Tutorial Week 10

Topics: continuous linear transformations, series, projections.

10.1. Prove that all linear transformations between finite-dimensional normed vector spaces are continuous.

10.2. Let $f_1: V \longrightarrow W_1$ and $f_2: V \longrightarrow W_2$ be two continuous linear transformations between normed vector spaces. Prove that the function $f: V \longrightarrow W_1 \times W_2$ defined by $f(v) = (f_1(v), f_2(v))$ is a continuous linear transformation.

10.3. Let c_{00} be the space of sequences with only finitely many nonzero terms (see Example 3.23), which is considered as a subspace of ℓ^{∞} . Let $f: c_{00} \longrightarrow \mathbf{F}^{\mathbf{N}}$ be the function defined by $(f(v))_n = nv_n$.

- (a) Prove that the image of the function f is contained in ℓ^{∞} .
- (b) Let $g: c_{00} \longrightarrow \ell^{\infty}$ be the function defined by g(v) = f(v). Prove that g is not continuous.
- (c) Prove that there exists a discontinuous linear transformation from l[∞] to itself. In this part, you can use the following fact:

Let V and W be **F**-vector spaces. If S is a subspace of V and if $\phi: S \longrightarrow W$ is a linear transformation, then there exists a linear transformation $\tilde{\phi}: V \longrightarrow W$ such that $\phi = \tilde{\phi}|_S$.

10.4. If $f \in L(V, W)$ with V, W normed spaces, and the series

$$\sum_{n=1}^{\infty} \alpha_n v_n, \qquad \alpha_n \in \mathbf{F}, v_n \in V,$$

converges in V, then the series

$$\sum_{n=1}^{\infty} \alpha_n f(v_n)$$

converges in W to the limit

$$f\left(\sum_{n=1}^{\infty} \alpha_n v_n\right).$$

10.5.

(a) Prove that the function $f: \ell^1 \longrightarrow \mathbf{F}$ defined by

$$f((a_n)) = \sum_{n=1}^{\infty} a_n.$$

is continuous.

(b) Prove that the following subset is a closed subspace of ℓ^1 :

$$S = \left\{ \left(a_n\right) \in \ell^1 \colon \sum_{n=1}^{\infty} a_n = 0 \right\}.$$

10.6. Fix $j \in \mathbf{N}$ and consider the map $\pi_j \colon \mathbf{F}^{\mathbf{N}} \longrightarrow \mathbf{F}$ given by

$$\pi_j((a_n)) = a_j.$$

- (a) Show that π_j is linear.
- (b) Prove that the restriction of π_j to ℓ^p for $1 \leq p \leq \infty$ is continuous and surjective.

10.7. Let V be a normed space and φ, ψ be commuting projections: $\varphi \circ \psi = \psi \circ \varphi$. Prove that $\varphi \circ \psi$ is a projection with image im $\varphi \cap \operatorname{im} \psi$.

10.8. Let φ be a nonzero orthogonal projection (that is, φ is not the constant function 0) on an inner product space V. Prove that $\|\varphi\| = 1$.