Tutorial Week 5

Topics: Topological groups, sequences.

- **5.1.** Let d_1 and d_2 be equivalent metrics (they define the same topology) on a set X. Prove that a sequence converges to a point x in (X, d_1) if and only if it converges to x in (X, d_2) .
- **5.2.** Let (x_n) be a sequence in a metric space X, let $\varphi \colon \mathbf{N} \to \mathbf{N}$ be an injective function, and consider the sequence $(y_n) = (x_{\varphi(n)})$ in X. Prove that if (x_n) converges to x, then so does (y_n) .

Does the converse hold?

5.3. (*) Let $N^* = N \cup \{\infty\}$ and define

$$\mathcal{T} = \mathcal{P}(\mathbf{N}) \cup \{U \in \mathcal{P}(\mathbf{N}^*) : \infty \in U \text{ and } \mathbf{N}^* \setminus U \text{ is finite}\}.$$

- (a) Prove that \mathcal{T} is a topology on \mathbb{N}^* .
- (b) Prove that (N^*, \mathcal{T}) is compact.
- (c) Let X be a metric space and $f: (\mathbf{N}^*, \mathcal{T}) \longrightarrow X$. Prove that f is continuous if and only if (f(n)) converges to $f(\infty)$. (In other words, convergent sequences in X are exactly continuous functions from $(\mathbf{N}^*, \mathcal{T})$ to X.)
- (d) Let X be a metric space and let (x_n) be a sequence in X that converges to a point x in X. Prove that $\{x\} \cup \{x_n : n \in \mathbb{N}\}$ is compact.
- **5.4.** Let (X, d_X) and (Y, d_Y) be metric spaces and let d be the sup norm metric on $X \times Y$:

$$d((x_1, y_1), (x_2, y_2)) = \max(d_X(x_1, x_2), d_Y(y_1, y_2)).$$

Prove that $((x_n, y_n)) \longrightarrow (x, y) \in X \times Y$ if and only if $(x_n) \longrightarrow x \in X$ and $(y_n) \longrightarrow y \in Y$.

- **5.5.** (*) Let G be a topological group and let H be a subgroup of G.
 - (a) Prove that H is closed if it is open. Does the converse hold?
 - (b) Prove that H is open if it is closed and has finite index. Does the converse hold?
 - (c) Suppose G is compact and H is open. Prove that H has finite index.
 - (d) Is the compactness of G necessary in part (c)?
- **5.6.** (*) Let S and T be subsets of a topological group G. Define

$$ST = \{st : s \in S \text{ and } t \in T\}.$$

- (a) Suppose S and T are open. Prove that ST is open.
- (b) Suppose S and T are connected. Prove that ST is connected.
- (c) Suppose S and T are compact. Prove that ST is compact.
- (d) Suppose S is compact and T is closed. Prove that ST is closed.

[Hint: Use Theorem 2.39 after checking that

$$ST = \pi_2 (j^{-1}(m^{-1}(T))),$$

where $m: G \times G \longrightarrow G$ is the multiplication map of G, j is the inclusion of $S^{-1} \times G$ into $G \times G$, and $\pi_2: S^{-1} \times G \longrightarrow G$ is the projection onto the second factor.

(e) Assuming without proof the fact that $\mathbf{Z} + \pi \mathbf{Z}$ is dense in \mathbf{R} , convince yourself that ST need not be closed even if both S and T are.