that Y is finite or countable.

Exercise 1.2. Show that the union S of any countable collection of countable sets is a
countable set.

[Hint: Construct a surjective function N ×NÐ→ S.]

Solution. Write
S = ⋃

n∈N

Sn,

with each Sn a countable set. It is clear that S is infinite (as, say, S1 is, and S1 ⊆ S).
For each n ∈N, fix a bijection ϕn ∶ N Ð→ Sn. (As Chengjing rightfully points out to

me, this uses the Axiom of Countable Choice.) Define a function ψ ∶ N ×NÐ→ S by:

ψ((n,m)) = ϕn(m) ∈ Sn ⊆ S.

This is surjective, and N ×N is countable, so S is finite or countable, and we ruled out
finite above.

Exercise 1.3. Let RN be the set of arbitrary sequences (x1, x2, . . . ) of elements of R.
This is a vector space under the naturally-defined addition of sequences and multipli-

cation by a scalar.
Let ej ∈RN be the sequence whose j-th entry is 1, and all the others are 0. Describe

the subspace Span{e1, e2, . . .} of RN. Is the set {e1, e2, . . .} a basis of RN?
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1. Introduction

Solution. Let S = {e1, e2, . . .} and W = Span(S).
For each n ∈N, define

Wn = Span{e1, e2, . . . , en} ⊆W.

I claim that
W = ⋃

n∈N

Wn.

One inclusion is clear, as Wn ⊆W for all n ∈N.
For the other inclusion, let w ∈ W . Then there exist m ∈ N, a1, . . . , am ∈ R and

k1, . . . , km ∈N such that
w = a1ek1 + ⋅ ⋅ ⋅ + amekm .

Set n =max{k1, . . . , km}, then w ∈Wn.
Is W =RN? No. Any w ∈W appears in a Wn for some n ∈N, therefore only the first

n entries of w can be nonzero. This means, for instance, that v = (1,1,1, . . . ) ∉W . So S
does not span RN.

Exercise 1.4. (*) Let V =R viewed as a vector space over Q.
Let α ∈R. Show that the set T = {αn ∶ n ∈N} is Q-linearly independent if and only if

α is transcendental.
(Note: An element α ∈R is called algebraic if there exists a monic polynomial f ∈Q[x]

such that f(α) = 0. An element α ∈R is called transcendental if it is not algebraic.)

Solution. This is a straightforward rewriting of the definition of algebraic: α is algebraic
if and only if it satisfies a polynomial equation with coefficients in Q, which is equivalent
to a nontrivial linear relation between the powers of α, which exists if and only if T is
linearly dependent.

Exercise 1.5. (*) Let W be a Q-vector space with a countable basis B. Show that W
is a countable set.

[Hint: Use Exercise 1.2.]
Conclude that R does not have a countable basis as a vector space over Q.

Solution. Since B is countable we can enumerate it as B = {bn ∶ n ∈N}. For each n ∈N,
let Wn = Span{b1, . . . , bn}. Then for each n ∈N, Wn is isomorphic (as a Q-vector space)
to Qn, hence Wn is countable. I claim that

W = ⋃
n∈N

Wn.

One inclusion is obvious, as Wn ⊆W for all n ∈N. For the other direction, let w ∈W =
Span(B), so there exist n ∈N, a1, . . . , an ∈Q and k1, . . . , kn ∈N such that

w = a1bk1 + ⋅ ⋅ ⋅ + anbkn .

Let k =max{k1, . . . , kn}, then w ∈Wk.
So W is a countable union of countable sets, hence countable by Exercise 1.2.
The last claim follows directly from the fact that R is an uncountable set.

We now turn to posets, Zorn’s Lemma, and the existence of bases.

6



MAST30026 MHS

A partially ordered set (poset for short) is a set X together with a partial order ⩽, that is
a relation satisfying

• x ⩽ x for all x ∈X;

• if x ⩽ y and y ⩽ x then x = y;

• if x ⩽ y and y ⩽ z then x ⩽ z.

A poset X such that for any x, y ∈ X we have x ⩽ y or y ⩽ x is called a totally ordered set,
and ⩽ is called a total order .

Exercise 1.6. (*) Fix a set Ω and let X be the set of all subsets of Ω. Check that ⊆ is a
partial order on X. It is not a total order if Ω has at least two distinct elements.

Solution. The fact that ⊆ is a partial order follows directly from known properties of set
inclusion.

If Ω has at least two distinct elements x1 and x2, then {x1} and {x2} are not comparable
under ⊆, so the latter is not a total order.

A chain in a poset (X,⩽) is a subset C ⊆X that is totally ordered with respect to ⩽.
If S ⊆ X is a subset of a poset, then an upper bound for S is an element u ∈ X such that

s ⩽ u for all s ∈ S.
A maximal element of a poset X is an element m of X such that there does not exist any

x ∈X such that x ≠m and m ⩽ x. In other words, for any x ∈X, either x =m, or x ⩽m, or x
and m are not comparable with respect to the partial order ⩽.

Exercise 1.7. (*) Let (X,⩽) be a nonempty finite poset. (This just means that X is a
nonempty finite set with a partial order ⩽.) Prove that X has a maximal element.

[Hint: You could, for instance, use induction on the number of elements of X.]

Solution. We proceed by induction on n, the cardinality of X.
Base case: if n = 1 then X = {x} for a single element x. Then trivially x is a maximal

element of X.
For the induction step, fix n ∈ N and suppose that any poset of cardinality n has a

maximal element. Let X be a poset of cardinality n + 1 and choose an arbitrary element
x ∈X. Let Y =X ∖{x}, then Y is a poset of cardinality n so by the induction hypothesis
has a maximal element mY , and clearly mY ≠ x.

We have two possibilities now:

• If mY ⩽ x, then x is a maximal element of X. Why? Suppose that x is not maximal
in X, so that there exists z ∈ X such that z ≠ x and x ⩽ z. Since z ≠ x, we must
have z ∈ Y . If z =mY , then z ⩽ x and x ⩽ z so z = x, contradiction. So z ≠mY , and
mY ⩽ x and x ⩽ z, so mY ⩽ z, contradicting the maximality of mY in Y .

• Otherwise, (if it is not true that mY ⩽ x), mY is a maximal element of X. Why?
Suppose there exists z ∈X such that z ≠mY and mY ⩽ z. Since mY ⩽ x is not true,
we have z ≠ x, so z ∈ Y , contradicting the maximality of mY in Y .

In either case we found a maximal element for X.
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1. Introduction

An alternative approach is to proceed by contradiction: suppose (X,⩽) is a nonempty
finite poset that does not have a maximal element. Use this to construct an unbounded
chain of elements of X, contradicting finiteness.

Zorn’s Lemma (Lemma 1.3) is used to deduce the existence of maximal elements in infnite
posets.

Exercise 1.8. (*) Prove Theorem 1.2: any vector space V has a basis.
[Hint: Let X be the set of all linearly independent subsets of V , partially ordered by

inclusion. Prove that X has a maximal element B, and prove that this must also span
V .]

Solution. If V = {0}, then ∅ is vacuously a (in fact, the only) basis of V .
Suppose V ≠ {0}. If v ∈ V ∖ {0}, then {v} is a linearly independent subset of V . Let

X be the set of all linearly independent subsets of V , then X is nonempty. We consider
the partial order ⊆ on X given by inclusion of subsets.

Let C be a nonempty chain in X and define

U = ⋃
S∈C

S,

then clearly S ⊆ U for all S ∈ C, so we’ll know that U is an upper bound for C as soon as
we can show that it is linearly independent (so that U ∈X).

Suppose there exist n ∈N, a1, . . . , an ∈ F, and u1, . . . , un ∈ U such that

(1.1) a1u1 + ⋅ ⋅ ⋅ + anun = 0.

Let J = {1, . . . , n}. For each j ∈ J , there exists Sj ∈ C such that uj ∈ Sj. As C is
totally ordered, there exists i ∈ J such that Sj ⊆ Si for all j ∈ J . But this means that
u1, . . . , un ∈ Si, so that the linear relation of Equation (1.1) takes place in the linearly
independent set Si. Therefore a1 = ⋅ ⋅ ⋅ = an = 0.

We conclude that X satisfies the conditions of Zorn’s Lemma, hence it has a maximal
element B. I claim that B spans V , so that it is a basis of V .

We prove this last claim by contradiction: if v ∈ V ∖ Span(B), then B′ ∶= B ∪ {v} is
linearly independent, hence an element of X. But B ⊆ B′ and B ≠ B′, contradicting the
maximality of B.
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2. Metric and topological spaces

Exercise 2.1. Let (X,d) be a metric space. Show that

∣d(x, y) − d(t, y)∣ ⩽ d(x, t)

for all x, y, t ∈X.

Solution. We need to show that

−d(x, t) ⩽ d(x, y) − d(t, y) ⩽ d(x, t).

One application of the triangle inequality gives

d(x, y) ⩽ d(x, t) + d(t, y) ⇒ d(x, y) − d(t, y) ⩽ d(x, t).

Another application gives

d(t, y) ⩽ d(t, x) + d(x, y) ⇒ −d(x, t) ⩽ d(x, y) − d(t, y).

Exercise 2.2. Let (X,d) be a metric space. Show that

∣d(x, y) − d(s, t)∣ ⩽ d(x, s) + d(y, t)

for all x, s, y, t ∈X.

Solution. We have

∣d(x, y) − d(s, t)∣ = ∣d(x, y) − d(y, s) + d(y, s) − d(s, t)∣
⩽ ∣d(x, y) − d(y, s)∣ + ∣d(y, s) − d(s, t)∣
⩽ d(x, s) + d(y, t)

after one application of the triangle inequality and two applications of Exercise 2.1.

Exercise 2.3. (*) Fix a prime p and consider the metric space (Q, dp) where dp is the
p-adic metric from Example 2.1.

(a) Let p = 3 and write down 4 elements of B1(2) and 4 elements of B1/9(3).

(b) Back to general prime p now: show that every triangle is isosceles. In other words,
given three points in Q, at least two of the three resulting (p-adic) distances are
equal.

(c) Show that every point of an open ball is a centre. In other words, take an open ball
Br(c) with r ∈R⩾0 and c ∈Q and suppose x ∈ Br(c); prove that Br(c) = Br(x).
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2. Metric and topological spaces

(d) Show that given any two open balls, either one of them is contained in the other,
or they are completely disjoint.

Solution. (a) We have

{2,5,−7, 4
5
} ⊆ B1(2)

{3,30,−24, 39
4
} ⊆ B1/9(3).

(b) Recall that in the proof of the triangle inequality for the p-adic metric in Example 2.1,
the following stronger result was shown:

dp(x, y) ⩽max{dp(x, t), dp(t, y)}.

with equality holding if dp(x, t) ≠ dp(t, y). But this precisely says that if dp(x, t) ≠
dp(t, y), then dp(x, y) has to be equal to the largest of dp(x, t) and dp(t, y).

(c) First x ∈ Br(c) iff c ∈ Br(x) (this is true for any metric space). So it suffices to
show that x ∈ Br(c) implies Br(x) ⊆ Br(c). Let y ∈ Br(x), then dp(y, x) < r, so
that

dp(y, c) ⩽max{dp(y, x), dp(x, c)} < r,

in other words y ∈ Br(c).

(d) Consider two open balls Br(x) and Bt(y). Without loss of generality r ⩽ t. Suppose
that the balls are not disjoint and let z ∈ Br(x) ∩Bt(y). By part (c) this implies
that Br(z) = Br(x) and Bt(z) = Bt(y), so that

Br(x) = Br(z) ⊆ Bt(z) = Bt(y).

Exercise 2.4. Let n ∈ N, X = Rn with the dot product ⋅, ∥x∥ =
√
x ⋅ x for x ∈ X, and

d(x, y) = ∥x − y∥ for x, y ∈ X. Then (X,d) is a metric space. (The function d is called
the Euclidean metric or `2 metric on Rn.)

[Hint: The Cauchy–Schwarz inequality can be useful for checking the triangle inequality.]

Solution. We have

(a) d(x, y) = ∥x − y∥ =
√
(x − y) ⋅ (x − y) =

√
(−1)2 (y − x) ⋅ (y − x) = ∥y − x∥ = d(y, x);

(b) Let u = x− t and v = t−y, then we are looking to show that ∥u+v∥ ⩽ ∥u∥+∥v∥. But:

∥u + v∥2 = (u + v) ⋅ (u + v) = ∥u∥2 + 2u ⋅ v + ∥v∥2 ⩽ ∥u∥2 + 2 ∣u ⋅ v∣ + ∥v∥2

⩽ ∥u∥2 + 2 ∥u∥ ∥v∥ + ∥v∥2 = (∥u∥ + ∥v∥)2,

where the last inequality sign comes from the Cauchy–Schwarz inequality.

(c) d(x, y) = 0 iff (x − y) ⋅ (x − y) = 0 iff x − y = 0 iff x = y.

Exercise 2.5. Draw the unit open balls in the metric spaces (R2, d1) (Example 2.4),
(R2, d2) (Exercise 2.4), and (R2, d∞) (Example 2.5).
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Solution. The Manhattan unit open ball is the interior of the square with vertices (1,0),
(0,−1), (−1,0), and (0,1).

The Euclidean unit open ball is the interior of the unit circle centred at (0,0).
The sup metric unit open ball is the interior of the square with vertices (1,1), (1,−1),
(−1,−1), and (−1,1).

Exercise 2.6. Let X be a nonempty set and define

d(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≠ y,
0 otherwise.

Prove that (X,d) is a metric space. (The function d is called the discrete metric on X.)

Solution. It is clear from the definition that d(y, x) = d(x, y) and that d(x, y) = 0 iff
x = y.

For the triangle inequality, take x, y, t ∈X and consider the different cases:

x = y x = t t = y d(x, y) d(x, t) + d(t, y)

True True True 0 0 + 0 = 0
True False False 0 1 + 1 = 2
False True False 1 1 + 0 = 1
False False True 1 0 + 1 = 1
False False False 1 1 + 1 = 2

In all cases we see that d(x, y) ⩽ d(x, t) + d(t, y).

Exercise 2.7. Let n ∈N, X = Fn
2 , and let d(x, y) be the number of indices i ∈ {1, . . . , n}

such that xi ≠ yi. Prove that (X,d) is a metric space. (The function d is called the
Hamming metric.)

Solution. Do this from scratch if you want to, but I prefer to deduce it from other
examples we have seen.

First look at the case n = 1, X = F2. Then d(x, y) is precisely the discrete metric on F2

(see Exercise 2.6), in particular it is a metric. I’ll denote it dF2 for a moment to minimise
confusion.

Back in the arbitrary n ∈N case, note that d(x, y) defined above can be expressed as

d(x, y) = dF2(x1, y1) + ⋅ ⋅ ⋅ + dF2(xn, yn),

which is a special case of Example 2.4, therefore also a metric.

Exercise 2.8. Let (X,d) be a metric space and let A ⊆X.

(a) Prove that the set A is open if and only if it is the union of a collection of open
balls.

(b) Conclude that the set of all open balls in X generates the metric topology of X.
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2. Metric and topological spaces

Solution. (a) In one direction, if A is a union of a collection of open balls, then A is
open by Example 2.10 and Proposition 2.11.
In the other direction, suppose A is open. Let a ∈ A, then there exists an open ball
Br(a)(a) ⊆ A. Then

A = ⋃
a∈A

Br(a)(a).

(b) Follows immediately from the definition of the topology generated by a set.

Exercise 2.9. Let Y be a subset of a metric space (X,d) and consider the induced
metric on Y .

(a) Prove that for any y ∈ Y and any r ∈R⩾0 we have

BY
r (y) = BX

r (y) ∩ Y,

where BX
r (y) is the open ball of radius r centred at y in X, and BY

r (y) is the open
ball of radius r centred at y in Y .

(b) Let A ⊆ Y . Prove that A is an open set in Y if and only if there exists an open set
U in X such that A = U ∩ Y .

Solution. (a) We have

BX
r (y) = {x ∈X ∶ d(x, y) < r}

BY
r (y) = {x ∈ Y ∶ d(x, y) < r},

so that

BX
r (y) ∩ Y = {x ∈X ∶ d(x, y) < r} ∩ Y = {x ∈ Y ∶ d(x, y) < r} = BY

r (y).

(b) In one direction, suppose A is open in Y ; by Exercise 2.8 we have some indexing
set I such that

A = ⋃
i∈I

BY
ri
(ai),

with ri > 0 and ai ∈ A for all i ∈ I. We can then let

U = ⋃
i∈I

BX
ri
(ai),

which by Exercise 2.8 is an open in X. It is clear that A = U ∩ Y by part (a).
Conversely, suppose A = U ∩ Y with U open in X. Let a ∈ A, then a ∈ U so
there exists an open (in X) ball BX

r (a) such that BX
r (a) ⊆ U . Consider BY

r (a) =
BX

r (a) ∩ Y ⊆ U ∩ Y = A. So every point a ∈ A is contained in an open (in Y ) ball,
hence A is open in Y .

Exercise 2.10. Prove that any closed ball is a closed set.

Solution. This is a variation on Example 2.10 and a generalisation of Example 2.9 (which
is the case r = 0).
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Consider C = Dr(x) with x ∈ X, r ∈ R⩾0. Let y ∈ X ∖ C, then d(x, y) > r. Set
t = d(x, y) − r and consider the open ball Bt(y).

I claim that Bt(y) ⊆ (X ∖C): if w ∈ Bt(y) then d(w, y) < t so

d(x, y) ⩽ d(x,w) + d(w, y) ⩽ d(x,w) + t ⇒ d(x,w) ⩾ d(x, y) − t = r,

hence w ∉ C.

Exercise 2.11. (*) Show that any p-adic open ball in Q is both an open set and a
closed set.

Solution. Any open ball in any metric space is an open set (Example 2.10). Let’s show
that an arbitrary p-adic open ball Br(c) is closed.

Let U =Q ∖Br(c). Given u ∈ U , we have ∣u − c∣p ⩾ r.
I claim that Br(u) ⊆ U , which would imply that U is open, so that Br(c) is closed.
Suppose, on the contrary, that there exists t ∈ Br(u) ∩Br(c). Then ∣u − t∣p < r and
∣t − c∣p < r, so that

∣u − c∣p = ∣(u − t) + (t − c)∣p ⩽max{∣u − t∣p, ∣t − c∣p} < r,

contradicting the fact that ∣u − c∣p ⩾ r.

Exercise 2.12. Let (X,d) be a metric space and define

d′(x, y) = d(x, y)
1 + d(x, y)

.

Prove that (X,d′) is a metric space.
[Hint: Before tackling the triangle inequality, show that if a, b, c ∈R⩾0 satisfy c ⩽ a + b,

then c
1+c ⩽

a
1+a +

b
1+b .]

Solution. It is clear from the definition that d′(x, y) = d′(y, x) and that d′(x, y) = 0 iff
d(x, y) = 0 iff x = y.

For the triangle inequality, apply the inequality in the hint with c = d(x, y), a = d(x, t),
b = d(t, y).

Exercise 2.13.

(a) Let f ∶ X Ð→ Y be a function between two sets X and Y , and let S ⊆ Y . Prove
that

f−1(S) =X ∖ f−1(Y ∖ S).

(b) Let f ∶ X Ð→ Y be a function between topological spaces. Prove that f is continuous
if and only if: for any closed subset C ⊆ Y , the inverse image f−1(C) ⊆ X is a
closed subset.

Solution.

(a) We have x ∈ f−1(S) iff f(x) ∈ S iff f(x) ∉ (Y ∖ S) iff x ∉ f−1(Y ∖ S).

13
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(b) Suppose f is continuous and C ⊆ Y is closed. By part (a) we have

f−1(C) =X ∖ f−1(Y ∖C).

Then (Y ∖C) ⊆ Y is open and f is continuous, so f−1(Y ∖C) ⊆X is open, therefore
f−1(C) is closed.
Conversely, suppose the inverse image of any closed subset is closed. Let V ⊆ Y be
open, then by part (a) we have

f−1(V ) =X ∖ f−1(Y ∖ V ).

So (Y ∖ V ) ⊆ Y is closed, so f−1(Y ∖ V ) ⊆X is closed, hence f−1(V ) is open. We
conclude that f is continuous.

Exercise 2.14. This is a variation on Tutorial Question 2.7.
Let f ∶X Ð→ Y be a function and TX a topology on X. Define

TY = {U ∈ P(Y ) ∶ f−1(U) ∈ TX}.

(a) Prove that TY is the finest topology on Y such that f is continuous. (This topology
is called the final topology induced by f .)

(b) Let T be another topology on Y . Prove that f ∶ (X,TX) Ð→ (Y,T ) is continuous if
and only if T is coarser than TY .

(c) Use an example to prove that TY need not be metrisable even when TX is a metric
topology.

(d) Give an example in which TY is metrisable but TX is not.

[Hint: For (c) and (d), consider using Tutorial Question 2.3.]

Solution.

(a) We start with proving that TY is a topology:
• Since ∅ = f−1(∅) and X = f−1(Y ), it follows that TY contains ∅ and Y .
• If {Ui ∶ i ∈ I} is a collection of members of TY , then

⋃
i∈I

f−1(Ui) = f−1(⋃
i∈I

Ui) ∈ TX .

• If U1, . . . , Un are members of TY , then
n

⋂
i=1

f−1(Ui) = f−1(
n

⋂
i=1

Ui) ∈ TX .

If T is a topology on Y such that f is continuous, then f−1(U) ∈ TX for every
member U of T , so T ⊆ TY . Therefore, TY is the finest topology such that f is
continuous.
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(b) The ‘only if’ part has been proven in part (a), so it suffices to prove the ‘if’ part.
Suppose T is coarser than TY . If U is a member of T , then U ∈ TY , which implies
that f−1(U) is open in X. It follows that f is continuous when the topology on Y
is T .

(c) Let (X,TX) be the set of real numbers equipped with the Euclidean topology. Put
Y = {0,1}. If f ∶X Ð→ Y is defined by

f(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x > 0,
0 otherwise,

then TY = {∅,{1},{0,1}}. The topology TX is defined by the Euclidean metric, but
TY is not metrisable (see Tutorial Question 2.3).

(d) Put X = {0,1}, Y = {1}, TX = {∅,{1},{0,1}}. Let f ∶X Ð→ Y be the function
sending both 0 and 1 to 1. It follows that TY = {∅,{0,1}}. The topology TY is
defined by the discrete metric (see Tutorial Question 2.1), but TX is not metrisable
(see Tutorial Question 2.3).

Exercise 2.15. Let X be a topological space and U ⊆X a subset. Prove that U is open
in X if and only if: for all u ∈ U , there exists an open neighbourhood Vu of u such that
Vu ⊆ U .

Solution. One direction is obvious: if U is open in X, then given any u ∈ U we can take
Vu = U as an open neighbourhood contained in U .

In the other direction, suppose U has the given property at every u ∈ U . Then

U = ⋃
u∈U

Vu,

therefore U is open, since it is the union of the collection {Vu ∶ u ∈ U} of open sets.

Exercise 2.16. Prove Proposition 2.21:
Let X be a set and T1,T2 two topologies on X. The following statements are equivalent:

(a) T2 is coarser than T1 (that is, T2 ⊆ T1);

(b) for any x ∈ X and any T2-open neighbourhood U2
x of x, there exists a T1-open

neighbourhood U1
x of x such that U1

x ⊆ U2
x ;

(c) the function f ∶ (X,T1) Ð→ (X,T2) given by f(x) = x is continuous.

Solution. (a)⇔(c): Since f−1(S) = S for any subset S of X, we have:
(T2 is coarser then T1) if and only if (if U ∈ T2 then U ∈ T1) if and only if (if U ∈ T2 then

f−1(U) ∈ T1) if and only if (f is continuous).
(a)⇒(b): trivial, since if x ∈ U2

x and U2
x ∈ T2 ⊆ T1, we can take U1

x = U2
x and we are

done.
(b)⇒(a): Let U ∈ T2. We use Exercise 2.15 to prove that U ∈ T1. Let x ∈ U , then

setting U2
x = U we have that U2

x is a T2-open neighbourhood of x, so by (b) there exists a
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cT1-open neighbourhood U1
x of x such that U1

x ⊆ U . By Exercise 2.15 we conclude that U
is open in the topology T1.

Exercise 2.17. Generalise Example 2.9 to the setting of Hausdorff topological spaces; in
other words, prove that if X is a Hausdorff topological space, then any singleton {x} ⊆X
is a closed set.

Solution. Let U =X ∖ {x} and let u ∈ U . Then u ≠ x, so by the Hausdorff property of X,
there exist open neighbourhoods V1 of u and V2 of x such that V1 ∩ V2 = ∅. In particular,
x ∉ V1, so V1 ⊆ U . As we have exhibited an open neighbourhood contained in U around
every element of U , we conclude by Exercise 2.15 that U is open, so its complement {x}
is closed.

Exercise 2.18. Show that the union of any finite collection of closed sets is closed. Show
that the intersection of any arbitrary collection of closed sets is closed.

Solution. Let n ∈N and let C1, . . . ,Cn be closed subsets of X. Let

C =
n

⋃
i=1

Ci,

then the complement of C is

X ∖C =X ∖ (
n

⋃
i=1

Ci) =
n

⋂
i=1

(X ∖Ci) .

For each i = 1, . . . , n, Ci is closed so X ∖Ci is open, therefore X ∖C is the intersection of
finitely many open sets, hence is itself open by the topology axioms. We conclude that C
is closed.

For the second statement, let {Ci ∶ i ∈ I} be a collection of closed subsets of X, indexed
by a set I. Let

C = ⋂
i∈I

Ci,

then the complement of C is

X ∖C =X ∖ (⋂
i∈I

Ci) = ⋃
i∈I

(X ∖Ci) .

For each i ∈ I, Ci is closed so X ∖Ci is open, hence X ∖C is the union of a collection of
open sets, so is itself open by the topology axioms. We conclude that C is closed.

Exercise 2.19. Prove Proposition 2.27: A subset D of a topological space X is discon-
nected if and only if there exist open subsets U,V ⊆X such that

D ⊆ U ∪ V, D ∩U ∩ V = ∅, D ∩U ≠ ∅, D ∩ V ≠ ∅.

Solution. By definition D is a disconnected subset of X if and only if it is a disconnected
topological space in the induced topology. The latter is by definition: there exist U ′, V ′

16
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open subsets of D such that

D = U ′ ∪ V ′, U ′ ∩ V ′ = ∅, U ′ ≠ ∅, V ′ ≠ ∅.

But U ′, V ′ are open in D if and only if there exist open subsets U,V of X such that
U ′ = U ∩D, V ′ = V ∩D, from which the claim follows.

Exercise 2.20. Let X be a topological space and let {y} be a one-point topological
space. Prove that X × {y} (with the product topology) is homeomorphic to X.

Solution. Let f ∶ X × {y} Ð→X be the map f(x, y) = x and let g ∶ X Ð→X × {y} be the
map g(x) = (x, y). It is clear that g is the inverse of f . Since f is simply the projection
onto the first factor of the product, it is continuous by Proposition 2.19. To show that g
is continuous, consider a rectangle in X × {y}: this is either ∅ or U × {y} for some open
set U ⊆X. Then g−1(U × {y}) = U is open in X.

Exercise 2.21. Let X and Y be topological spaces, where the topology on Y is the
trivial topology. Prove that every function from X to Y is continuous.

Solution. Let f ∶X Ð→ Y be a function. The only open subsets of Y are ∅ and Y . Since
f−1(∅) = ∅ and f−1(Y ) =X, it follows that f is continuous.

Exercise 2.22. Prove that every constant function between topological spaces is contin-
uous.

Solution. Let X and Y be topological spaces. Pick a point y in Y and define f ∶ X Ð→ Y
to be the constant function sending every element of X to y. If U is an open subset of Y ,
then

f−1(U) =
⎧⎪⎪⎨⎪⎪⎩

X if y ∈ U ,
∅ otherwise.

Hence f−1(U) is open.

Exercise 2.23. Let X be a topological space and let S be a subset of X. Prove that
the inclusion ι ∶ S Ð→X defined by ι(x) = x is continuous when S is given the subspace
topology induced from X.

Conclude that the identity function idX ∶ X Ð→X is continuous.

Solution. If U is an open subset of X, then ι−1(U) = U ∩ S, which is open in S by the
definition of the subspace topology. Hence ι is continuous.

The identity function is the special case S =X.

Exercise 2.24. A subset D ⊆ X of a topological space X is dense in X if and only if
D ∩U ≠ ∅ for all nonempty open sets U in X.

Solution. Suppose D is dense, so D = X, and let U be nonempty open. If D ∩ U = ∅
then D ⊆X ∖U . But X ∖U is a closed subset of X containing D, so by the minimality
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property of D we have D ⊆X ∖U . As U ≠ ∅, this means D ≠X, contradiction.
Conversely, suppose D ∩ U is nonempty for any nonempty open U . If D ≠ X then

U ∶=X ∖D is a nonempty open subset of X, so D∩(X ∖D) ≠ ∅. But this is absurd since
D ⊆D.

Exercise 2.25. Let X be a topological space. The intersection of two dense open sets
U1 and U2 is dense and open.

Solution. Let U12 = U1 ∩U2. We know already that U12 is open.
To show that U12 is dense, we use Exercise 2.24 and show that U12 ∩ U ≠ ∅ for all

nonempty open U :
U12 ∩U = (U1 ∩U2) ∩U = U1 ∩(U2 ∩U).

Since U2 is dense and open, U2∩U is nonempty and open. Since U1 is dense, U1∩(U2∩U)
is nonempty. So U12 ∩U ≠ ∅, hence U12 is dense.

Exercise 2.26. (*) Give explicit continuous surjective functions f ∶ RÐ→ I, where I is:
(a) R (b) (0,∞) (c) (−∞,0) (d) (−∞,0] (e) [−1,1]
(f) (0,1] (g) [0,1) (h) (−π/2, π/2) (i) {0}.

[Hint: Draw some functions you know from calculus and see what their ranges are.]

Solution. These are of course not the only possible answers (well, except for the last one).

(a) xz→ x;

(b) xz→ ex;

(c) xz→ −ex;

(d) xz→ −x2;

(e) xz→ sin(x);

(f) xz→min{ex,1};

(g) xz→max{−ex,−1} + 1;

(h) xz→ arctan(x);

(i) xz→ 0.

Exercise 2.27. Let A be a subset of a topological space X. Prove that

X ∖A○ =X ∖A.

Solution. Since A○ ⊆ A, we have (X ∖A) ⊆ (X ∖A○). But A○ is open, so X ∖A○ is a
closed set containing X ∖A, hence

X ∖A ⊆X ∖A○.

18
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For the opposite inclusion, note that (X ∖A) ⊆X ∖A, so

X ∖X ∖A ⊆X ∖ (X ∖A) = A,

therefore X ∖X ∖A is an open set contained in A, so that

X ∖X ∖A ⊆ A○,

which implies that X ∖A○ ⊆X ∖A.

Exercise 2.28. (*)

(a) Show that a topological group G is Hausdorff if and only if {e} is a closed subset
of G.

(b) Show that if G is a Hausdorff topological group then its centre Z is a closed
subgroup.

(c) Show that if f ∶ GÐ→H is a continuous group homomorphism and H is Hausdorff,
then ker(f) is a closed normal subgroup of G.

Solution.

(a) By Exercise 2.17, if G is Hausdorff then the singleton {e} is closed.
Conversely, suppose {e} is a closed subset of G. Consider the map f ∶ G ×GÐ→ G
given by f(g, h) = g−1h, then f is continuous and

f−1(e) = {(g, g) ∶ g ∈ G} =∆(G)

(see Tutorial Question 3.9). Since f is continuous and {e} is closed, ∆(G) is closed
in G ×G, so by Tutorial Question 3.9, G is Hausdorff.

(b) We have

Z = {g ∈ G ∶ gxg−1x−1 = e for all x ∈ G} = ⋂
x∈G

{g ∈ G ∶ gxg−1x−1 = e}

which is an intersection of closed sets, since each of the sets is the inverse image of
{e} under the continuous map g z→ gxg−1x−1.

(c) The assertion is immediate from ker(f) = f−1(e).

Exercise 2.29. Let (X,d) be a metric spaces. Prove that

(xn) ∼ (yn) if (d(xn, yn)) Ð→ 0 as nÐ→∞

defines an equivalence relation on the set of sequences in X.

Solution. The reflexivity (xn) ∼ (xn) and symmetry (xn) ∼ (yn) ⇐⇒ (yn) ∼ (xn) are
very clear. For the transitivity, suppose (xn) ∼ (yn) and (yn) ∼ (zn). Let ε > 0. There
exists N1 ∈ N such that d(xn, yn) < ε/2 for all n ⩾ N1. There exists N2 ∈ N such
that d(yn, zn) < ε/2 for all n ⩾ N2. Letting N = max{N1,N2} we have (by the triangle
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inequality)
d(xn, zn) ⩽ d(xn, yn) + d(yn, zn) < ε for all n ⩾ N.

So (xn) ∼ (zn).

Exercise 2.30. Let X be a topological space. Suppose {Cn ∶ n ∈ N} is a countable
collection of connected subsets of X such that Cn ∩Cn+1 ≠ ∅ for all n ∈N. Then

⋃
n∈N

Cn

is a connected subset of X.

Solution. Let f ∶ ⋃n∈NCn Ð→ {0,1} be a continuous function, where {0,1} is given
the discrete topology. Pick an element x0 of C0. We use induction to prove that
f(Cn) = {f(x0)} for every natural number n.

The base case when n = 0 follows from the connectedness of C0 and Proposition 2.29.
For the induction step, suppose the statement is true for a natural number n and

consider an element x of Cn+1. Since Cn ∩ Cn+1 ≠ ∅, we can pick an element x′ of
Cn ∩Cn+1. By the induction hypothesis, we have f(x′) = f(x0). It then follows from the
connectedness of Cn+1 and Proposition 2.29 that f(x) = f(x′) = f(x0).

Hence f is constant, which implies that ⋃n∈NCn is connected.

Exercise 2.31. Give N ⊆R the subspace topology. Let X be a topological space and
(xn) a sequence in X. Prove that (xn) is a continuous function NÐ→X.

Solution. First note that the subspace topology on N ⊆R is the discrete topology: for
any n ∈N, we have {n} = (n − 1, n + 1) ∩N, so {n} is open in N. Therefore every subset
of N is open, hence every function NÐ→X is continuous.

Exercise 2.32. Any sequence has at most one limit.

Solution. Suppose x and x′ are two limits of a sequence (xn). For any ε > 0, there exist
N,N ′ ∈N such that

xn ∈ Bε/2(x) for all n ⩾ N and xn ∈ Bε/2(x′) for all n ⩾ N ′.

Therefore, for n = max{N,N ′} we have xn ∈ Bε/2(x) ∩Bε/2(x′), which (via the triangle
inequality) implies that d(x,x′) < ε.

Since this holds for all ε > 0, we conclude that d(x,x′) = 0 so that x = x′.

Exercise 2.33. Show that any distance-preserving function f ∶ X Ð→ Y is continuous.
In particular, any isometry is a homeomorphism.

Solution. Let x ∈X. Given ε > 0, if x′ ∈ Bε(x) then dX(x,x′) < ε, so

dY (f(x), f(x′)) = dX(x,x′) < ε,
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hence f(x′) ∈ Bε(f(x)).

Exercise 2.34. A map f ∶ X Ð→ Y between topological spaces is said to be open if for
every open subset U ⊆X, the image f(U) ⊆ Y is an open subset.

(a) Show that an open continuous bijective map f ∶ X Ð→ Y is a homeomorphism.

(b) Suppose S generates the topology on X and let S′ denote the set of all finite
intersections of elements of S. Show that f is open if and only if f(U) ⊆ Y is an
open subset for all U ∈ S′.
(Compare this to Tutorial Question 2.6. Where is the difference coming from?)

(c) Show that the projection maps π1 ∶ X1 ×X2 Ð→ X1 and π2 ∶ X1 ×X2 Ð→ X2 are
open maps.

Solution.

(a) We need to check that f−1 ∶ Y Ð→ X is continuous; let U ⊆ X be open, then
(f−1)−1(U) = f(U) is open in Y since f is an open map.

(b) One direction is trivial. For the other direction, we are told that every open subset
U of X is of the form

U = ⋃
i∈I

Ui, U1 ∈ S′.

Then
f(U) = ⋃

i∈I

f(Ui).

By assumption each f(Ui) is open in Y , so their union must also be an open subset.

(c) By part (b) and Example 2.18, we only need to check the open condition on open
rectangles U1 ×U2 ⊆X1 ×X2: we have π1(U1 ×U2) = U1, clearly open in X1. Same
for π2.

Exercise 2.35. Give Q ⊆R the induced metric and consider the sequence (xn) defined
recursively by

x1 = 1, xn+1 =
xn
2
+ 1

xn
for n ∈N.

(a) Prove that 1 ⩽ xn ⩽ 2 for all n ∈N and breathe a sigh of relief that the recursive
definition does not accidentally divide by 0.

(b) For n ∈N, let yn = xn+1 − xn. Prove that

yn+1 = −
y2n

2xn+1
for all n ∈N.

(c) Prove that
∣yn∣ ⩽

1

2n
for all n ∈N.
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(d) Show that (xn) is Cauchy.

(e) Show that (xn) converges to
√
2 in R, and conclude that Q is not complete.

Solution.

(a) Induction on n. Base case x1 = 1 clear.
Fix n ∈N and suppose 1 ⩽ xn ⩽ 2. Then

1

2
⩽ xn

2
⩽ 1 and 1

2
⩽ 1

xn
⩽ 1,

so 1 ⩽ xn+1 ⩽ 2.

(b) Fix n ∈N. Noting that 2xnxn+1 = x2n + 2, we have

y2n = (xn+1 − xn)
2 = x2n+1 − 2xn+1xn + x2n = x2n+1 − 2

2xn+1yn+1 = 2xn+1 (
1

xn+1
− xn+1

2
) = 2 − x2n+1 = −y2n.

(c) From part (b) we have

∣yn+1∣ =
∣yn∣2
2xn+1

for all n ∈N.

We can use this, part (a), and induction by n.
For the base case we have y1 = 1

2 .
For the induction step, fix n ∈N and suppose ∣yn∣ ⩽ 1

2n , then

∣yn+1∣ =
∣yn∣2
2xn+1

⩽ ∣yn∣
2

2
⩽ 1

22n+1
⩽ 1

2n+1
.

(d) Let ε > 0 and let N ∈N be such that 2N−1 > 1/ε. If n ⩾m ⩾ N then

∣xn − xm∣ = ∣yn−1 + yn−2 + ⋅ ⋅ ⋅ + ym∣
⩽ ∣yn−1∣ + ⋅ ⋅ ⋅ + ∣ym∣

⩽ 1

2n−1
+ ⋅ ⋅ ⋅ + 1

2m

= ( 1

2n−m−1
+ 1

2n−m−2
+ ⋅ ⋅ ⋅ + 1) 1

2m

⩽ 2

2m
⩽ 1

2N
< ε.

Here we used the fact that the geometric series with ratio 1/2 sums up to 2.

(e) Thinking of (xn) as a sequence in R, it converges to some limit x ∈ R by the
completeness of R. We can therefore take limits as nÐ→∞ on both sides of the
defining relation

xn+1 =
xn
2
+ 1

xn
for n ∈N
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to get
x = x

2
+ 1

x
⇒ x2 = 2.

Throwing in the fact that x ⩾ 1, we conclude that x =
√
2.

The conclusion that Q is not complete now follows from the fact that
√
2 ∉Q.

Exercise 2.36. Let X be a complete metric space and let S ⊆ X. Then the closure S
(with the metric induced from S ⊆X) is a completion of S (with the metric induced from
S ⊆X).

Solution. Of course, S is complete: if (xn) is a Cauchy sequence in S, then it is a Cauchy
sequence in X, so (xn) Ð→ x ∈X since X is complete. But S is closed, so (xn) Ð→ x ∈ S.

We let ι ∶ S Ð→ S be the inclusion map: ι(s) = s for all s ∈ S. It is injective and
distance-preserving (as dS and dS are both induced from dX).

Finally, S is dense in S: by Proposition 2.50, for every x ∈ S there exists a sequence
(sn) in S such that (sn) Ð→ x.

Exercise 2.37. Let (xn) be a sequence in a metric space X, let ϕ ∶ N Ð→ N be an
injective function, and consider the sequence (yn) = (xϕ(n)) in X. Prove that if (xn)
converges to x, then so does (yn).

Does the converse hold?

Solution. Suppose (xn) Ð→ x. Given ε > 0, let N ∈ N be such that xn ∈ Bε(x) for all
n ⩾ N .

Since ϕ ∶ NÐ→N is injective, the inverse image ϕ−1({1, . . . ,N − 1}) is a finite set, so
it has a maximal element M . (If the set is empty, just take M = 0.) For all n ⩾M + 1,
we have ϕ(n) ⩾ N , so yn = xϕ(n) ∈ Bε(x).

The converse certainly does not hold. For instance, take (xn) = (1,0,1,0,1,0, . . . )
and ϕ(n) = 2n, then the sequence (yn) = (0,0,0, . . . ) converges to 0 but (xn) does not
converge.

Exercise 2.38. Show that if f ∶ X Ð→ Y is a continuous map between topological spaces
and A ⊆X then f(A) ⊆ f(A).

Solution. Let x ∈ A, let y = f(x), and suppose that y ∉ f(A). Then there exists an open
neighbourhood V ⊆ (Y ∖ f(A)) with y ∈ V . As f is continuous, there exists an open
neighbourhood U ⊆X of x with f(U) ⊆ V ; as V does not intersect f(A), we get that U
does not intersect A, contradicting the fact that x ∈ A.

Exercise 2.39. Let X be a topological space. We say that a collection of closed subsets
of X has the finite intersection property if every finite subcollection has nonempty
intersection.

Prove that X is compact if and only if every collection of closed sets with the finite
intersection property has nonempty intersection.

Solution. Suppose X is compact and {Ci ∶ i ∈ I} is a collection of closed sets with the
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finite intersection property. Suppose that

⋂
i∈I

Ci = ∅.

Then
X = ⋃

i∈I

Ui, where Ui ∶=X ∖Ci,

is an open covering of X. Since X is compact, there exists a finite subset J ⊆ I such that

X = ⋃
j∈J

Uj,

which implies that
⋂
j∈J

Cj = ∅,

contradicting the finite intersection property of the collection {Ci ∶ i ∈ I}.
Conversely, suppose every collection of closed sets of X with the finite intersection

property has nonempty intersection. Suppose that X is not compact, so there exists an
open cover of X:

X = ⋃
i∈I

Ui

with no finite subcover.
For each i ∈ I, let Ci =X ∖Ui. Then for every finite J ⊆ I, {Ui ∶ i ∈ J} is not a cover of

X, which means that the collection {Ci ∶ i ∈ J} has nonempty intersection. Hence the
collection {Ci ∶ i ∈ I} has the finite intersection property, but note that the collection
itself has empty intersection, since {Ui ∶ i ∈ I} is a cover of X, so we have reached a
contradiction.

Exercise 2.40. Check (directly from the definition of uniform continuity) that f ∶ R>0 Ð→
R>0 given by f(x) = 1

x is not uniformly continuous.

Solution. First make sure that you negate the condition in the definition correctly:
there exists ε > 0 such that for all δ > 0 there exist x,x′ such that x′ ∈ Bδ(x) and
f(x′) ∉ Bε(f(x)).

And now, to work: let ε = 1. Take an arbitrary δ > 0. Set x =min{δ,1}. I claim that
x′ ∶= x/2 satisfies the desired condition. Let’s check:

∣x − x′∣ = x
2
⩽ δ
2
< δ,

so indeed x′ ∈ Bδ(x).
Also

∣f(x) − f(x′)∣ = ∣1
x
− 1

x′
∣ = ∣1

x
− 2

x
∣ = 1

x
⩾ 1 = ε,

so indeed f(x′) ∉ Bε(f(x)).

Exercise 2.41. Let f ∶ X Ð→ Y be a uniformly continuous function between two
metric spaces and suppose (xn) ∼ (x′n) are equivalent sequences in X. Prove that
(f(xn)) ∼ (f(x′n)) as sequences in Y .
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Does the conclusion hold if f is only assumed to be continuous?

Solution. Let ε > 0. As f is uniformly continuous, there exists δ > 0 such that for all
x,x′ ∈ X, if dX(x,x′) < δ then dY (f(x), f(x′)) < ε. As (xn) ∼ (x′n), there exists N ∈ N
such that dX(xn, x′n) < δ for all n ⩾ N . Hence for all n ⩾ N we have dY (f(xn), f(x′n)) < ε.

The result does not hold in general for continuous functions; for instance one can take
f ∶ R>0 Ð→ R>0 given by f(x) = 1

x , and (1/n) ∼ (1/n2) but (f(1/n)) = (n), (f(1/n2)) =
(n2) and (n) /∼ (n2).

Exercise 2.42. In the context of the proof of Theorem 2.62, show that if (xn) ∼ (x′n)
and (yn) ∼ (y′n), then

lim
nÐ→∞

d(x′n, y′n) = lim
nÐ→∞

d(xn, yn).

Solution. This uses the same approach as Proposition 2.56: we have

∣d(x′n, y′n) − d(xn, yn)∣ ⩽ d(x′n, xn) + d(y′n, yn).

But by assumption the two distances on the RHS can be made arbitrarily small, so we
conclude that d(x′n, y′n) and d(xn, yn) can be made arbitrarily close, hence they have the
same limit.

(This explanation shouldn’t keep you from writing a more rigorous proof.)

Exercise 2.43. Let X =R>0, Y =R, f ∶ X Ð→ Y given by f(x) = 1
x . For X̂ =R⩾0 and

Ŷ = Y =R, prove that there is no continuous function f̂ ∶ X̂ Ð→ Ŷ such that f̂ ∣X= f .

Solution. Suppose that a continuous extension f̂ ∶ R⩾0 Ð→ R⩾0 exists. Consider the
sequence (xn) = ( 1n) Ð→ 0 ∈R⩾0. By continuity of f̂ we must have

f̂(0) = f̂ ( lim
nÐ→∞

1

n
) = lim

nÐ→∞
f̂ ( 1

n
) = lim

nÐ→∞
f ( 1

n
) = lim

nÐ→∞
n.

But the rightmost limit does not exist (in R⩾0), contradiction.

Exercise 2.44. Prove that any contraction is uniformly continuous.

Solution. Suppose f ∶ X Ð→ Y is a contraction with constant C.
Let ε > 0 and set δ = ε

C+1 , then for all x1, x2 ∈X such that dX(x1, x2) < δ, we have

dY (f(x1), f(x2)) ⩽ CdX(x1, x2) ⩽ Cδ =
C

C + 1
ε < ε.

Exercise 2.45. Show that a subset S ⊆X is bounded if and only if S ⊆Dr(x) for some
r ⩾ 0 and some x ∈X.

Solution. If S ⊆Dr(x) then diam(S) ⩽ diam (Dr(x)) = 2r so S is bounded.
Conversely, suppose S is bounded and let r = diam(S). Let x ∈ S be any point, then

d(x, y) ⩽ r for all y ∈ S, so that S ⊆Dr(x).
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Exercise 2.46. Let (X,d) be a metric space and let A, B be bounded sets. Then A∪B
is bounded.

Solution. Let a ∈ A, b ∈ B, and r = d(a, b). I claim that the diameter of A ∪B is at most
diam(A) + r + diam(B). If x, y ∈ A ∪B then

d(x, y) ⩽

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

diam(A) if x, y ∈ A
diam(B) if x, y ∈ B
d(x, a) + d(a, b) + d(b, y) ⩽ diam(A) + r + diam(B) if x ∈ A,y ∈ B
d(y, a) + d(a, b) + d(b, x) ⩽ diam(A) + r + diam(B) if x ∈ B,y ∈ A.

Exercise 2.47. In any metric space (X,d), any totally bounded set S is bounded.

Solution. Take ε = 1 and let B1, . . . ,BN be a cover of S by open balls of radius 1. Each
Bn is bounded, so by Exercise 2.46 the finite union B1 ∪ ⋅ ⋅ ⋅ ∪BN is bounded, hence so is
its subset S.

Exercise 2.48. Prove that a function f ∶ X Ð→ Y between metric spaces is bounded if
and only if f(X) is a bounded subset of Y .

Solution. The function f is bounded if and only if there exist y ∈ Y , M ∈R be such that

dY (y, f(x)) ⩽M for all x ∈X.

On the other hand, this is equivalent to saying that f(X) ⊆DM(y), so by Exercise 2.45
equivalent to f(X) being a bounded subset of Y .

Exercise 2.49. Given metric spaces X, Y , prove that a sequence (fn) in B(X,Y )
converges uniformly to f ∈ B(X,Y ) if and only if (fn) Ð→ f with respect to the uniform
metric d∞ on B(X,Y ).

Solution. Suppose (fn) converges uniformly to f . Given ε > 0, there exists N ∈N such
that for all n ⩾ N we have

dY (fn(x), f(x)) <
ε

2
for all x ∈X.

So for all n ⩾ N we have

d∞(fn, f) = sup
x∈X
{dY (fn(x), f(x))} ⩽

ε

2
< ε,

in other words (fn) Ð→ f w.r.t. d∞.
Conversely, suppose (fn) Ð→ f . Given ε > 0, there exists N ∈N such that for all n ⩾ N

we have
sup
x∈X
{dY (fn(x), f(x))} = d∞(fn, f) < ε,
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hence for all n ⩾ N
dY (fn(x), f(x)) < ε for all x ∈X,

in other words (fn) converges uniformly to f .

Exercise 2.50. (*) Let f ∶ G Ð→ H be a group homomorphism between topological
groups. Prove that the following are equivalent:

(a) f is continuous;

(b) f is continuous at some element of G;

(c) f is continuous at the identity element eG of G.

Solution. In this proof, we will keep using the following fact: if U is a neighbourhood
of some element g of G, and if g′ is another element of G, then g′U is a neighbourhood
of g′g. This follows from the equation g′U = Lg′−1(U) and the continuity of Lg′−1 (see
Proposition 2.44).

(a)⇒(b): This follows from Tutorial Question 3.3.
(b)⇒(c): Suppose f is continuous at some element g of G. Since f is a group homo-

morphism, f(eG) = eH . If U is a neighbourhood of eH , then f(g)U is a neighbourhood
of g, so f−1(f(g)U) is a neighbourhood of g. Since

x ∈ f−1(U) ⇐⇒ f(x) ∈ U ⇐⇒ f(gx) ∈ f(g)U ⇐⇒ gx ∈ f−1(f(g)U),

it follows that f−1(U) = g−1f−1(f(g)U), so f−1(U) is a neighbourhood of eG.
(c)⇒(a): Using similar arguments as in the proof for (b)⇒(c), we can prove that

continuity at eG implies continuity at every element of G. Hence f is continuous by
Tutorial Question 3.3.

Exercise 2.51. (*)

(a) Let V be a Q-vector space. Prove that every group homomorphism f ∶ QÐ→ V is
Q-linear.

(b) What can you say (and prove) about continuous group homomorphisms RÐ→R?

(c) Suppose that a group homomorphism f ∶ R Ð→ R is continuous at some real
number. Prove that f is continuous on R, and conclude that f is R-linear.

(d) Let B be a basis for R as a Q-vector space. (Recall from Exercise 1.4 that B is
uncountable.) Use two distinct irrational elements of B to construct a Q-linear
transformation f ∶ RÐ→R that is not R-linear.

If you would (and why wouldn’t you?), follow the rabbit:

https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation

Solution.

(a) Let v = f(1) ∈ V .
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For n ∈N we have

f(n) = f(1 + 1 + ⋅ ⋅ ⋅ + 1) = f(1) + ⋅ ⋅ ⋅ + f(1) = nv.

For m ∈N we have

v = f(1) = f ( 1
m
+ ⋅ ⋅ ⋅ + 1

m
) =mf ( 1

m
) ,

so f(1/m) = (1/m) v.
Therefore, for any n,m ∈N we have

f ( n
m
) = nf ( 1

m
) = n

m
v.

Combining this with f(−a) = −f(a) and f(0) = 0, we conclude that f(x) = xv =
xf(1) for all x ∈Q.

(b) Let f ∶ RÐ→R be additive. Let g ∶ QÐ→R be the restriction of f to Q ⊆R. Let
a = g(1) = f(1).
By part (b), g(q) = q g(1) = qa for all q ∈Q. Let x ∈R. As Q is dense in R, there
is some sequence (qn) Ð→ x with qn ∈Q; since f is continuous we have

f(x) = f ( lim
nÐ→∞

qn) = lim
nÐ→∞

f(qn) = lim
nÐ→∞

g(qn) = lim
nÐ→∞

(qna) = xa = xf(1).

Hence f is R-linear.

(c) It follows from Exercise 2.50 that f is continuous, so by part (c) f is R-linear.

(d) Let B be a Q-basis for R. Exactly one element of B is a nonzero rational, and
without loss of generality we may assume it is 1. Since B is uncountable, it also
contains uncountably many irrationals. Let b, c ∈ B∩(R∖Q). Consider the bijective
function σ ∶ B Ð→ B given by

σ(b) = c, σ(c) = b, σ(x) = x for all x ∈ B ∖ {b, c}.

Since B is a Q-basis of R, σ extends by Q-linearity to a Q-linear transformation
f ∶ RÐ→R. In particular, f is additive.
Suppose that f is R-linear, then:

c = f(b) = bf(1) = b1 = b,

contradicting the fact that b ≠ c.

Exercise 2.52. If (X,dX) and (Y, dY ) are two metric spaces, a metric d on X × Y is
said to be conserving if

d∞((x1, y1), (x2, y2)) ⩽ d((x1, y1), (x2, y2)) ⩽ d1((x1, y1), (x2, y2))

for all (x1, y1), (x2, y2) ∈X × Y .
(For the definitions of d1 and d∞, see Examples 2.4 and 2.5.)
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Prove that any conserving metric d defines the product topology on X × Y . (In
particular, all conserving metrics on X × Y are equivalent.)

Solution. Let T denote the product topology on X × Y and Td the topology defined by
the metric d.

We start by proving that any open rectangle U × V ∈ T is also open in Td, which will
imply that T ⊆ Td. Consider an arbitrary element (u, v) ∈ U × V . Since U is open in X,
there exists s > 0 such that Bs(u) ⊆ U . Similarly, there exists t > 0 such that Bt(v) ⊆ V .
Let r = min{s, t} > 0. I claim that the d-open ball B ∶= Br((u, v)) ⊆ U × V . Why? If
(x, y) ∈ B then since d is conserving,

max{dX(x,u), dY (y, v)} = d∞((x, y), (u, v)) ⩽ d((x, y), (u, v)) < r,

so dX(x,u) < r ⩽ s hence x ∈ U , and dY (y, v) < r ⩽ t hence y ∈ V .
Now we prove that any d-open ball B ∶= Bε((x, y)) is also open in the product topology
T , which will imply that Td ⊆ T . Let w = (u, v) ∈ B, then there exists r > 0 such that
Br(w) ⊆ B. Let Uw be the dX-open ball Br/2(u) ⊆ X, and let Vw be the dY -open ball
Br/2(v) ⊆ Y . I claim that Uw × Vw ⊆ Br(w) ⊆ B. Why? If (s, t) ∈ Uw × Vw, since d is
conserving,

d((s, t), (u, v)) ⩽ dX(s, u) + dY (t, v) <
r

2
+ r
2
= r.

Exercise 2.53. Let X be a set and let d1, d2 be two metrics on X.

(a) Suppose that there exist m,M ∈R>0 such that

(2.1) md1(x, y) ⩽ d2(x, y) ⩽M d1(x, y) for all x, y ∈X.

Show that d1 and d2 are equivalent.

(b) Prove that the converse of (a) does not hold.
In other words, find a set X and two equivalent metrics d1 and d2 with the property
that there do not exist positive real numbers m and M such that Equation (2.1)
holds.

Solution.

(a) Let T1 be the topology defined by d1, T2 the topology defined by d2. We know that
each topology is generated by the corresponding open balls.
Consider an open ball Bd2

r (x) of T2. I claim that the open ball Bd1
r/M
(x) of T1 is

contained in Bd2
r (x): if y ∈ Bd1

r/M
(x) then d1(x, y) < r/M , so that

d2(x, y) ⩽M d1(x, y) < r.

So T1 is finer than T2.
Now consider an open ball Bd1

r (x) of T1. I claim that the open ball Bd2
rm(x) of T2 is

contained in Bd1
r (x): if y ∈ Bd2

rm(x) then d2(x, y) < rm, so that

d1(x, y) ⩽
1

m
d2(x, y) < r.
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So T2 is finer than T1, in conclusion T1 = T2.

(b) Let X = Z. Let d1 be the discrete metric on Z. Let d2 be the induced Euclidean
metric from R, that is d2(x, y) = ∣x − y∣ for all x, y ∈ Z.
First we note that d1 and d2 are equivalent metrics. It suffices to show that every
singleton {x} ⊆ Z is open with respect to d2:

Bd2
1 (x) = {y ∈ Z ∶ ∣y − x∣ < 1} = {y ∈ Z ∶ x − 1 < y < x + 1} = {x}.

Suppose that d1 and d2 satisfy Equation (2.1) for some m,M > 0. In particular, if
x ≠ y we would have

m ⩽ ∣x − y∣ ⩽M for all x ≠ y ∈ Z,

which is blatantly false (take y = 0, x = ⌈M⌉ + 1).

Exercise 2.54. Let X, Y be metric spaces. Show that for any z1, z2 ∈X × Y we have

1

2
d1(z1, z2) ⩽ d∞(z1, z2) ⩽ d1(z1, z2) ⩽ 2d∞(z1, z2).

Conclude that for any conserving metric d on X ×Y , any z ∈X ×Y and any ε > 0 we have

Bd∞
ε/2
(z) ⊆ Bd1

ε (z) ⊆ Bd
ε(z) ⊆ Bd∞

ε (z) ⊆ Bd1
2ε(z).

Solution. The inequalities involving d1 and d∞ follow simply from

a + b
2
⩽max{a, b} ⩽ a + b ⩽ 2max{a, b},

which hold for any a, b ∈R⩾0.
The inclusions between open balls now follow by the same reasoning as in part (a) of

Exercise 2.53.

Exercise 2.55. Let X, Y be metric spaces and S ⊆X, T ⊆ Y totally bounded subsets.
Prove that S × T is a totally bounded subset of X × Y (where the latter is equipped with
a conserving metric d).

Solution. Let ε > 0 and let

S ⊆
n

⋃
i=1

BX
ε/2(xi) and T ⊆

m

⋃
j=1

BY
ε/2(yj)

be corresponding covers of S, respectively T .
Then

S × T ⊆
n

⋃
i=1

m

⋃
j=1

BX
ε/2(xi) ×BY

ε/2(yj).

It remains to note that for any (x, y) ∈X × Y we have

BX
ε/2(x) ×BY

ε/2(y) = B
d∞
ε/2
((x, y)) ⊆ Bd

ε((x, y)),
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where Bd∞ denotes an open ball with respect to the d∞ metric, Bd denotes an open
ball with respect to the d metric, and the last inclusion comes from the fact that d is
conserving and Exercise 2.54.

Exercise 2.56. Suppose X and Y are metric spaces with the property that every bounded
subset of either of them is totally bounded. Prove that the same is true in the product
X × Y (equipped with a conserving metric).

Solution. Let Z ⊆X ×Y be bounded, then there exists (x, y) ∈X ×Y and r > 0 such that

Z ⊆ Bd
r((x, y)) ⊆ Bd∞

r ((x, y)) = BX
r (x) ×BY

r (y).

Since BX
r (x) and BY

r (y) are bounded in X and in Y , they are totally bounded. Therefore
by Exercise 2.55 so is their product, hence so is its subset Z.

Exercise 2.57. Let K be a sequentially compact subset of a metric space X. Prove that
any open cover of K has a Lebesgue number.

Solution. Take an open cover
K ⊆ ⋃

i∈I

Ui.

Suppose that this has no Lebesgue number. This means that for every n ∈N, there exists
a subset An ⊆K such that diam(An) < 1

n and An /⊆ Ui for all i ∈ I. Pick an ∈ An to form a
sequence (an) in K. By assumption this has a subsequence (anj

) that converges to some
x ∈K.

There exists i ∈ I such that x ∈ Ui. Let ε > 0 be such that Bε(x) ⊆ Ui. There exists
J1 ∈ N such that 1/nj < ε/2 for all j ⩾ J1, so that Anj

⊆ Bε/2(anj
). There exists J2 ∈ N

such that d(anj
, x) < ε/2 for all j ⩾ J2. Letting J =max{J1, J2} we get Anj

⊆ Bε(x) ⊆ Ui,
contradiction.

Exercise 2.58. Let X, Y be metric spaces and let (fn) be a sequence in C0(X,Y ) that
converges uniformly to f ∈ C0(X,Y ). If (xn) Ð→ x in X, then (fn(xn)) Ð→ f(x) in Y .

Solution. Let ε > 0. Since f is continuous, there exists δ > 0 such that if dX(x′, x) < δ
then dY (f(x′), f(x)) < ε/2.

Since (xn) Ð→ x, there exists N1 ∈N such that if n ⩾ N1 then dY (xn, x) < δ.
Since (fn) Ð→ f , there exists N2 ∈N such that if n ⩾ N2 then dY (fn(x′), f(x′)) < ε/2

for all x′ ∈X.
Let N =max{N1,N2}, then if n ⩾ N we have

dY (fn(xn), f(x)) ⩽ dY (fn(xn), f(xn)) + dY (f(xn), f(x)) < ε.

Exercise 2.59. If X and Y are metric spaces with X compact and K ⊆ C0(X,Y ) is
compact, then K is bounded, closed, and equicontinuous.

(This is a converse to the Arzelà–Ascoli Theorem, see Theorem 2.84.)

Solution. We know that K is bounded (since every compact subset is totally bounded,
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hence bounded by Exercise 2.47) and that K is closed by Proposition 2.35.
Suppose K is not equicontinuous: there exists ε > 0 such that for all δ > 0 there exists

f ∈K and x,x′ ∈X with dX(x,x′) < δ and dY (f(x), f(x′)) ⩾ ε.
In particular, we can take δ = 1/n for n ∈N and obtain a sequence (fn) in K and two

equivalent sequences (xn) ∼ (x′n) in X such that

dY (fn(xn), fn(x′n)) ⩾ ε.

But K is compact so (fn) has a subsequence (fnk
) Ð→ f ∈K.

The corresponding subsequence (xnk
) of (xn) is a sequence in X, which is compact, so

itself has a subsequence (xnkj
) Ð→ x ∈X. Since (x′n) ∼ (xn), we also have (x′nkj

) Ð→ x.
Now Exercise 2.58 tells us that (fnkj

(xnkj
)) and (fnkj

(x′nkj
)) both converge to f(x),

contradicting the fact that their terms stay at least ε apart.

Exercise 2.60. Let S1 = S1((0,0)) = {x, y ∈R ∶ x2 + y2 = 1} be the unit circle in R2.
Consider the function f ∶ [0,1) Ð→ S1 given by the parametrisation

f(t) = ( cos(2πt), sin(2πt)).

Endow [0,1) with the induced metric from R and S1 with the induced metric from R2.
Prove that f is a bijective continuous function, but not a homeomorphism.
(You may use without proof whatever properties of the functions sin and cos you

manage to remember from previous subjects.)

Solution.

(a) We know that tz→ 2πt, tz→ cos(t) and tz→ sin(t) are continuous, so by Tutorial
Question 3.7 so is f .

(b) Suppose t1 ≠ t2 ∈ [0,1) are such that f(t1) = f(t2). Then cos(2πt1) = cos(2πt2),
which implies that t2 = 1− t1. In that case sin(2πt2) = sin(2π − 2πt1) = sin(−2πt1) =
− sin(2πt1). But we also have sin(2πt2) = sin(2πt1), so sin(2πt1) = 0, hence t1 = 0
and t2 = 1 − t1 = 1, contradicting t2 ∈ [0,1).
We conclude that f is injective.
For surjectivity, let (x, y) ∈ S1, in other words x2 + y2 = 1. Define θ ∈ [0,2π) by

θ =
⎧⎪⎪⎨⎪⎪⎩

arccos(x) if y ⩾ 0
2π − arccos(x) if y < 0.

Letting t = θ/(2π), we have f(t) = (x, y).

(c) At this point we know that f is a homeomorphism iff f−1 ∶ S1 Ð→ [0,1) is continuous.
Note that S1 ⊆R2 is compact: it is clearly bounded as any two points are at distance
at most 2 of each other, so we just need to check that it is a closed subset of R2.
But S1 =D1((0,0)) ∩C is the intersection of two closed sets, where

C = {x, y ∈R ∶ x2 + y2 ⩾ 1} =R2 ∖B1((0,0)).
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Since S1 is compact, if f−1 were continuous then [0,1) = f−1(S1) would be compact,
hence closed in R. This is a contradiction, because 1 is an accumulation point of
[0,1) but does not lie in the set.

Exercise 2.61. Prove that any Cauchy sequence (xn) in a metric space (X,d) is bounded,
that is there exists C ⩾ 0 such that d(xn, xm) ⩽ C for all n,m ∈N.

Solution. Let N ∈N be such that for all m,n ⩾ N we have d(xm, xn) < 1.
Let B =max{d(xm, xN) ∶ 1 ⩽m < N}. Let C = 2B + 1, then we have

d(xm, xn) ⩽

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ⩽ C if m,n ⩾ N
d(xm, xN) + d(xN , xn) ⩽ B + 1 ⩽ C if m < N,n ⩾ N
d(xm, xN) + d(xN , xn) ⩽ 2B ⩽ C if m,n < N.

Exercise 2.62. Let X be a topological space and define x ∼ x′ if there exists a connected
subset C ⊂X such that x,x′ ∈ C.

Prove that this is an equivalence relation on the set X, thereby partitioning X into a
disjoint union of maximal connected subsets (these are called the connected components
of X).

[Hint: Recall that an equivalence relation has three defining axioms: (a) x ∼ x for all
x ∈X; (b) if x ∼ x′ then x′ ∼ x; (c) if x ∼ x′ and x′ ∼ x′′ then x ∼ x′′.]

Solution.

(a) x ∼ x: for any x ∈X, the set C = {x} is connected and contains x, so x ∼ x.

(b) if x ∼ x′ then x′ ∼ x: clear from the definition, which does not distinguish x and x′.

(c) if x ∼ x′ and x′ ∼ x′′ then x ∼ x′′: since x ∼ x′ there exists a connected set C1 such
that x,x′ ∈ C1; since x′ ∼ x′′ there exists a connected set C2 such that x′, x′′ ∈ C2;
by Tutorial Question 4.2, since C1 and C2 are connected and x′ ∈ C1 ∩C2, the union
C1 ∪C2 is connected, and it contains both x and x′′, so that x ∼ x′′.

Exercise 2.63. Let (X,d) be a metric space.
If A and B are bounded sets with A ∩B ≠ ∅, then

diam(A ∪B) ⩽ diam(A) + diam(B).

Solution. It suffices to show that for any x, y ∈ A ∪B we have

d(x, y) ⩽ diam(A) + diam(B).

If x, y ∈ A, this is obvious as d(x, y) ⩽ diam(A). Similarly if x, y ∈ B.
It remains to see what happens if x ∈ A and y ∈ B. Let t ∈ A ∩B. We have

d(x, y) ⩽ d(x, t) + d(t, y) ⩽ diam(A) + diam(B),

as desired.
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Exercise 2.64. Consider the equation

(2.2) x3 − x − 1 = 0.

(a) Show that the equation must have at least one solution in the interval [1,2].

(b) Show that the function f ∶ [1,2] Ð→ [1,2] given by

f(x) = (1 + x)1/3

is a contraction.

(c) Show that Equation (2.2) has a unique solution ξ in the interval [1,2] and
describe a sequence of real numbers that converges to ξ.

Solution.

(a) We can use the Intermediate Value Theorem: at x = 1, x3 − x − 1 = −1 < 0, while at
x = 2, x3 − x − 1 = 5 > 0, so there must be at least one point x in [1,2] such that
x3 − x − 1 = 0.

(b) The derivative of f is

f ′(x) = 1

3
(1 + x)−2/3 = 1

3

1

(1 + x)2/3
.

As x ∈ [1,2], we have f ′(x) > 0 and

1 ⩽ x⇒ 2 ⩽ 1 + x⇒ 1

1 + x
⩽ 1

2
⇒ 1

(1 + x)2/3
⩽ 1

22/3
⩽ 1,

so that
f ′(x) ⩽ 1

3
.

Now let x, y be such that 1 ⩽ x < y ⩽ 2 and apply the Mean Value Theorem to f on
[x, y] to deduce that there exists c ∈ (x, y) such that

f(y) − f(x)
y − x

= f ′(c) ⇒ ∣f(y) − f(x)∣ = ∣f ′(c)∣ ∣y − x∣ ⩽ 1

3
∣y − x∣.

We conclude that f is a contraction.

(c) Observe that x3−x−1 = 0 is equivalent to f(x) = x, so the solutions of Equation (2.2)
are precisely the fixed points of f . As f is a contraction and [1,2] is complete, the
Banach Fixed Point Theorem says that there is a unique fixed point ξ in [1,2].
It also tells us that we can start with any x1 ∈ [1,2], for instance x1 = 1, and
iteratively apply f to get a sequence (xn) converging to ξ:

x1 = 1, x2 = f(x1) = 21/3, x3 = f(x2) = (1 + 21/3)
1/3
, . . .
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Exercise 2.65. Let f ∶ RÐ→R be a contraction and define F ∶ RÐ→R by

F (x) = x + f(x).

(a) Use the Banach Fixed Point Theorem to show that the equation x + f(x) = a has a
unique solution for any a ∈R.

(b) Deduce that F is a bijection.

(c) Show that F is continuous.

(d) Show that F −1 is continuous (so it is a homeomorphism).

Solution.

(a) Given a ∈R, let fa ∶ RÐ→R be given by

fa(x) = a − f(x).

Note that fa is a contraction:

∣fa(x) − fa(y)∣ = ∣a − f(x) − a + f(y)∣ = ∣f(y) − f(x)∣ ⩽ c ∣x − y∣ for all x, y ∈R.

Next note that F (x) = a if and only if a = x + f(x) if and only if x = fa(x) if and
only if x is a fixed point of fa.
By the Banach Fixed Point Theorem, fa has a unique fixed point; therefore F (x) = a
has a unique solution.

(b) F (x) = a having a unique solution for every a ∈R is saying precisely that F ∶ RÐ→
R is bijective.

(c) If c = 0 then f is a constant function f(x) = b so F (x) = x + b, clearly continuous
with continuous inverse F −1(x) = x − b.
So we may assume c > 0 (also in part (d)).
Given ε > 0, let δ = ε/c, then if ∣x − y∣ < δ we have

∣f(x) − f(y)∣ < cδ = c ε
c
= ε.

We conclude that f is (uniformly) continuous, so F is continuous, being the sum of
the continuous functions xz→ x and xz→ f(x).

(d) The Banach Fixed Point Theorem tells us that the unique fixed point of fa is the
limit of the iterates of fa evaluated at any starting point in R, for instance at 0:

F −1(a) = lim
nÐ→∞

(f ○na (0)).

Let a, b ∈R. I claim that for any n ∈N we have

(2.3) ∣f ○na (0) − f ○nb (0)∣ ⩽ (1 + c + ⋅ ⋅ ⋅ + cn−1)∣a − b∣.
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We prove this by induction on n. The base case is n = 1, where we have

∣fa(0) − fb(0)∣ = ∣a − f(0) − b + f(0)∣ = ∣a − b∣.

Fix n ∈N and assume that the inequality (2.3) holds for n. We have

∣f ○(n+1)a (0) − f ○(n+1)b (0)∣ = ∣a − f(f ○na (0)) − b + f(f ○nb (0))∣
⩽ ∣a − b∣ + c(1 + c + ⋅ ⋅ ⋅ + cn−1)∣a − b∣
= (1 + c + ⋅ ⋅ ⋅ + cn)∣a − b∣,

where in the second to last step we used the contractive property of f and the
inequality (2.3) for n.
Finally, we have

∣F −1(a) − F −1(b)∣ = lim
nÐ→∞

∣f ○na (0) − f ○nb (0)∣ ⩽
1

1 − c
∣a − b∣.

So for any ε > 0 we can take δ < (1 − c)ε and deduce that F −1 is continuous.

Exercise 2.66. Let X be the interval (0,1/3) in R with the Euclidean metric. Show
that f ∶ X Ð→X defined by f(x) = x2 is a contraction, but does not have a fixed point
in X. Why does this not contradict the Banach Fixed Point Theorem?

Solution. First we check that f does take values in X: if x ∈ (0,1/3) then 0 < x < 1/3 so
0 < x2 < 1/9 < 1/3.

Next we note that f(x) = x2 is differentiable with continuous derivative on (0,1/3) so
the Mean Value Theorem applies on any subinterval (x, y) ⊆ (0,1/3):

∣f(x) − f(y)∣ = ∣f ′(ξ)∣ ∣x − y∣ for some ξ ∈ (x, y) ⊆ (0,1/3).

Of course f ′(ξ) = 2ξ so if ξ ∈ (0,1/3) then f ′(ξ) ∈ (0,2/3), proving that f is a contraction
with constant (at most) 2/3.

What are the fixed points of f? They satisfy x = f(x) = x2, so x = 0 or x = 1, but
neither of these is in X = (0,1/3).

The Banach Fixed Point Theorem is not contradicted: one of the assumptions is that
X is complete, but (0,1/3) ⊆ R is not complete since it is not closed in the complete
metric space R.

Exercise 2.67. Let (X,d) be a complete metric space and f ∶ X Ð→ X be a function.
Let g = f ○ f , that is, g(x) = f(f(x)). Suppose that g ∶ X Ð→X is a contraction. Prove
that f has a unique fixed point.

Solution. By the Banach Fixed Point Theorem, g has a unique fixed point x0 ∈ X. I
claim that x0 is also the unique fixed point of f . For uniqueness, note that if f(x) = x
then g(x) = f(f(x)) = f(x) = x so x is a fixed point of g, hence x = x0. To show that
f(x0) = x0, note that f(x0) = f(g(x0)) = g(f(x0)), so f(x0) is a fixed point of g, hence
f(x0) = x0.
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Exercise 2.68. Prove that no two of the following spaces are homeomorphic:

(a) the interval X = [−1,1] in R;

(b) the open unit disc Y in R2;

(c) the closed unit disc Z in R2.

Solution. Y is not compact since it is not closed in R2, for instance the point (0,1) is in
the closure of Y but not in Y . On the other hand, Z is compact since it is closed and
bounded in R2. Similarly, X is compact.

So Y and Z are not homeomorphic, and X and Y are not homeomorphic.
Suppose f ∶ X Ð→ Z is a homeomorphism. Let x ∈X○, then f(x) ∈ Z○. The restriction

of f to X ∖ {x} Ð→ Z ∖ {f(x)} is then also a homeomorphism, but this is impossible
since X ∖ {x} = [−1, x) ∪ (x,1] is disconnected, while Z ∖ {f(x)} is connected.

Exercise 2.69. Are the following pairs of spaces homeomorphic or not?

(a) the unit circle in R2 and the unit interval [0,1] in R;

(b) the intervals [0,1] and (0,1) in R;

(c) the intervals [0,1] and [0,2] in R.

Solution.

(a) No: removing an interior point of [0,1] gives a disconnected set, but removing any
point from the unit circle gives a set that is connected.

(b) No: [0,1] is compact, being closed and bounded in R, while (0,1) is not compact,
since it is not closed in R.

(c) Yes: f ∶ [0,1] Ð→ [0,2] given by f(x) = 2x is clearly a homeomorphism.

Exercise 2.70. Which of the following metric spaces are compact?

(a) The unit circle in R2.

(b) The unit open disk in R2.

(c) The closed unit ball in the space `∞ of bounded real sequences (a1, a2, . . . ).

Solution.

(a) Compact: closed and bounded in R2.

(b) Not compact: not closed, since (1,0) is in the closure of the open disk but not in
the open disk itself.

(c) Not compact: the sequence (en) of standard vectors has no convergent subsequence,
since d(en, em) = 1 whenever n ≠m.
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Exercise 2.71. Let C be a nonempty compact subset of a metric space (X,d). Prove
that there exist points a, b ∈ C such that

d(a, b) = sup{d(x, y) ∶ x, y ∈ C}.

In other words, the diameter of C is realised as the distance between two points of C.

Solution. As you know from Tutorial Question 6.7, the distance function d ∶ X ×X Ð→R
is continuous. By Theorem 2.39, C ×C is compact, so by Proposition 2.70 there exists
(amax, bmax) ∈ C ×C such that

d(a, b) ⩽ d(amax, bmax) for all (a, b) ∈ C ×C.

Therefore amax, bmax ∈ C realise the diameter of C.

Exercise 2.72. Let (X,d) be a metric space and let S ⊆X be a nonempty subset. Define
dS ∶ X Ð→R⩾0 by

dS(x) = inf
s∈S

d(x, s).

(a) Prove that dS is uniformly continuous.
[Hint: Show that ∣dS(x) − dS(y)∣ ⩽ d(x, y) for all x, y ∈X.]

(b) Prove that dS(x) = 0 if and only if x ∈ S.

(c) Prove that if U ⊆X is an open neighbourhood of x, then dX∖U(x) > 0.

Solution.

(a) We start with the hint. Let x, y ∈X. For all s ∈ S we have

dS(x) ⩽ d(x, s) ⩽ d(x, y) + d(y, s),

hence
dS(x) ⩽ d(x, y) + dS(y).

We can swap the roles of x and y to get

dS(y) ⩽ d(y, x) + dS(x),

and the two inequalities together give

∣dS(x) − dS(y)∣ ⩽ d(x, y).

Uniform continuity is now clear: for any ε > 0 we take δ = ε and use the above
inequality.

(b) If dS(x) = 0 then inf d(x, s) = 0 so for any ε > 0 there exists s ∈ S such that
d(x, s) < ε. In particular, for n ∈ N we can set ε = 1/n and get sn ∈ S such that
d(x, sn) < ε. This gives us a sequence (sn) in S that converges to x, so x ∈ S.
Conversely, if x ∈ S then there exists a sequence (sn) in S that converges to x.
Given ε > 0, there exists N ∈N such that d(x, sN) < ε, therefore inf d(x, s) = 0.
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(c) If dX∖U(x) = 0 then by part (b) we have x ∈X ∖U =X ∖U , the latter equality due
to U being open. But then x ∈ U ∩ (X ∖U), contradiction.

Exercise 2.73. Give an example of a metric space X and an open ball Bε(x) such that

Bε(x) ≠Dε(x).

Solution. Take X = {0,1} with the discrete metric, x = 0 and ε = 1. Then

B1(0) = {0} = {0} ≠ {0,1} =D1(0).

Exercise 2.74.

(a) Suppose f ∶ Rn Ð→Rn is a continuous function and S is a bounded subset of Rn.
Prove that f(S) is bounded.

(b) Find a uniformly continuous function f ∶ X Ð→ Y between metric spaces and a
bounded subset B of X such that f(B) is unbounded.

Solution.

(a) Let f ∶ Rn Ð→Rn be a continuous function and let B be a bounded subset of Rn.
It follows from Exercise 2.45 that B is contained in some closed ball Dr(v), which
is compact by part (b) of Tutorial Question 7.6. Hence f(Dr(v)) is compact by
Proposition 2.37, and therefore bounded by part (c) of Tutorial Question 7.6. Since
f(B) ⊆ f(Dr(v)), it follows that

diam(f(B)) = sup{d(x, y) ∶ x, y ∈ f(B)}
⩽ sup{d(x, y) ∶ x, y ∈Dr(v)}
= diam(Dr(v)) < ∞.

Hence f(B) is bounded.

(b) Let X = (N, d1) and Y = (N, d2), where d1 is the discrete metric on N and d2 is
the Euclidean metric on N.
We claim that the identity function idN ∶ X Ð→ Y is uniformly continuous. Indeed,
for every positive real number ε, put δ = 1. If d1(x, y) < 1, then x = y, and therefore
d2(idX(x), idX(y)) = 0 < ε.

Since Bd1
2 (0) =N, it follows that N is bounded in X. However, idN(N) =N is not

bounded because

diamd2(N) = sup{d2(m,n) ∶ m,n ∈N} = supZ = ∞.

Exercise 2.75.

(a) Suppose f ∶ Rn Ð→Rn is a continuous function and S is a totally bounded subset
of Rn. Prove that f(S) is totally bounded.

39



2. Metric and topological spaces

(b) Find a continuous function f ∶ X Ð→ Y between metric spaces and a totally
bounded subset S of X such that f(S) is not totally bounded.

Solution.

(a) The subset S of Rn is bounded because of Exercise 2.47, and therefore f(S) is
bounded by part (a) of Exercise 2.74. It then follows from part (d) of Tutorial
Question 7.6 that f(S) is totally bounded.

(b) Let X = (−π/2, π/2), Y =R, and let f ∶ X Ð→ Y be the continuous function defined
by f(x) = tan(x). The domain (−π/2, π/2) is bounded because its diameter is π,
but its image is the unbounded set R.

Exercise 2.76. Let f ∶ X Ð→ Y be a function between metric spaces.

(a) Prove that f is a contraction if and only if diam(f(S)) < diam(S) for every subset
S of X.

(b) Suppose f is a contraction and B is a bounded subset of X. Prove that f(B) is
bounded.

Solution.

(a) If f is a contraction and S is a subset of X, then

diam(f(S)) = sup{dY (f(x1), f(x2)) ∶ x1, x2 ∈ S}
< sup{dX(x1, x2) ∶ x1, x2 ∈ S}
= diam(S)

Conversely, suppose diam(f(S)) < diam(S) for every subset S of X. If x1 and x2
are elements of X, then

dY (f(x1), f(x2)) = diam({f(x1), f(x2)}) < diam({x1, x2}) = dX(x1, x2).

Hence f is a contraction.

(b) It follows from part (a) that

diam(f(B)) < diam(B) < ∞.

Hence f(B) is bounded.
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Exercise 3.1. Let (V, ∥∥) be a normed vector space. Prove that the norm function
∥ ⋅ ∥ ∶ V Ð→R⩾0 is uniformly continuous.

Solution. Given ε > 0, let δ = ε. I claim that if dV (v,w) < ε then

dR(∥v∥, ∥w∥) = ∣∥v∥ − ∥w∥∣ < ε.

To prove this, note that

∥v∥ = ∥v −w +w∥ ⩽ ∥v −w∥ + ∥w∥ ⇒ ∥v∥ − ∥w∥ ⩽ ∥v −w∥
∥w∥ = ∥v +w − v∥ ⩽ ∥v∥ + ∥w − v∥ ⇒ −∥v −w∥ ⩽ ∥v∥ − ∥w∥,

so that
dR(∥v∥, ∥w∥) = ∣∥v∥ − ∥w∥∣ ⩽ ∥v −w∥ = dV (v,w),

and the rest follows.

Exercise 3.2. If ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are equivalent norms on V , then the corresponding
metrics d1 and d2 (as in Proposition 3.1) are equivalent.

Solution. By Proposition 2.21 we know that d2 is coarser than d1 if and only if the
function (V, d1) Ð→ (V, d2) given by v z→ v is continuous. By Theorem 2.52, this in
turn is equivalent to showing that for every v ∈ V , every sequence that converges to v in
(V, d1) also converges to v in (V, d2).

So let (vn) be a sequence that converges to v in (V, d1), that is (d1(vn, v)) Ð→ 0, so
(∥vn − v∥1) Ð→ 0, hence (m∥vn − v∥1) Ð→ 0 and (M∥vn − v∥1) Ð→ 0. Since by assumption

m∥vn − v∥1 ⩽ ∥vn − v∥2 ⩽M∥vn − v∥1,

this implies by the Sandwich Theorem that (∥vn − v∥2) Ð→ 0, in other words that
(vn) Ð→ v in (V, d2).

The fact that d1 is coarser than d2 follows because

1

M
∥v∥2 ⩽ ∥v∥1 ⩽

1

m
∥v∥2 for all v ∈ V,

so we can interchange the roles of d1 and d2 in the previous argument.

Exercise 3.3. Let V be a vector space over F. Show that the intersection of an arbitrary
collection of convex subsets of V is convex.
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Solution. Suppose I is an arbitrary set and Si is a convex subset of V for all i ∈ I. Let

S = ⋂
i∈I

Si

and let v,w ∈ S, a, b ∈R⩾0 such that a+ b = 1. Then for all i ∈ I we have v,w ∈ Si, so that
av + bw ∈ Si since Si is convex. Therefore av + bw ∈ S.

Exercise 3.4. Prove that, if (V, ∥ ⋅ ∥) is a normed space, then f ∶ V Ð→ R given by
f(v) = ∥v∥ is a convex function.

Solution. Suppose v,w ∈ S and a, b ∈R⩾0 such that a + b = 1. Then

f(av + bw) = ∥av + bw∥ ⩽ ∥av∥ + ∥bw∥ = ∣a∣ ∥v∥ + ∣b∣ ∥w∥ = a∥v∥ + b∥w∥ = af(v) + bf(w).

Exercise 3.5. (*) Let I ⊆R be an interval and let f ∶ I Ð→R be a twice-differentiable
function.

The aim of this Exercise is to check the familiar calculus fact: f is convex if and only
if f ′′(x) ⩾ 0 for all x ∈ I.

It was heavily inspired by Alexander Nagel’s Wisconsin notes [1]:

https://people.math.wisc.edu/~ajnagel/convexity.pdf

(a) For any s, t ∈ I with s < t, define the linear function Ls,t ∶ [s, t] Ð→R by

Ls,t(x) = f(s) + (
x − s
t − s
) (f(t) − f(s)).

Convince yourself that this is the equation of the secant line joining (s, f(s)) to
(t, f(t)).
Prove that f is convex on I if any only if

f(x) ⩽ Ls,t(x) for all s, t ∈ I such that s < t and all s ⩽ x ⩽ t.

(b) Check that for all s, t ∈ I such that s < t we have

Ls,t(x) − f(x) =
x − s
t − s

(f(t) − f(x)) − t − x
t − s

(f(x) − f(s)).

(c) Use the Mean Value Theorem for f twice to prove that there exist ξ, ζ with x < ξ < t
and s < ζ < x such that

Ls,t(x) − f(x) =
(t − x)(x − s)

t − s
(f ′(ξ) − f ′(ζ)).

(d) Use the Mean Value Theorem once more to conclude that if f ′′(x) ⩾ 0 for all x ∈ I,
then f is convex on I.

(e) Now we prove the converse. From this point on, assume that f ∶ I Ð→ R is
twice-differentiable and convex, and let s, t ∈ I○.
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1. Show that if s < x < t then

f(x) − f(s)
x − s

⩽ f(t) − f(x)
t − x

.

2. Conclude that if s < x1 < x2 < t then

f(x1) − f(s)
x1 − s

⩽ f(t) − f(x2)
t − x2

.

3. Conclude that if s < t then f ′(s) ⩽ f ′(t), and finally that f ′′(x) ⩾ 0 on I.

Solution. Parts (b)–(d) are pretty thoroughly discussed in the above reference if you
need more guidance, so I’ll just do parts (a) and (e).

(a) In the definition of convex function, take v = s, w = t, a = (t − x)/(t − s), b =
(x − s)/(t − s), so that av + bw = x. Then we know that

f(x) ⩽ t − x
t − s

f(s) + x − s
t − s

f(t) = f(s) + x − s
t − s

(f(t) − f(s)) = Ls,t(x).

The other direction is straightforward.

(e) 1. From part (a) we have

f(x) − f(s)
x − s

⩽ f(t) − f(s)
t − s

.

Cross-multiplying, we end up with

x(f(t) − f(s)) − s(f(t) − f(x)) − t(f(x) − f(s)) ⩾ 0,

which is also equivalent to the inequality we are trying to prove.
2. Apply the previous part twice, first with s < x1 < x2 and then with x1 < x2 < t,

to get
f(x1) − f(s)

x1 − s
⩽ f(x2) − f(x1)

x2 − x1
⩽ f(t) − f(x2)

t − x2
.

3. Following from the previous part, we have

f ′(s) = lim
x1↘s

f(x1) − f(s)
x1 − s

⩽ lim
x2↗t

f(t) − f(x2)
t − x2

= f ′(t).

This implies that f ′ is an increasing function on I○, therefore f ′′(x) ⩾ 0 on
I○.

Exercise 3.6. Let (V, ∥ ⋅ ∥) be a normed space and take r, s > 0, u, v ∈ V , α ∈ F×. Show
that

(a) Br(u + v) = Br(u) + {v};

(b) αB1(0) = B∣α∣(0);
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(c) Br(v) = rB1(0) + {v};

(d) rB1(0) + sB1(0) = (r + s)B1(0);

(e) Br(u) +Bs(v) = Br+s(u + v);

(f) B1(0) is a convex subset of V ;

(g) any open ball in V is convex.

Solution.

(a)

w ∈ Br(u + v) ⇐⇒ ∥(u + v) −w∥ < r
⇐⇒ ∥u − (w − v)∥ < r
⇐⇒ w − v ∈ Br(u)
⇐⇒ w ∈ Br(u) + {v}.

(b)

w ∈ αB1(0) ⇐⇒
1

α
w ∈ B1(0)

⇐⇒ ∥ 1
α
w∥ < 1

⇐⇒ ∥w∥ < ∣α∣
⇐⇒ w ∈ B∣α∣(0).

(c) From (a) and (b):
Br(v) = Br(0) + {v} = rB1(0) + {v}.

(d) If ∥u∥ < r and ∥v∥ < s then ∥u + v∥ < r + s, so rB1(0) + sB1(0) ⊆ (r + s)B1(0).
Conversely, if ∥w∥ < r + s, then

w = r

r + s
w + s

r + s
w ∈ rB1(0) + sB1(0).

(e) From (c) and (d):

Br(u)+Bs(v) = rB1(0)+ sB1(0)+ {u}+{v} = (r + s)B1(0)+ {u+ v} = Br+s(u+ v).

(f) If u, v ∈ B1(0) and 0 ⩽ a ⩽ 1, then by (d)

au + (1 − a)v ∈ aB1(0) + (1 − a)B1(0) = (a + 1 − a)B1(0) = B1(0).

(g) Br(u) = rB1(0) + {u} is the translate of a convex set, hence is itself convex.

Exercise 3.7. Let (V, ∥ ⋅ ∥) be a normed space and let S,T be subsets of V and α ∈ F.
Prove that
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(a) If S and T are bounded, so are S + T and αS.

(b) If S and T are totally bounded, so are S + T and αS.

(c) If S and T are compact, so are S + T and αS.

Solution.

(a) A subset S of V is bounded if and only if S ⊆ Bs(0) = sB1(0) for some s ⩾ 0. So
S ⊆ sB1(0) and T ⊆ tB1(0), hence S + T ⊆ sB1(0) + tB1(0) = (s + t)B1(0).
Similarly αS ⊆ sαB1(0) = sB∣α∣(0) = (s∣α∣)B1(0).

(b) Let ε > 0. Since S and T are totally bounded, they can each be covered by finitely
many open balls of radius ε/2:

S ⊆
N

⋃
n=1

Bε/2(sn)

T ⊆
M

⋃
m=1

Bε/2(tm),

but then

S + T ⊆
N

⋃
n=1

Bε/2(sn) +
M

⋃
m=1

Bε/2(tm) =
N

⋃
n=1

M

⋃
m=1

(Bε/2(sn) +Bε/2(tm)) =
N

⋃
n=1

M

⋃
m=1

Bε(sn + tm).

For αS, note that S can be covered by finitely many open balls of radius ε/∣α∣:

S ⊆
N

⋃
n=1

Bε/∣α∣(sn),

so that

αS ⊆
N

⋃
n=1

αBε/∣α∣(sn) =
N

⋃
n=1

Bε(sn).

(c) Consider the addition map a ∶ V × V Ð→ V , a(v,w) = v + w. We know that it is
continuous, so its restriction

a∣S×T ∶ S × T Ð→ V, a(s, t) = s + t

is also continuous, and its image is S + T . Since S and T are compact, so is S × T ,
and so is S + T = a(S × T ).
The same argument with scalar multiplication gives compactness of αS.

Exercise 3.8. Let f ∶ V Ð→W is a linear transformation between vector spaces.

(a) If U is a subspace of V , then its image f(U) is a subspace of W .

(b) If U is a subspace of W , then its preimage f−1(U) is a subspace of V .

(c) If S is a convex subset of V , then its image f(S) is a convex subset of W .
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(d) If S is a convex subset of W , then its preimage f−1(S) is a convex subset of V .

Solution.

(a) If w1 and w2 are vectors in f(U), then there exists vectors v1 and v2 in U such that
w1 = f(v1) and w2 = f(v2). Since U is a vector space, it follows that v1 + v2 ∈ U , so

w1 +w2 = f(v1) + f(v2) = f(v1 + v2) ∈ f(U).

If α is a scalar and w is a vector in f(U), then there exists a vector v in U such
that w = f(v). Since U is a vector space, it follows that αv ∈ U , so

αw = αf(v) = f(αv) ∈ f(U).

(b) If v1 and v2 are vectors in f−1(U), then

f(v1 + v2) = f(v1) + f(v2) ∈ f(U)

because U is a vector space and both f(v1) and f(v2) belong to U .
If α is a scalar and v is a vector in f−1(U), then

f(αv) = αf(v) ∈ f(U)

because U is a vector space and f(v) belongs to U .

(c) Let f(s), f(t) ∈ f(S) and let a, b ⩾ 0 such that a + b = 1. We have

af(s) + bf(t) = f(as + bt) ∈ f(S),

where we used the convexity of S to conclude that as + bt ∈ S.

(d) Let u, v ∈ f−1(S) and let a, b ⩾ 0 such that a + b = 1. Then

f(au + bv) = af(u) + bf(v) ∈ S,

where we used the convexity of S. We conclude that au + bv ∈ f−1(S).

Exercise 3.9. For any n ∈N, give a linear distance-preserving map Fn Ð→ `2. (Take the
Euclidean norm on Fn.)

Solution. Consider f ∶ Fn Ð→ `2 given by

f(a) = f(a1, a2, . . . , an) = (a1, a2, . . . , an,0,0, . . . ).

We have

∥(a1, a2, . . . , an,0,0, . . . )∥`2 = (
n

∑
k=1

∣ak∣2)
1/2

= ∥(a1, a2, . . . , an)∥Fn ,

so f(a) ∈ `2, and f is distance-preserving.
Linearity is straightforward.
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Exercise 3.10. Consider the maps Heven,Hodd ∶ FN Ð→ FN defined by

Heven((an)) = (a2n), Hodd((an)) = (a2n−1)

and construct f ∶ FN Ð→ FN ×FN as

f(a) = (Heven(a),Hodd(a)).

(a) Prove that the restriction of Heven and Hodd to `p gives continuous linear functions
Heven,Hodd ∶ `p Ð→ `p for all p ∈R⩾1 and for p = ∞.

(b) Prove that f is an invertible linear map.

In the next two parts, recall that on the product V ×W of two normed spaces we can
work with the norm given by

∥(v,w)∥ ∶= ∥v∥V + ∥w∥W .

(c) Take p = 1 and show that the restriction f ∶ `1 Ð→ `1 × `1 is a linear isometry.
(Recall that we can work with the norm on `1 × `1 given by

∥(x, y)∥ ∶= ∥x∥`1 + ∥y∥`1 .)

(d) Show that the statement from part (c) does not hold for the space `∞; prove the
strongest statement that you can for `∞.

Solution. (a) Linearity is straightforward, even on all of FN:

Heven(λa + µb) =Heven((λan + µbn))
= (λa2n + µb2n)
= λ(a2n) + µ(b2n)
= λHeven(a) + µHeven(b)

and similarly for Hodd.
If a = (an) ∈ `p then

∥Heven(a)∥
p

`p
=
∞

∑
n=1

∣a2n∣p ⩽
∞

∑
n=1

∣an∣p = ∥a∥p`p ,

so Heven(a) ∈ `p and Heven ∶ `p Ð→ `p is continuous. The same argument works for
Hodd.
Similarly, if a = (an) ∈ `∞ then

∥Heven∥`∞ = sup
n∈N
∣a2n∣ ⩽ sup

n∈N
∣an∣ = ∥a∥`∞

and the same for Hodd.
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(b) The map f is linear because its two components are linear.
We construct an explicit inverse g ∶ FN ×FN Ð→ FN: given b, c ∈ FN, define

g(b, c) ∶= a ∶= (an) ∈ FN by an =
⎧⎪⎪⎨⎪⎪⎩

bn/2 if n is even
c(n+1)/2 if n is odd.

It is clear that g is the inverse of f .

(c) We have

∥f(a)∥ = ∥(Heven(a),Hodd(a))∥
= ∥Heven(a)∥`1 + ∥Hodd(a)∥`1

=
∞

∑
n=1

∣a2n∣ +
∞

∑
n=1

∣a2n−1∣

=
∞

∑
n=1

∣an∣

= ∥a∥`1 ,

so that f is a distance-preserving map.
To prove surjectivity of f , we show that the restriction of the function g from part
(b) maps to `1: for b, c ∈ `1, we have a ∶= g(b, c).
The fact that a ∈ `1 follows from

2m

∑
n=1

∣an∣ =
m

∑
k=1

∣a2k∣ +
m

∑
k=1

∣a2k−1∣ =
m

∑
k=1

∣bk∣ +
m

∑
k=1

∣ck∣.

As b, c ∈ `1, the limit of the RHS as m Ð→ ∞ exists and equals ∥b∥`1 + ∥c∥`1 , so
a ∈ `1, f(a) = (b, c), and (of course) ∥a∥`1 = ∥(b, c)∥.

(d) We try to use the same approach as in (b):

∥f(a)∥ = ∥(Heven(a),Hodd(a))∥
= ∥Heven(a)∥`∞ + ∥Hodd(a)∥`∞
= sup

n∈N
∣a2n∣ + sup

n∈N
∣a2n−1∣

⩽ sup
n∈N
∣an∣ + sup

n∈N
∣an∣

= 2∥a∥`∞ ,

which shows that f is continuous.
It also indicates that f is not distance-preserving: take (a) = (1,1, . . . ) then

∥f(a)∥ = 2 ≠ 1 = ∥a∥`∞ .

So far we know that f is linear and continuous. It is also injective because it is the
restriction of the injective map from part (b).
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To prove surjectivity, we show that the restriction of the function g from part (b)
maps to `∞: for b, c ∈ `∞, we have a ∶= g(b, c). But

sup
n∈N
∣an∣ = sup{sup

n∈N
∣a2n∣, sup

n∈N
∣a2n−1∣} = sup{∥b∥`∞ , ∥c∥`∞},

which is finite because it is the maximum of two finite quantities.
Finally, the last equation tells us that

∥g(b, c)∥ = ∥a∥ = sup{∥b∥`∞ , ∥c∥`∞} ⩽ ∥b∥`∞ + ∥c∥`∞ = ∥(b, c)∥,

so g is also a continuous function.
We conclude that f is a linear homeomorphism.

Exercise 3.11. Consider the map f ∶ `1 Ð→ FN given by

f((an)) = (
an
n
) .

(a) Prove that f maps to `1 and f ∶ `1 Ð→ `1 is linear, continuous, and injective.

(b) Prove that the image W of f is not closed in `1.

Solution. (a) For all n ∈N we have

∣an
n
∣ ⩽ ∣an∣,

so that for m ∈N:
m

∑
n=1

∣an
n
∣ ⩽

m

∑
n=1

∣an∣.

As (an) ∈ `1, the RHS has a finite limit as m Ð→ ∞, hence so does the LHS, so
f((an)) ∈ `1.
Linearity is clear:

f(λ(an) + µ(bn)) = f((λan + µbn))

= (λan + µbn
n

)

= λ(an
n
) + µ(bn

n
)

= λf((an)) + µf((bn)).

We’ve seen already that ∥f((an))∥`1 ⩽ ∥(an)∥`1 , so f is continuous.

Suppose f((an)) = f((bn)), then for all n ∈ N we have an/n = bn/n, therefore
an = bn. So f is injective.

(b) For each n ∈ N let vn = (1,1/2, . . . ,1/n,0,0, . . . ) ∈ FN. Since vn has only finitely
many nonzero terms, it is in `1. Letting wn = f(vn), we have wn ∈W .
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Set
w = (1, 1

22
,
1

32
, . . .) .

Since
∞

∑
n=1

1

n2

converges, we have w ∈ `1.
However, w ∉W : if w ∈W then w = f(v) where v = (1,1, . . . ), but v ∉ `1.
Finally

∥w −wn∥`1 = ∥(0,0, . . . ,0,
1

(n + 1)2
,

1

(n + 2)2
, . . .∥

`1

=
∞

∑
k=n+1

1

k2
,

which is the tail of a convergent series, hence converges to 0. Therefore (wn) Ð→ w,
but w ∉W , so W is not closed in `1.

Exercise 3.12. (*) Let U,V,W be normed spaces over F and let β ∶ U × V Ð→W be a
bilinear map.

We say that β is Lipschitz if there exists c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

Prove that β is continuous at (0,0) if and only if β is Lipschitz if and only if β is
continuous on U × V .

Solution. Suppose β is continuous at (0,0) but not Lipschitz. Then for every n ∈N there
exist vectors un ∈ U and vn ∈ V such that

∥β(un, vn)∥W > n2 ∥un∥U ∥vn∥V .

This forces un, vn to be nonzero. Let

u′n =
1

n ∥un∥U
un and v′n =

1

n ∥vn∥V
vn.

We now prove (u′n, v′n) Ð→ (0,0) but β(u′n, v′n) /Ð→ 0 = β(0,0) as n Ð→ ∞, which
contradicts the continuity of β.

Since ∥u′n∥U = ∥v′n∥V = 1/n, it follows that

∥(u′n, v′n)∥U×V = ∥u′n∥U + ∥v′n∥V =
1

2n
.

Therefore, ∥(u′n, v′n)∥ Ð→ 0 and thus (u′n, v′n) Ð→ (0,0) as nÐ→∞.
On the other hand, we have

∥β(u′n, v′n)∥W = ∥β(
1

n ∥un∥U
un,

1

n ∥vn∥V
vn)∥

W

= ∥β(un, vn)∥W
n2 ∥un∥U ∥vn∥V

> 1.

Hence β(u′n, v′n) /Ð→ 0 as nÐ→∞.
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Now suppose β is Lipschitz; we prove that it is continuous at any (u, v) ∈ U ×V . Given
ε > 0, let

δ =min{1, ε

2c(∥u∥U + 1)
,

ε

2c(∥v∥V + 1)
}.

If (u′, v′) ∈ Bδ(u, v), then

∥u′ − u∥U + ∥v′ − v∥V = ∥(u′ − u, v′ − v)∥U×V = ∥(u′, v′) − (u, v)∥U×V < δ

and it follows that ∥u′ − u∥ < δ and ∥v′ − v∥ < δ. Now we have

∥β(u′, v′) − β(u, v)∥W = ∥β(u′, v′) − β(u′, v) + β(u′, v) − β(u, v)∥W
= ∥β(u′, v′ − v) + β(u′ − u, v)∥W
⩽ ∥β(u′, v′ − v)∥W + ∥β(u′ − u, v)∥W
⩽ c ∥u′∥U ∥v′ − v∥V + c ∥u′ − u∥U ∥v∥V
⩽ c (∥u∥U + ∥u′ − u∥U)∥v′ − v∥V + c ∥u′ − u∥U ∥v∥V
< c (∥u∥U + 1)δ + cδ∥v∥V
⩽ c(∥u∥U + 1)

ε

2c(∥u∥U + 1)
+ c∥v∥V

ε

2c(∥v∥V + 1)
< ε
2
+ ε
2

= ε.

Therefore, Bδ(u, v) ⊆ β−1(Bε(β(u, v))) and thus β is continuous.
Obviously, if β is continuous on U × V then it is continuous at (0,0), closing the cycle

of equivalences.

Exercise 3.13. (*) Let U,V,W be nonzero normed spaces over F and let β ∶ U×V Ð→W
be a nonzero bilinear map. Then β is not uniformly continuous.

Solution. Since U,V,W are nonzero and β is nonzero, there exist vectors u ∈ U and v ∈ V
such that β(u, v) ≠ 0. This forces u and v to be nonzero.

Take ε = 1. Given δ > 0, put

a = δ

2∥u∥U
, b = 3∥u∥U

δ ∥β(u, v)∥W
.

It follows that

∥(0, bv) − (au, bv)∥
U×V
= ∥(−au,0)∥

U×V
= a∥u∥U =

δ

2
< δ,

but
∥β(0, bv) − β(au, bv)∥

W
= ∥β(−au, bv)∥

W
= ab∥β(u, v)∥

W
= 3

2
> 1 = ε.

Therefore, β is not uniformly continuous.
(In fact, the proof shows that β is not even uniformly continuous on the subspace

Fu ×Fv ⊆ U × V .)
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Exercise 3.14. (*) Let U,V,W be normed spaces over F.
Suppose β ∶ U × V Ð→W is a continuous bilinear map.
Consider the linear function βU ∶ U Ð→ Hom(V,W ) given by βU(u) = fu, where

fu ∶ V Ð→W is defined by fu(v) = β(u, v).

(a) Prove that for any u ∈ U , fu ∈ L(V,W ), in other words fu is continuous.

(b) By part (a) we can think of βU as a function U Ð→ L(V,W ).
Prove that βU ∶ U Ð→ L(V,W ) is continuous.

Solution.

(a) First approach (direct): Let v ∈ V . We prove that fu ∶ V Ð→W is continuous
at v. (Note that, crucially, u remains fixed.)
Let ε > 0; as β is continuous at (u, v), there exists δ > 0 such that

if ∥(u, v1) − (u, v)∥U×V < δ, then ∥β(u, v1) − β(u, v)∥W < ε.

Therefore, if ∥v1 − v∥V < δ, then

∥(u, v1) − (u, v)∥U×V = ∥v1 − v∥V < δ,

so that
∥fu(v1) − fu(v)∥W = ∥β(u, v1) − β(u, v)∥W < ε.

Second approach (using Lipschitz): Let ε > 0; as β is continuous, it is Lipschitz,
so there exists c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

It follows that
∥fu(v)∥W = ∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V .

Since c∥u∥U is a constant independent of v, the linear transformation fu is Lipschitz
and thus continuous.

(b) Let ε > 0; as β is continuous, it is Lipschitz, so there exists c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

It follows that

∥βU(u)∥L(V,W ) = ∥fu∥L(V,W ) = sup
∥v∥V =1

∥β(u, v)∥W ⩽ c ∥u∥U .

Therefore, βU is Lipschitz and thus continuous.

Exercise 3.15. Prove directly that any Cauchy sequence in `∞ converges, so that `∞ is
a Banach space.

Solution. Let (x(n)) be a Cauchy sequence in `∞. Each element x(n) is a sequence
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x(n) = (x(n)k ) in F. For ε > 0, there exists N ∈N such that

∥x(m) − x(n)∥`∞ <
ε

2
for all m,n ⩾ N.

Fixing k ∈N, consider the sequence (x(n)k ) (as n varies) in F. It is Cauchy since

∣x(m)k − x(n)k ∣ ⩽ ∥x
(m) − x(n)∥`∞ <

ε

2
.

As F is complete, (x(n)k ) has some limit yk ∈ F.
Set y = (yk). It remains to prove that y ∈ `∞ and that (x(n)) Ð→ y in `∞.
As (x(n)) is a Cauchy sequence in `∞, it is bounded in `∞, so there exists a constant C

such that
∥x(n)∥`∞ ⩽ C for all n ∈N.

Therefore
∣x(n)k ∣ ⩽ ∥x

(n)∥`∞ ⩽ C for all k,n ∈N.

As we take the limit as nÐ→∞ we get

∣yk∣ ⩽ C for all k ∈N,

in other words y = (yk) ∈ `∞.
Let ε > 0 and N ∈N be as above. I claim that

∣x(n)k − yk∣ < ε for all n ⩾N, k ∈N.

Let k ∈N. As (x(m)k ) Ð→ yk as mÐ→∞, we can choose m ⩾ N large enough that

∣x(m)k − yk∣ <
ε

2
.

Therefore, given any n ⩾ N we have

∣x(n)k − yk∣ ⩽ ∣x
(n)
k − x

(m)
k ∣ + ∣x

(m)
k − yk∣ <

ε

2
+ ε
2
= ε.

The conclusion holds for all k ∈N, so we are done.

Exercise 3.16. In Theorem 3.35 we saw that the function

β ∶ `∞ × `1 Ð→ F defined by β(u, v) z→
∞

∑
n=1

unvn

is a continuous bilinear map.
Show that there is a continuous linear function `∞ Ð→ (`1)∨ that is an isometry.
Conclude that `∞ is a Banach space.

Solution. By Exercise 3.12, βU ∶ `∞ Ð→ (`1)
∨ is linear and continuous, where

βU(u) = u∨, u∨(v) = β(u, v) =
∞

∑
n=1

unvn.
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To see that uz→ u∨ is surjective, let ϕ ∈ (`1)∨. Since `1 has Schauder basis {e1, e2, . . .},
for any v = (vn) ∈ `1 we have

v =
∞

∑
n=1

vnen,

so that
ϕ(v) =

∞

∑
n=1

vnϕ(en).

Setting un = ϕ(en) and u = (un), if we show that u ∈ `∞ then ϕ = u∨. But since
ϕ ∈ (`1)∨ = L(`1,F), it is Lipschitz, so for all v ∈ `1 we have

∣ϕ(v)∣ ⩽ ∥ϕ∥ ∥v∥`1 .

In particular, for all n ∈N we get

∣un∣ = ∣ϕ(en)∣ ⩽ ∥ϕ∥,

hence u ∈ `∞, and also ∥u∥`∞ ⩽ ∥ϕ∥ = ∥u∨∥.
Hölder’s Inequality gives us

∣u∨(v)∣ ⩽ ∑
n=1

∣unvn∣ ⩽ ∥u∥`∞∥v∥`1 ,

so for v ∈ `1 ∖ {0} we get
∣u∨(v)∣
∥v∥`1

⩽ ∥u∥`∞ ,

so ∥u∨∥ ⩽ ∥u∥`∞ .
As we had already established the opposite inequality, we conclude that ∥u∨∥ = ∥u∥`∞ .
Since `∞ is isometric to (`1)∨ and all dual spaces as Banach, `∞ is Banach.

Exercise 3.17. Flip the factors in Exercise 3.16:
In Theorem 3.35 we saw that the function

`1 × `∞ Ð→ F defined by (u, v) z→
∞

∑
n=1

unvn

is a continuous bilinear map.

(a) Show that there is a continuous linear function `1 Ð→ (c0)∨ that is an isometry.
(Recall that c0 ⊆ `∞ consists of all convergent sequences with limit 0.)
[Hint: It may be useful to prove surjectivity first, and then the distance-preserving
property.]

(b) Conclude that `1 is a Banach space.

(c) Where in your proof for (a) did you make use of the fact that you are working with
c0 rather than `∞?

Solution.
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(a) If we restrict the bilinear map from the statement to `1 × c0, we get a continuous
bilinear map

β ∶ `1 × c0 Ð→ F.

By Exercise 3.12, βU is linear and continuous. In our notation, this is the function
uz→ u∨ ∶ `1 Ð→ (c0)

∨, where

u∨(v) = β(u, v) =
∞

∑
n=1

unvn.

For surjectivity, we need to show that each ϕ ∈ (c0)
∨ is of the form ϕ = u∨ for

some u ∈ `1. Take such ϕ. Recall that c0 has Schauder basis {e1, e2, . . .}, so for any
v = (vn) ∈ c0 we have

ϕ(v) =
∞

∑
n=1

vnϕ(en).

Let un = ϕ(en) and u = (un). We need to show that u ∈ `1. For this, fix m ∈N and
let (ignoring the n’s for which un = 0)

x =
m

∑
n=1

∣un∣
un

en = (
∣u1∣
u1
, . . . ,

∣um∣
um

,0,0, . . .) ,

so that
∥x∥`∞ = 1.

Then
m

∑
n=1

∣un∣ = ∣
m

∑
n=1

∣un∣
un

un∣

= ∣
m

∑
n=1

ϕ(∣un∣
un

en)∣

= ∣ϕ(x)∣ ⩽ ∥ϕ∥ ∥x∥`∞ = ∥ϕ∥.

Taking the limit as mÐ→∞ we conclude that u ∈ `1 and that ∥u∥`1 ⩽ ∥ϕ∥ = ∥u∨∥.
So uz→ u∨ is surjective.
We have the Hölder Inequality

∞

∑
n=1

∣unvn∣ ⩽ ∥u∥`1∥v∥`∞ ,

valid for all u ∈ `1 and all v ∈ `∞, so certainly for all v ∈ c0.
Hence for v ≠ 0:

∣u∨(v)∣
∥v∥`∞

⩽ ∥u∥`1 ,

so taking supremum we get ∥u∨∥ ⩽ ∥u∥`1 .
As we had already established the other inequality, we conclude that ∥u∨∥ = ∥u∥`1 ,
so uz→ u∨ is distance-preserving.
Putting it all together, we have a linear isometry `1 Ð→ (c0)

∨.
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(b) We know that duals of normed spaces are complete, so (c0)
∨ is complete, so `1,

being isometric to it, also is complete.

(c) We used the Schauder basis {e1, e2, . . .} for c0 to prove surjectivity as well as the
distance-preserving property.

Exercise 3.18. Consider the subset c of FN consisting of all convergent sequences (with
any limit).

(a) Convince yourself that c is a vector subspace of `∞.

(b) Prove that lim ∶ cÐ→ F given by

(an) z→ lim
nÐ→∞

(an)

is a continuous surjective linear map.

(c) Prove that the formula

J((an)) = R((an)) − ( lim
nÐ→∞

an) (1,1, . . . )

defines a linear homeomorphism J ∶ cÐ→ c0. (Here R denotes the right shift map.)

(d) Conclude that c is Banach.
[Hint: Tutorial Question 9.6 should come in handy here and in the following part.]

(e) Show that c is separable and find a Schauder basis for c.

Solution. (a) We know that convergent sequences are bounded, so c ⊆ `∞. We also
know that the sum of two convergent sequences is convergent, and that a scalar
multiple of a convergent sequence is convergent, and that the constant sequence
(0,0, . . . ) is convergent.

(b) We know that lim is linear, as a consequence of the continuity of addition and of
scalar multiplication.
It is certainly surjective, as given any a ∈ F the constant sequence (a, a, . . . )
converges to a.
Finally, if a = (an) ∈ c then (an) is a bounded sequence and

∣ lim
nÐ→∞

an∣ ⩽ sup
n∈N
∣an∣ = ∥a∥`∞ ,

so lim is a continuous linear map.

(c) It is clear that J is linear and continuous, as R and lim are linear and continuous.
We exhibit an explicit inverse of J : let K ∶ c0 Ð→ c be given by

K((bn)) = L((bn)) − b1(1,1, . . . ).

Note that K is linear and continuous, as L and (bn) z→ b1 are linear and continuous.
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We check that K and J and inverses. If b ∈ c0 and a ∈ c then:

J(K(b)) = J(L(b)) − b1J(1,1, . . . )
= R(L(b)) − 0(1,1, . . . ) − b1(R(1,1, . . . ) − (1,1, . . . ))
= (0, b2, b3, . . . ) − b1(−1,0,0, . . . )
= b,

K(J(a)) =K(R(a)) − ( liman)K(1,1, . . . )
= L(R(a)) − ( liman)(L(1,1, . . . ) − (1,1, . . . ))
= a.

(d) We know from Tutorial Question 9.6 that c0 is closed in `∞, so c must also be closed
in `∞ as it is homeomorphic to c0. But `∞ is complete, so c is complete.

(e) We know that {e1, e2, e3, . . .} is a Schauder basis for c0, so we apply K ∶ c0 Ð→ c to
this to get:

K(e1) = L(e1) − (1,1, . . . ) = −(1,1, . . . )
K(e2) = L(e2) − 0(1,1, . . . ) = e1
K(e3) = L(e3) − 0(1,1, . . . ) = e2

⋮
K(en) = L(en) − 0(1,1, . . . ) = en−1 for n ⩾ 2

⋮

We suspect then that {(1,1, . . . ), e1, e2, e3, . . .} is a Schauder basis for c.
This is of course true whenever we have a linear homeomorphism f ∶ V Ð→W be-
tween normed spaces: If {b1, b2, . . .} is a Schauder basis for V , then {f(b1), f(b2), . . .}
is a Schauder basis for W .
Let w ∈W and let v = f−1(w) ∈ V . Write

v = ∑
j∈N

αjbj,

then
w = f(v) = ∑

j∈N

αjf(bj).

Uniqueness follows from the uniqueness of the expansion for v.

Exercise 3.19. Consider the left shift map L ∶ FN Ð→ FN given by L((an)) = (an+1),
that is

L(a1, a2, a3, . . . ) = (a2, a3, . . . ).

(a) Prove that L is a surjective linear map. What is the kernel of L?

(b) Prove that for all 1 ⩽ p ⩽ ∞, the restriction of L to `p is a surjective continuous
map onto `p.
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(c) Define the right shift map R ∶ FN Ð→ FN and prove that it is an injective linear
map, the restriction of which is distance-preserving for any `p with 1 ⩽ p ⩽ ∞.

(d) Check that L ○R = idFN ≠ R ○L.

Solution.

(a) It is clear that L is surjective. Linearity is pretty straightforward, and it’s also
clear that ker(L) = Span{e1}.

(b) We have

∥L(a1, a2, a3, . . . )∥`p = (
∞

∑
n=2

∣an∣p)
1/p

⩽ (
∞

∑
n=1

∣an∣p)
1/p

= ∥(a1, a2, . . . )∥`p ,

so L is bounded, and L((an)) ∈ `p if (an) ∈ `p.
For the surjectivity note that if b = (b1, b2, . . . ) ∈ `p, then

b = L(a) for a = (0, b1, b2, . . . )

and ∥a∥`p = ∥b∥`p , so a ∈ `p.
The case of `∞ is done in a similar way.

(c) To get a linear map we need to set

R(a1, a2, a3, . . . ) = (0, a1, a2, a3, . . . ).

Both injectivity and linearity are straightforward.
We have, for p ⩾ 1 or p = ∞:

∥R(a1, a2, . . . )∥`p = ∥(0, a1, a2, . . . )∥`p = ∥(a1, a2, . . . )∥`p ,

so R is distance-preserving and R(a) ∈ `p if a ∈ `p.

(d) Clear. For any a = (an) ∈ FN we have

L(R(a)) = L(R(a1, a2, . . . )) = L(0, a1, a2, . . . ) = (a1, a2, . . . ) = a,
R(L(a)) = R(L(a1, a2, . . . )) = R(a2, a3, . . . ) = (0, a2, a3, . . . ) ≠ a unless a1 = 0.

Exercise 3.20. Let (V, ⟨⋅, ⋅⟩) be an inner product space. Prove that the inner product is
a continuous function.

Solution. One way is to use the Polarisation Identity and the fact that the norm is
continuous.

But we can also proceed more directly: suppose (xn, yn) Ð→ (x, y), then (xn) Ð→ x
and (yn) Ð→ y. As (yn) converges, it is bounded, so there exists C ⩾ 0 such that ∥yn∥ ⩽ C
for all n ∈N.

Given ε > 0, let N ∈N be such that

∥xn − x∥ <
ε

2C
and ∥yn − y∥ <

ε

2∥x∥
for all n ⩾ N.
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Then

∣⟨xn, yn⟩ − ⟨x, y⟩∣ = ∣⟨xn, yn⟩ − ⟨x, yn⟩ + ⟨x, yn⟩ − ⟨x, y⟩∣
= ∣⟨xn − x, yn⟩ + ⟨x, yn − y⟩∣
⩽ ∣⟨xn − x, yn⟩∣ + ∣⟨x, yn − y⟩∣
⩽ ∥xn − x∥ ∥yn∥ + ∥x∥ ∥yn − y∥
⩽ C∥xn − x∥ + ∥x∥ ∥yn − y∥
< ε.

We conclude that (⟨xn, yn⟩) Ð→ ⟨x, y⟩.

Exercise 3.21. Let V be an inner product space. For any v ∈ V we have

∥v∥ = sup
∥w∥=1

∣⟨v,w⟩∣.

The supremum is in fact achieved by a well-chosen w.

Solution. If v = 0 then the equality is obvious.
So assume now that v ≠ 0. By Cauchy–Schwarz we have for all w ∈ V :

∣⟨v,w⟩∣ ⩽ ∥v∥ ∥w∥.

Therefore for all w ∈ V with ∥w∥ = 1 we have

∣⟨v,w⟩∣ ⩽ ∥v∥,

so that
sup
∥w∥=1

∣⟨v,w⟩∣ ⩽ ∥v∥.

To get equality, take w = 1
∥v∥ v and see that the LHS is indeed ∥v∥.

Exercise 3.22. Let V,W be inner product spaces and let f ∈ L(V,W ). Prove that

∥f∥ = sup
∥v∥V =∥w∥W =1

∣⟨f(v),w⟩W ∣.

[Hint: Use Exercise 3.21.]

Solution. Recall from Exercise 3.21 that

∥u∥W = sup
∥w∥W =1

∣⟨u,w⟩W ∣ for all u ∈W.

Setting u = f(v) for some v ∈ V , we get

∥f(v)∥W = sup
∥w∥W =1

∣⟨f(v),w⟩W ∣ for all v ∈ V.
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Therefore
∥f∥ = sup

∥v∥V =1

∥f(v)∥W = sup
∥v∥V =∥w∥W =1

∣⟨f(v),w⟩W ∣.

Exercise 3.23. Let (V, ⟨⋅, ⋅⟩) be an inner product space and let R,S be subsets of V .

(a) Prove that S ∩ S⊥ = 0.

(b) Prove that if R ⊆ S then S⊥ ⊆ R⊥.

(c) Prove that S ⊆ (S⊥)⊥.

(d) Prove that S⊥ = Span(S)
⊥

.

Solution.

(a) If x ∈ S⊥ ∩ S then ⟨x, s⟩ = 0 for all s ∈ S, in particular ⟨x,x⟩ = 0 so x = 0.

(b) Suppose R ⊆ S and x ∈ S⊥. For any r ∈ R we have r ∈ S so ⟨x, r⟩ = 0, hence x ∈ R⊥.

(c) Let s ∈ S. For any x ∈ S⊥, we have

⟨s, x⟩ = ⟨x, s⟩ = 0,

so s ∈ (S⊥)⊥.

(d) Since S ⊆ Span(S) ⊆ Span(S), by part (b) we get

Span(S)
⊥

⊆ S⊥.

In the other direction, suppose x ∈ S⊥. For any v ∈ Span(S) we have

⟨x, v⟩ = ⟨x,α1s1 + ⋅ ⋅ ⋅ + αnsn⟩ = α1⟨x, s1⟩ + ⋅ ⋅ ⋅ + αn⟨x, sn⟩ = 0.

Now if (vn) Ð→ w ∈ Span(S) with vn ∈ Span(S), we have

⟨x,w⟩ = ⟨x, lim vn⟩ = lim⟨x, vn⟩ = lim0 = 0.

Exercise 3.24. Let S be a subset of a Hilbert space H. Prove that Span(S) is dense in
H if and only if S⊥ = 0.

Solution. If S⊥ = 0 then (using the Hilbert Projection Theorem Part II)

Span(S) = (S⊥)⊥ = 0⊥ =H.

Conversely, if S is dense in H then

S⊥ = Span(S)
⊥

=H⊥ = 0.
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Exercise 3.25. (*) Let U,V,W be normed spaces.
Define the norm of a continuous bilinear map β ∶ U × V Ð→W , and show that it is a

norm on the vector space Bil(U,V ;W ) of continuous bilinear maps U × V Ð→W .
[Hint: Have a look at Exercise 3.12 to remember what it says.]

Solution. Since β is continuous and bilinear, it is Lipschitz: there exists c > 0 such that

∥β(u, v)∥W ⊆ c∥u∥U∥v∥V for all u ∈ U, v ∈ V.

We can then define
∥β∥ ∶= sup

u∈U∖{0},v∈V ∖{0}

∥β(u, v)∥W
∥u∥U∥v∥V

.

By the bilinearity of β, we have

∥β∥ = sup
∥u∥U=1,∥v∥V =1

∥β(u, v)∥W .

The triangle inequality for this norm follows from this last equality and the triangle
inequality for ∥ ⋅ ∥W . The same is true for the property ∥aβ∥ = ∣a∣ ∥β∥ for all a ∈ F.

If ∥β∥ = 0 then ∥β(u, v)∥W = 0 for all nonzero u and v, so by the non-degeneracy of ∥⋅∥W
we get β(u, v) = 0 for all nonzero u and v. The bilinearity of β means that β(0, v) = 0
and β(u,0) = 0 for all u ∈ U , v ∈ V , so we conclude that β = 0.

Exercise 3.26. Let V =R2 viewed as a normed space with the Euclidean norm. Compute
the norm of each of the following elements M ∈ L(V ) directly from the description of the
operator norm:

∥M∥ = sup
∥v∥=1

∥M(v)∥.

(a) A = (0 1
0 0
);

(b) B = ( 0 1
−1 0

);

(c) C = (a 0
0 b
) for a, b ∈R.

Solution. In all cases we will denote v = (x1
x2
) ∈R2 with x21 + x22 = 1.

(a) We have

∥Av∥ = ∥(x2
0
)∥ = ∣x2∣.

Maximising this under the constraint x21 + x22 = 1 gives ∥A∥ = 1.

(b) We have

∥Bv∥ = ∥( x2−x1
)∥ =

√
x22 + x21 = 1,
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so ∥B∥ = 1.

(c) We have

∥Cv∥ = ∥(ax1
bx2
)∥ =

√
a2x21 + b2x22,

so we are looking to maximise, under the constraint x21 + x22 = 1, the quantity

S = a2x21 + b2x22 = a2x21 + b2(1 − x21) = b2 + (a2 − b2)x21.

If ∣a∣ ⩾ ∣b∣ then a2 − b2 ⩾ 0 so to maximise S we must maximise x21, which happens
when x21 = 1, so that S = a2.
Otherwise we have ∣a∣ < ∣b∣ so a2 − b2 < 0 so to maximise S we must minimise x21,
which happens when x1 = 0, so that S = b2.
Hence the maximum value is S =max{a2, b2} and so ∥C∥ =

√
S =max{∣a∣, ∣b∣}.

For the next few questions, recall that the adjoint of a continuous linear map f ∶ X Ð→ Y
of Hilbert spaces is the unique continuous linear map f∗ ∶ Y Ð→X satisfying

⟨f(x), y⟩
Y
= ⟨x, f∗(y)⟩

X
for all x ∈X,y ∈ Y.

Exercise 3.27. Prove that f z→ f∗ is conjugate-linear, in other words that

(αf + βg)∗ = αf∗ + βg∗ for all α,β ∈ F, f, g ∈ L(X,Y ).

Solution. We have

⟨x, (αf + βg)∗(y)⟩ = ⟨(αf + βg)(x), y⟩
= α⟨f(x), y⟩ + β⟨g(x), y⟩
= α⟨x, f∗(y)⟩ + β⟨x, g∗(y)⟩
= ⟨x,α f∗(y) + β g∗(y)⟩.

Exercise 3.28. Prove that f z→ f∗ is an involution, in other words that

(f∗)∗ = f for all f ∈ L(X,Y ).

Solution. We have

⟨x, (f∗)∗(y)⟩ = ⟨f∗(x), y⟩

= ⟨y, f∗(x)⟩

= ⟨f(y), x⟩
= ⟨x, f(y)⟩.

Exercise 3.29. Let X,Y,Z be Hilbert spaces.

(a) Prove that (f ○ g)∗ = g∗ ○ f∗ for all g ∈ L(X,Y ), f ∈ L(Y,Z).

62



MAST30026 MHS

(b) Prove that id∗X = idX .

Solution.

(a) We have

⟨x, (f ○ g)∗(y)⟩ = ⟨(f ○ g)(x), y⟩
= ⟨f(g(x)), y⟩
= ⟨g(x), f∗(y)⟩
= ⟨x, g∗(f∗(y))⟩
= ⟨x, (g∗ ○ f∗)(y)⟩.

(b) Tautological:
⟨ idX(x), y⟩ = ⟨x, y⟩ = ⟨x, idX(y)⟩.

Exercise 3.30. Let f ∈ L(X,Y ) with X,Y Hilbert spaces.

(a) Prove that ∥f∗∥ = ∥f∥, so f z→ f∗ is distance-preserving.

(b) Prove that ∥f∗ ○ f∥ = ∥f∥2.

Solution.

(a) By Exercise 3.22 we know that

∥f∗∥ = sup
∥x∥=1=∥y∥

∣⟨f∗(y), x⟩X ∣

= sup
∥x∥=1=∥y∥

∣⟨x, f∗(y)⟩X ∣

= sup
∥x∥=1=∥y∥

∣⟨x, f∗(y)⟩X ∣

= sup
∥x∥=1=∥y∥

∣⟨f(x), y⟩Y ∣

= ∥f∥.

(b) Using again Exercise 3.22 we have

∥f∗ ○ f∥ = sup
∥x∥=1=∥y∥

∣⟨f∗(f(x)), y⟩∣

= sup
∥x∥=1=∥y∥

∣⟨f(x), f(y)⟩∣

⩽ sup
∥x∥=1=∥y∥

∥f(x)∥ ∥f(y)∥

= ( sup
∥x∥=1

∥f(x)∥)( sup
∥y∥=1

∥f(y)∥)

= ∥f∥2.
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The inequality in the above calculation comes from Cauchy–Schwarz. We note that
taking y = x gives an equality, so that equality of suprema actually holds, and we
conclude that

∥f∗ ○ f∥ = ∥f∥2.

Exercise 3.31. Let f ∶ X Ð→ Y be a continuous linear map of Hilbert spaces. Prove
that

ker (f∗) = ( im f)⊥ and im (f∗) = (kerf)⊥.

Solution. We have

y ∈ ( im f)⊥ ⇐⇒ y ⊥ f(x) for all x ∈X
⇐⇒ ⟨f(x), y⟩ = 0 for all x ∈X
⇐⇒ ⟨x, f∗(y)⟩ = 0 for all x ∈X
⇐⇒ f∗(y) = 0
⇐⇒ y ∈ ker f∗.

From this and Exercise 3.28 we have

ker f = ker (f∗)∗ = ( im f∗)⊥,

so that
(kerf)⊥ = (( im f∗)⊥)

⊥

= im f∗,

where the last equality comes from Corollary 3.43.

Exercise 3.32. Let X be a Hilbert space, f ∈ L(X), and W a closed subspace of X.
Then W is f -invariant if and only if W ⊥ is (f∗)-invariant.

Solution. Suppose W is f -invariant. Let y ∈W ⊥. For any x ∈W we have f(x) ∈W so
that

⟨x, f∗(y)⟩ = ⟨f(x), y⟩ = 0.

As this holds for all x ∈W , we conclude that f∗(y) ∈W ⊥, so W ⊥ is f∗-invariant.
Conversely, suppose W ⊥ is f∗-invariant, then by the above

W = (W ⊥)⊥ is (f∗)∗ = f -invariant.

Exercise 3.33. Let a = (an) ∈ `∞ and consider f ∶ `2 Ð→ FN given by

f(x) = (a1x1, a2x2, . . . , anxn, . . . ).

(a) Prove that the image of f is contained in `2 and that f ∶ `2 Ð→ `2 is linear and
continuous.

(b) Find the norm ∥f∥.

(c) Show that if an ∈R for all n ∈N then f is self-adjoint.
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Solution. (a) We have

∥f(x)∥2`2 =
∞

∑
n=1

∣an∣2 ∣xn∣2 ⩽ ∥a∥2`∞
∞

∑
n=1

∣xn∣2 = ∥a∥2`∞ ∥x∥2`2 ,

so if x ∈ `2 then f(x) ∈ `2.
It is straightforward that f is linear. It is clear that f is continuous from the
inequality above.

(b) We have
∥f∥ = sup

∥x∥=1

∥f(x)∥ ⩽ ∥a∥`∞

from the previous part.
Let ε > 0. Let n ∈N be such that ∣an∣ > ∥a∥`∞ − ε. Then

∥f(en)∥ = ∥anen∥ = ∣an∣ > ∥a∥`∞ − ε,

therefore ∥f∥ = ∥a∥`∞ .

(c) We have
⟨f(x), y⟩ =

∞

∑
n=1

an xn yn =
∞

∑
n=1

xn (an yn) = ⟨x, f(y)⟩,

where we used the fact that an ∈R for all n ∈N.

Exercise 3.34. (*) Every nonzero Hilbert space H has an orthonormal basis.
[Hint: Use Zorn’s Lemma (Lemma 1.3) and mimic the proof of the existence of bases

for arbitrary vector spaces (Theorem 1.2).]

Solution. Let X be the set of all orthonormal systems in H. This is a poset under
inclusion (it is the restriction of the poset structure on the power set of H to subsets of
H that are orthonormal systems). It is nonempty: if y is any nonzero element of H, let
u = 1

∥y∥ y, then {u} ∈X.
Let C be a nonempty chain in X, in other words C = {Si ∶ i ∈ I} where each Si is an

orthonormal system, and for any i, j ∈ I we have Si ⊆ Sj or Sj ⊆ Si.
Let

S = ⋃
i∈I

Si.

If s, t ∈ S, then there exist i, j ∈ I such that s ∈ Si and t ∈ Sj ⊆ Si (without loss of
generality). Since s, t ∈ Si and Si is orthonormal, we get that

⟨s, t⟩ =
⎧⎪⎪⎨⎪⎪⎩

0 if s ≠ t
1 if s = t.

So S is orthonormal, hence is an upper bound for the chain C.
By Zorn’s Lemma, X has a maximal element B. Let Y = Span(B). If Y =H then B

is an orthonormal basis for H and we are done.
So assume that Y ≠H. Since H is a Hilbert space and Y is a closed subspace we have

H = Y ⊕ Y ⊥,
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so that Y ⊥ ≠ 0. Let z ∈ Y ⊥ be a nonzero element and let u = 1
∥z∥ z. Then B ∪ {u} is an

orthonormal system (since u is a unit vector and it is in Y ⊥, hence in B⊥) that strictly
contains B, contradicting the maximality of B.

Exercise 3.35. (*) Let p1(x) = 0 and

pn+1(x) = pn(x) −
pn(x)2 − x2

2
= pn(x) −

(pn(x) − ∣x∣)(pn(x) + ∣x∣)
2

for n ⩾ 1.

Prove that, for all x ∈ [−1,1] and all n ⩾ 1:

(a) 0 ⩽ pn(x) ⩽ ∣x∣;

(b) pn(x) ⩽ pn+1(x);

(c) ∣x∣ − pn+1(x) ⩽ ∣x∣ (1 − ∣x∣2 )
n
.

Solution.

(a) We proceed by induction on n. Clearly 0 ⩽ p1(x) ⩽ ∣x∣ for all x ∈ [−1,1] since
p1(x) = 0.
Fix n ⩾ 1 and suppose 0 ⩽ pn(x) ⩽ ∣x∣. Then

−∣x∣ ⩽pn(x) − ∣x∣ ⩽ 0
∣x∣ ⩽pn(x) + ∣x∣ ⩽ 2∣x∣,

so that
0 ⩾ pn(x)

2 − x2
2

⩾ −∣x∣2,

and finally
0 ⩽ pn(x) −

pn(x)2 − x2
2

⩽ ∣x∣ − ∣x∣2.

We are done because the middle expression is precisely pn+1(x), and

∣x∣ − ∣x∣2 = ∣x∣(1 − ∣x∣) ⩽ ∣x∣ for x ∈ [−1,1].

(b) We have
2(pn+1(x) − pn(x)) = x2 − pn(x)2 ⩾ 0

by part (a).

(c) Note that

∣x∣−pn+2(x) = ∣x∣−pn+1(x)−
(∣x∣ − pn+1(x))(∣x∣ + pn+1(x))

2
⩽ (∣x∣−pn+1(x)) (1 −

∣x∣
2
) ,

at which point the claim follows by a simple induction argument.
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Exercise 3.36. (*) Fix n ⩾ 1 and consider the function f ∶ [0,1] Ð→R given by

f(t) = t(1 − t
2
)
n

.

Prove that
f(t) < 2

n + 1
for all t ∈ [0,1].

Solution. We have
f ′(t) = (1 − t

2
)
n−1

(1 − (n + 1)t
2
) ,

with a stationary point at t0 = 2/(n + 1) ∈ [0,1] and another at 2 ∉ [0,1]. So f attains its
maximum either at t0 or at one of the boundary points 0 or 1. But

f(0) = 0, f(1) = 1

2n
, f(t0) =

2

n + 1
(1 − 1

n + 1
)
n

< 2

n + 1
,

and certainly 1/2n < 2/(n + 1) for all n ⩾ 1.
We conclude that the maximum value of f on [0,1] is less than 2/(n + 1).

Exercise 3.37. Show that Lemma 3.58 holds more generally for the intervals [−a, a] for
any a > 0.

Solution. Let (pn) be a sequence in xR[x] such that (pn) Ð→ ∣x∣ uniformly on [−1,1].
Define qn(x) = apn(x/a), then I claim that (qn) Ð→ ∣x∣ uniformly on [−a, a].
Let ε > 0 and let N ∈N be such that for all n ⩾ N we have

∣pn(t) − ∣t∣∣ <
ε

a
for all t ∈ [−1,1].

Then for all n ⩾ N

∣qn(x) − ∣x∣∣ = ∣apn(x/a) − a ∣x/a∣∣ = a ∣pn(x/a) − ∣x/a∣∣ < ε for all x ∈ [−a, a].

Exercise 3.38. For each n ∈N define fn ∶ [0,1] Ð→R by

fn(x) =
nx2

1 + nx
.

Convince yourself that fn is continuous.
Find the pointwise limit f of the sequence (fn) and determine whether the sequence

converges uniformly to f .

Solution. The function fn is the quotient of two continuous functions, and the denominator
1 + nx is nonzero on [0,1], so fn is continuous on [0,1].

The pointwise limit is given by

fn(x) =
nx2

1 + nx
= x2

1
n + x

Ð→ x2

0 + x
= x as nÐ→∞,

so f(x) = x for all x ∈ [0,1].
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The uniform norm of fn − f is given by

∥fn − f∥ = ∥−
x

1 + nx
∥ = sup

x∈[0,1]

x

1 + nx
= 1

1 + n
Ð→ 0 as nÐ→∞,

so the convergence is uniform.
To justify the above statement about the supremum, let g ∶ [0,1] Ð→R be given by

g(x) = x

1 + nx
,

then
g′(x) = 1

(1 + nx)2
.

This shows that g has no stationary points in (0,1), so its extremal values must occur
at the boundary points x = 0 and x = 1. We have g(0) = 0 and g(1) = 1/(1 + n), so the
latter is the maximum value.

Exercise 3.39. Let V,W be normed spaces, with V Banach, and let f ∈ L(V,W ).
Suppose that there exists a constant c > 0 such that

∥f(v)∥W ⩾ c ∥v∥V for all v ∈ V.

Then im(f) is a closed subspace of W .

Solution. Let w ∈W and let (vn) be a sequence in V such that (f(vn)) Ð→ w in W . We
need to prove that w ∈ im(f).

For all n,m ∈N we have

∥f(vn) − f(vm)∥W = ∥f(vn − vm)∥W ⩾ c ∥vn − vm∥V .

But the sequence (f(vn)) converges, hence is Cauchy in W . Therefore the above inequality
says that the sequence (vn) is Cauchy in V . As V is Banach, we have (vn) Ð→ v ∈ V .
Since f is continuous, we have w = lim f(vn) = f(v) and w ∈ im(f).

Exercise 3.40. Consider the Hilbert space `2 of square-summable complex sequences
(a1, a2, . . . ).

Let (λn) be a bounded sequence of complex numbers and define T ∶ `2 Ð→ `2 by

T (a1, a2, . . . ) = (λ1a2, λ2a4, . . . , λna2n, . . . ).

(a) Show that T is a continuous linear operator.

(b) Compute the norm ∥T ∥.

(c) Find the adjoint operator T ∗.

Solution. Let λ = (λn). As it is bounded, ∥λ∥`∞ < ∞.
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(a) Linearity of T is straightforward. For the continuity let a = (an) ∈ `2, then

∥T (a)∥2`2 =
∞

∑
n=1

∣λna2n∣
2 ⩽ ∥λ∥2`∞

∞

∑
n=1

∣a2n∣2 ⩽ ∥λ∥2`∞ ∥a∥2`2 .

(b) From part (a) we see that
∥T ∥ ⩽ ∥λ∥`∞ .

We claim that this is actually an equality. Note that T (e2n−1) = 0 and T (e2n) = λnen,
where {en ∶ n ∈N} is the Schauder basis of `2.
Let ε > 0. Since ∥λ∥`∞ = supn ∣λn∣, there exists n ∈ N such that ∣λn∣ > ∥λ∥`∞ − ε.
Then

∥T (e2n)∥
∥e2n∥

= ∣λn∣ > ∥λ∥`∞ − ε,

so we conclude that
∥λ∥`∞ = sup

a≠0

∥T (a)∥
∥a∥

= ∥T ∥.

(c) For a = (an), b = (bn) ∈ `2 we have

⟨T (a), b⟩ =
∞

∑
n=1

λna2nbn =
∞

∑
n=1

a2n (λn bn) = ⟨a,T ∗(b)⟩

where
T ∗(b) = (0, λ1b1,0, λ2b2,0, . . . ) .

Exercise 3.41. Let X = C0([0,1],R) be the Banach space of continuous functions
f ∶ [0,1] Ð→R with the supremum norm.

Define φ ∶ X Ð→R by φ(f) = f(0) for all f ∈X.
Prove that φ is a continuous linear map.

Solution. It is clear that φ is linear:

φ(f + g) = (f + g)(0) = f(0) + g(0) = φ(f) + φ(g)

and
φ(αf) = (αf)(0) = αf(0) = αφ(f).

It is also clearly continuous:
∣φ(f)∣ = ∣f(0)∣ ⩽ ∥f∥,

as ∥f∥ is the supremum of ∣f(x)∣ for x ∈ [0,1].

Exercise 3.42. We explore the Hilbert Projection Theorem when V is a Banach space
but not a Hilbert space.

(a) Let V =R2 with the `1-norm, that is

∥(x1, x2)∥ = ∣x1∣ + ∣x2∣.
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Let Y = B1(0), the closed unit ball around 0. Find two distinct closest points in Y
to x = (−1,1) ∈ V .

(b) Can you find a similar example for V =R2 with the `∞-norm:

∥(x1, x2)∥ =max{∣x1∣, ∣x2∣}?

(c) Let V be a normed space and Y a convex subset of V . Fix x ∈ V . Let Z ⊆ Y be
the set of all closest points in Y to x. Prove that Z is convex.

Solution.

(a) Let y = (y1, y2) ∈ Y , then d(y,0) ⩽ 1.
Note that d(x,0) = 2. By the triangle inequality

d(x, y) + d(y,0) ⩾ d(x,0) ⇒ d(x, y) ⩾ d(x,0) − d(y,0) ⩾ 2 − 1 = 1.

Since this holds for all y ∈ Y , we have dY (x) ⩾ 1.
But there are (uncountably many) points of Y at distance 1 from x: take any
point y = (y1, y2) on the line segment joining (−1,0) to (0,1), then y2 = y1 + 1 with
−1 ⩽ y1 ⩽ 0 and

d(x, y) = ∣ − 1 − y1∣ + ∣y1∣ = 1 + y1 − y1 = 1.

We conclude that dY (x) = 1 and all the points on that line segment are closest
points to x.

(b) We can recreate a similar scenario for the `∞-norm on V =R2 by taking Y = B1(0)
and x = (2,0), for instance.
The same argument as in (a) gives us dY (x) = 1 and every point on the line segment
joining (1,−1) to (1,1) is at this distance from x.

(c) (Let’s note that the conclusion definitely holds for parts (a) and (b), as well as in
the Hilbert case covered by the Projection Theorem.)
Let D = dY (x).
If Z is empty it is certainly convex.
Otherwise let z1, z2 ∈ Z and let a ∈ [0,1]. Consider y = az1 + (1 − a)z2. Since
z1, z2 ∈ Z ⊆ Y and Y is convex, we have that y ∈ Y . We have

d(y, x) = ∥y − x∥ = ∥az1 + (1 − a)z2 − x∥ = ∥az1 − ax + (1 − a)z2 − (1 − a)x∥
= ∥a(z1 − x) + (1 − a)(z2 − x)∥ ⩽ ∥a(z1 − x)∥ + ∥(1 − a)(z2 − x)∥
= a∥z1 − x∥ + (1 − a)∥z2 − x∥ = aD + (1 − a)D =D.

So d(y, x) ⩽ D, but also d(y, x) ⩾ D = dY (x), so we must have d(y, x) = D and
y ∈ Z.

Exercise 3.43. Let H = `2 over R and consider the subset

W = {y = (yn) ∈ `2 ∶ yn ⩾ 0 for all n ∈N}.
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(a) Prove that W is a closed, convex subset of H. Is it a vector subspace?

(b) Find the closest point ymin ∈W to

x = (xn) = (
(−1)n
n
) = (−1, 1

2
,−1

3
, . . .)

and compute dW (x).

[Hint: You may use without proof the identity
∞

∑
n=1

1

n2
= π

2

6
.]

Solution.

(a) If y, z ∈W and a ∈ [0,1] then ay + (1 − a)z = (ayn + (1 − a)zn) and it is clear that
ayn + (1 − a)zn ⩾ 0, so W is convex.
To show that W is closed we note that

W = ⋂
n∈N

π−1n ([0,∞)),

where πn ∶ `2 Ð→R is given by πn((an)) = an. We’ve seen in Tutorial Question 10.6
that πn is continuous, so since [0,∞) is closed in R, W is the intersection of a
collection of closed subsets, hence it is closed.
Not a vector subspace because not closed under multiplication by −1 ∈R.

(b) Let y = (yn) ∈W , then

∥x − y∥2 =
∞

∑
n=1

∣(−1)
n

n
− yn∣

2

= ∑
n odd
∣− 1
n
− yn∣

2

+ ∑
n even

∣ 1
n
− yn∣

2

= ∑
n odd
∣ 1
n
+ yn∣

2

+ ∑
n even

∣ 1
n
− yn∣

2

Note that since yn ⩾ 0:

if n is odd then ∣ 1
n
+ yn∣

2

⩾ 1

n2

if n is even then ∣ 1
n
− yn∣

2

⩾ 0.

Putting this together with the previous result, we get

d(x, y)2 = ∥x − y∥2 ⩾ ∑
n odd

1

n2
.

As this holds for all y ∈W , we get that

dW (x) ⩾
√
∑

n odd

1

n2
.
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But following the calculations above it is easy to put together an element ymin =
(yn) ∈W that achieves this lower bound:

yn =
⎧⎪⎪⎨⎪⎪⎩

1
n if n is even
0 if n is odd.

Finally, to compute dW (x), note

∑
n odd

1

n2
=
∞

∑
n=1

1

n2
− ∑

n even

1

n2
=
∞

∑
n=1

1

n2
−
∞

∑
k=1

1

(2k)2
= 3

4

∞

∑
n=1

1

n2
= π

2

8
,

hence
dW (x) =

π

2
√
2
.

Exercise 3.44 (Pythagorean theorem). Let v and w be two orthogonal vectors in an
inner product space V . Prove that

∥v +w∥2 = ∥v∥2 + ∥w∥2.

Solution. Straightforward computation:

∥v +w∥2 = ⟨v +w, v +w⟩ = ⟨v, v⟩ + ⟨v,w⟩ + ⟨w, v⟩ + ⟨w,w⟩ = ∥v∥2 + ∥w∥2.

Exercise 3.45. (*) For n ∈N, consider the function fn ∶ [0,2] Ð→R defined by

fn(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n2x if 0 ⩽ x ⩽ 1
n

−n2 (x − 2
n
) if 1

n < x ⩽
2
n

0 if 2
n < x ⩽ 2.

(You might want to graph f1, f2, f3 to get a feel for what the functions look like.)
Find the pointwise limit f(x) of (fn(x)) for all x ∈ [0,2].
Show that (fn) does not converge to f with respect to the L1 norm.

Solution. The pointwise limit is the constant function zero.
We have ∥fn∥L1 = 1 for all n ∈N, so (fn) does not converge to f with respect to the L1

norm.

Exercise 3.46. (*) Given a subset S ⊆ [0,1], let 1S ∶ [0,1] Ð→R denote the character-
istic function of S, that is

1S(x) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ∈ S
0 if x ∉ S.

Consider the sequence of functions (gn) defined as follows: write n ∈N in the form

n = 2k + `, k, ` ∈ Z⩾0,0 ⩽ ` < 2k,
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then define gn ∶ [0,1] Ð→R by

gn = 1[`/2k,(`+1)/2k].

(You might want to graph g1, . . . , g5 to get a feel for what the functions look like.)
Show that (gn) converges to the constant function zero with respect to the L1 norm,

but that (gn(x)) does not converge for any x ∈ [0,1].

Solution. Note that 2k ⩽ n < 2k+1, so that we have

∥gn∥L1 = 1

2k
< 2

n
Ð→ 0 as nÐ→∞,

so (gn) Ð→ 0 with respect to the L1 norm.
However, for any x ∈ [0,1] there are infinitely many values of n for which gn(x) = 0

and infinitely many values of n for which gn(x) = 1, which means that (gn(x)) does not
converge.

Exercise 3.47. (*) Let f ∈ L(H) for a complex Hilbert space H. Prove that f is of
finite rank if and only if there exist a finite orthonormal system {un ∶ 1 ⩽ n ⩽m} and a
complex matrix C = (cij) ∈Mn(C) such that

f(x) =
m

∑
i,j=1

cij⟨x,uj⟩ui for all x ∈H.

Solution. The reverse implication is clear: if a finite orthonormal system with the given
property exists, then im(f) ⊆ Span{u1, . . . , um} is finite-dimensional.

Conversely, let {u1, . . . , uk} be an orthonormal basis of the (finite-dimensional) image
W of f . For any x ∈H, f(x) ∈W so we have

f(x) =
k

∑
i=1

⟨f(x), ui⟩ui =
k

∑
i=1

⟨x, f∗(ui)⟩ui.

Now apply Gram–Schmidt to the set {u1, . . . , uk, f∗(u1), . . . , f∗(uk)} and obtain a finite
orthonormal system {u1, . . . , um} for some m ⩾ k. In particular, for any i = 1, . . . , k we
have

f∗(ui) =
m

∑
j=1

dijuj,

so that
f(x) =

m

∑
i,j=1

cij⟨x,uj⟩ui,

where

cij =
⎧⎪⎪⎨⎪⎪⎩

dij if i ⩽ k
0 if i > k.

Exercise 3.48. (*) Let R(H) denote the set of all maps f ∈ B(H) of finite rank on a
complex Hilbert space H.

Prove that R(H) is a vector subspace of B(H).

73



3. Normed and Hilbert spaces

Solution. The constant zero map is certainly of finite rank.
If f, g ∈ R(H) then im(f) and im(g) are finite-dimensional subspaces of H. Therefore

im(f) + im(g) is a finite-dimensional subspace of H, and certainly im(f + g) ⊆ im(f) +
im(g).

If f ∈ R(H) and α ∈C then im(αf) ⊆ im(f) is finite-dimensional.

Exercise 3.49. (*) Prove that if f ∈ R(H) and g1, g2 ∈ B(H) then g2 ○ f ○ g1 ∈ R(H).

Solution. Clearly im(f ○ g1) ⊆ im(f) is finite-dimensional.
On the other hand, g2 ○ f has a finite-dimensional domain, hence a finite-dimensional

image.

Exercise 3.50. (*) Prove that if f ∈ R(H) then f∗ ∈ R(H).
[Hint: Use Exercise 3.47.]

Solution. By Exercise 3.47 we have, for all x, y ∈H:

⟨f(x), y⟩ = ⟨
m

∑
i,j=1

cij⟨x,uj⟩ui, y⟩

=
m

∑
i,j=1

cij⟨x,uj⟩⟨ui, y⟩

=
m

∑
i,j=1

⟨x, cij⟨y, ui⟩uj⟩

= ⟨x,
m

∑
i,j=1

cij⟨y, ui⟩uj⟩ ,

from which we conclude that

f∗(y) =
m

∑
i,j=1

cij⟨y, ui⟩uj for all y ∈H,

so f∗ has finite rank.

Exercise 3.51. (*) Recall the right shift operator R ∶ `2 Ð→ `2

R(a1, a2, . . . ) = (0, a1, a2, . . . ).

(a) Prove that R has no complex eigenvalues.

(b) Prove that 0 ∈ σ(R).

(c) Is R a compact map?

Solution.

(a) Suppose
(0, a1, a2, . . . ) = R(a1, a2, . . . ) = λ(a1, a2, . . . ),
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then λa1 = 0, so either λ = 0 implying that a1 = a2 = ⋅ ⋅ ⋅ = 0; or a1 = 0 which implies
that a2 = 0, and so on. In both cases the alleged eigenvector is actually the zero
vector.

(b) It is clear that R is not surjective, hence not invertible, so 0 ∈ σ(R).

(c) No, for the same reason that id`2 is not compact: R(D1(0)) contains {e2, e3, e4, . . .},
hence a sequence that has no convergent subsequences.

Exercise 3.52. (*) Let H be a complex Hilbert space and let

GL(H) = {f ∈ L(H) ∶ f is invertible}.

For f ∈ GL(H), prove that

Br(f) ⊆ GL(H) where r = ∥f−1∥−1.

[Hint: Given g ∈ Br(f), consider i ∶= −f−1 ○ (g − f) and use Proposition 3.72 to show that
idH −i is invertible.]

Conclude that GL(H) is an open subset of L(H).

Solution. Take g ∈ Br(f), then ∥g − f∥ < r. Let i = −f−1 ○ (g − f), then

∥i∥ = ∥f−1 ○ (g − f)∥ ⩽ ∥f−1∥ ∥g − f∥ < ∥f−1∥r = 1,

so by Proposition 3.72 we get that idH −i is invertible. But then

f ○ ( idH −i) = f ○ ( idH +f−1 ○ (g − f)) = f + g − f = g,

so g is the composition of two invertible maps, hence is itself invertible.

Exercise 3.53. (*) Prove that the spectrum of any f ∈ L(H) is a compact set.
[Hint: Use Exercise 3.52 to show that the resolvent ρ(f) is an open subset of C, then

use Corollary 3.73.]

Solution. Consider the map Ff ∶ CÐ→ L(H) given by

Ff(λ) = f − λ idH .

This is a continuous function (check this!), and ρ(f) = F −1f (GL(H)) is an open subset
of C, hence σ(f) is a closed subset of C. But by Corollary 3.73 σ(f) is a subset of the
compact disc (sic) D∥f∥(0), so it is compact.

Exercise 3.54. (*) Let f ∈ L(H) be a self-adjoint map on a complex Hilbert space H
and let a + ib ∈C. Prove that

∥(f − (a + ib) idH )(x)∥ ⩾ ∣b∣ ∥x∥ for all x ∈H.

[Hint: Expand ∥(f − (a+ ib) idH)(x)∥2 using the inner product, take advantage of f∗ = f ,
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and manipulate until you get a sum of two squares, one of which is b2∥x∥2.]

Solution. We follow the hint:

∥(f − (a + ib) idH )∥
2 = ⟨(f − (a + ib) idH )(x), (f − (a + ib) idH )(x)⟩
= ⟨(f − (a + ib) idH )(x), (f − (a − ib) idH )

∗(x)⟩
= ⟨(f − (a − ib) idH )(f − (a + ib) idH )(x), x⟩
= ⟨((f − a idH)2 + b2 idH )(x), x⟩

= ⟨(f − a idH )
2(x), x⟩ + b2∥x∥2

= ∥(f − a idH)2(x)∥
2 + b2∥x∥2

⩾ b2∥x∥2.

Exercise 3.55. (*) Let X be a metric space that has at least two elements and let A be
a subalgebra of C0(X,R).

We say that A separates points of X if for any x,x′ ∈X with x ≠ x′ there exists f ∈ A
such that f(x) ≠ f(x′).

We say that A is non-vanishing on X if for any x ∈ X there exists f ∈ A such that
f(x) ≠ 0.

Prove that A interpolates pairs of points on X if and only if A separates points of X
and is non-vanishing on X.

[Hint: For the “if” direction, given (x, y), (x′, y′) ∈ X ×R with x ≠ x′, find elements
k, k′ ∈ A such that k(x) = 0, k(x′) ≠ 0, k′(x) ≠ 0, k′(x′) = 0.]

Solution. Suppose A interpolates pairs of points on X. Let x ≠ x′ with x,x′ ∈ X and
consider the pair of points (x,0), (x′,1) ∈X ×R. Then there exists f ∈ A such that

f(x) = 0 ≠ 1 = f(x′),

therefore A separates points of X.
Now let x ∈ X. Choose x′ ∈ X such that x′ ≠ x and consider the pair of points
(x,1), (x′,0) ∈ X ×R, then there exists f ∈ A such that f(x) = 1 ≠ 0. Therefore A is
non-vanishing on X.

Conversely, suppose A separates points of X and is non-vanishing on X and let
(x, y), (x′, y′) ∈X ×R with x ≠ x′. Then there exist elements g, h, h′ ∈ A such that

g(x) ≠ g(x′), h(x) ≠ 0, h′(x′) ≠ 0.

Define k, k′ ∈ A by

k(t) = (g(t) − g(x))h′(t)
k′(t) = (g(t) − g(x′))h(t),

then
k(x) = 0, k(x′) ≠ 0, k′(x) ≠ 0, k′(x′) = 0.

Finally let
f(t) = y

k′(x)
k′(t) + y′

k(x′)
k(t).
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Exercise A.1. Let V be a vector space over F. Prove that End(V ) ∶= Hom(V,V ) is an
associative unital F-algebra under composition of functions.

Solution. TODO

Exercise A.2. Let V,W be vector spaces over F and let B be a basis of V . Suppose
g ∶ B Ð→W is a function, and let f ∶ V Ð→W be its extension to V by linearity.

Prove that

(a) f is injective if and only if g(B) is linearly independent in W ;

(b) f is surjective if and only if g(B) spans W ;

(c) f is bijective if and only if g(B) is a basis for W .

Solution. TODO

Exercise A.3. If S and T are subspaces of a vector space V with field of scalars F, then
so are S + T and αS for any α ∈ F.

Solution. TODO

Exercise A.4. Let V = F[x] be the vector space of polynomials in one variable with
coefficients in F. Given a scalar α ∈ F, consider the function evα ∶ V Ð→ F given by
evaluation at α:

evα(f) = f(α).

Prove that evα ∈ V ∨.

Solution. We have to prove that evα ∶ V Ð→ F is linear.
If f1, f2 ∈ F[x], then

evα(f1 + f2) = (f1 + f2)(α) = f1(α) + f2(α) = evα(f1) + evα(f2).

If f ∈ F[x] and λ ∈ F, then

evα(λf) = (λf)(α) = λf(α) = λ evα(f).

Exercise A.5. In the setup of Proposition A.4, suppose W = V so that T ∶ V Ð→ V and
T ∨ ∶ V ∨ Ð→ V ∨.

Let M be the matrix representation of T with respect to an ordered basis B of V , and
let M∨ be the matrix representation of T ∨ with respect to the dual basis B∨.
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Express M∨ in terms of M .

Solution. As in Proposition A.2, we have B = (v1, . . . , vn) and B∨ = (v∨1 , . . . , v∨n). Write
(aij) for the entries of the matrix M . For future reference, the i-th row of M is

[ai1 ai2 . . . ain] .

By the definition of matrix representations, we have

T (v1) = a11v1 + a21v2 + ⋅ ⋅ ⋅ + an1vn
T (v2) = a12v1 + a22v2 + ⋅ ⋅ ⋅ + an2vn

⋮
T (vn) = a1nv1 + a2nv2 + ⋅ ⋅ ⋅ + annvn.

The i-th column of M∨ is given by the B∨-coordinates of the vector T ∨(v∨i ) = v∨i ○ T . To
determine these, we apply v∨i ○ T to the basis vectors v1, . . . , vn:

T ∨(v∨i )(vj) = (v∨i ○ T )(vj) = v∨i (T (vj)) = v∨i (a1jv1 + a2jv2 + ⋅ ⋅ ⋅ + anjvn) = aij.

This means that
T ∨(v∨i ) = ai1v∨1 + ai2v∨2 + ⋅ ⋅ ⋅ + ainv∨n

and the i-th column of M∨ is
⎡⎢⎢⎢⎢⎢⎢⎢⎣

ai1
ai2
⋮
ain

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

precisely the i-th row of M .
We conclude that M∨ =MT , the transpose of the matrix M .

Exercise A.6. Let v1, . . . , vn ∈ V . Define Γ ∶ V ∨ Ð→ Fn by

Γ(ϕ) =
⎡⎢⎢⎢⎢⎢⎣

ϕ(v1)
⋮

ϕ(vn)

⎤⎥⎥⎥⎥⎥⎦
.

(a) Prove that Γ is a linear transformation.

(b) Prove that Γ is injective if and only if {v1, . . . , vn} spans V .

(c) Prove that Γ is surjective if and only if {v1, . . . , vn} is linearly independent.

Solution.

(a) Given ϕ1, ϕ2 ∈ V ∨, we have

Γ(ϕ1 + ϕ2) = ((ϕ1 + ϕ2)(v1), . . . , (ϕ1 + ϕ2)(vn))
= (ϕ1(v1), . . . , ϕ1(vn)) + (ϕ2(v1), . . . , ϕ2(vn))
= Γ(ϕ1) + Γ(ϕ2).
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Given ϕ ∈ V ∨ and λ ∈ F, we have

Γ(λϕ) = ((λϕ)(v1), . . . , (λϕ)(vn))
= (λϕ(v1), . . . , λϕ(vn))
= λΓ(ϕ).

(b) Suppose Γ is injective. Let W = Span{v1, . . . , vn}. We want to prove that W = V .
Suppose W ≠ V . Let C = {w1, . . . ,wk} be a basis of W and extend it to a basis
B = {w1, . . . ,wk,wk+1, . . . ,wm} of V .
Let B∨ be the dual basis to B and consider its last element v∨m given by

v∨m(a1w1 + ⋅ ⋅ ⋅ + amwm) = am.

Then v∨m ≠ 0 (since v∨m(wm) = 1, for instance) but v∨m(w) = 0 for all w ∈ W . In
particular, v∨m(v1) = ⋅ ⋅ ⋅ = v∨m(vn) = 0, so Γ(v∨m) = 0, contradicting the injectivity of
Γ.
We conclude that W = V , in other words {v1, . . . , vn} spans V .
Conversely, suppose {v1, . . . , vn} spans V . If ϕ1, ϕ2 ∈ V ∨ are such that Γ(ϕ1) =
Γ(ϕ2), then Γ(ϕ1 −ϕ2) = 0, so setting ϕ = ϕ1 −ϕ2, we want to show that ϕ = 0, the
constant zero function.
If ϕ ≠ 0, then there exists v ∈ V − {0} such that ϕ(v) ≠ 0. Since {v1, . . . , vn} spans
V , then we can write v as

v = b1v1 + ⋅ ⋅ ⋅ + bnvn.

But Γ(ϕ) = 0, so
0 ≠ ϕ(v) = b1ϕ(v1) + ⋅ ⋅ ⋅ + bnϕ(vn) = 0,

which is a contradiction. So we must have ϕ = 0, that is ϕ1 = ϕ2. We conclude that
Γ is injective.

(c) Suppose Γ ∶ V ∨ Ð→ Fn is surjective. Let

a1v1 + ⋅ ⋅ ⋅ + anvn = 0

be a linear relation.
Let i ∈ {1, . . . , n}. Since Γ is surjective, given the standard basis vector ei ∈ Fn (1
in the i-th entry), there exists ϕi ∈ V ∨ such that Γ(ϕi) = ei. If we apply ϕi on both
sides of the linear relation, we get

ai = 0.

Since this holds for all i, the relation is trivial.
Conversely, suppose {v1, . . . , vn} is linearly independent. This set can be enlarged
to a basis B = {v1, . . . , vn, vn+1, . . . , vm} of V , with dual basis v∨1 , . . . , v∨m.
Now take an arbitrary vector in Fn:

w =
⎡⎢⎢⎢⎢⎢⎣

a1
⋮
an

⎤⎥⎥⎥⎥⎥⎦
.
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A. Appendix

Let
ϕ = a1v∨1 + ⋅ ⋅ ⋅ + anv∨n,

then

Γ(ϕ) =
⎡⎢⎢⎢⎢⎢⎣

a1
⋮
an

⎤⎥⎥⎥⎥⎥⎦
= w.

We conclude that Γ is surjective.
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