Tutorial Week 8

Topics: normed vector spaces, inner product spaces.

8.1. (*) Let V be a normed vector space. Prove that (V, +) is a topological group.

8.2. Let $(V, \|\cdot\|)$ be a normed space and let $S \subseteq V$ be a subset. Prove that the closure $\overline{\text{Span}(S)}$ of the span of S is the smallest closed subspace of V that contains S.

8.3. Let v be a non-zero vector in a normed vector space V. Prove that the one-dimensional subspace $\mathbf{F}v \coloneqq \operatorname{Span}(v)$ of V is isometric to \mathbf{F} .

8.4. Let W be a finite-dimensional subspace of a normed vector space V. Prove that W is a closed subset of V.

8.5. Prove that equivalence of norms is an equivalence relation.

8.6. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two equivalent norms on a vector space V.

- (a) Prove that the identity function $\mathrm{id}_V \colon (V, \|\cdot\|_1) \longrightarrow (V, \|\cdot\|_2)$ is uniformly continuous.
- (b) Prove that $(V, \|\cdot\|_1)$ is Banach if and only if $(V, \|\cdot\|_2)$ is Banach.
- 8.7. Prove that the following norms on \mathbb{R}^n are not defined by inner products:
 - (a) the ℓ^1 -norm defined by

$$\|(x_1,\ldots,x_n)\|_1 = \sum_{i=1}^n |x_i|,$$

(b) the ℓ^{∞} -norm defined by

$$\|(x_1,\ldots,x_n)\|_{\infty} = \max\{|x_1|,\ldots,|x_n|\}$$

8.8. Let $(V, \langle \cdot, \cdot \rangle)$ be a complex inner product space and let $T: V \longrightarrow V$ be a linear operator. Show that T = 0 if and only if $\langle Tv, v \rangle = 0$ for every vector v in V.

Is this true for real inner product spaces?