Tutorial Week 12

Topics: Orthogonal systems, orthogonal bases, the Stone–Weierstrass theorem.

12.1. Let $(u_i)_{i \in I}$ be an orthonormal basis of an inner product space V and let $v \in V$. Prove that v = 0 if and only if $\langle v, u_i \rangle = 0$ for every index $i \in I$.

12.2. In this question, we re-examine the Cauchy–Schwarz inequality in retrospect. Let u be a vector of norm 1 in an inner product space V. Define $\pi_u \colon V \longrightarrow V$ by

$$\pi_u(v) = \langle v, u \rangle u.$$

- (a) Prove that π_u is a linear transformation.
- (b) Let v be a vector in V. Prove that $\pi_u(v)$ is orthogonal to $(\mathrm{id}_V \pi_u)(v)$.
- (c) Let v be a vector in V. Prove that $||\pi_u(v)|| = |\langle v, u \rangle|$.
- (d) Prove the Cauchy-Schwarz inequality: if v and w are vectors in V, then

$$|\langle v, w \rangle| \leq ||v|| ||w||.$$

(e) Prove that π_u is an orthogonal projection with image **F***u*.

12.3. In this question, we generalise the results in Question 12.2.

Let $\{u_1, \ldots, u_n\}$ be an orthonormal system in an inner product space V and let U be the span of the orthonormal system. Write π_1, \ldots, π_n for the projections $\pi_{u_1}, \ldots, \pi_{u_n}$ defined in Question 12.2 and put

$$\pi = \pi_1 + \dots + \pi_n$$

(a) Prove that

$$\pi_i \circ \pi_j = \begin{cases} \pi_i & \text{if } i = j, \\ 0 & \text{otherwise} \end{cases}$$

- (b) Prove that π is an orthogonal projection with image U.
- (c) Let v be a vector in V. Prove that

$$\|\pi(v)\|^2 = \sum_{i=1}^n |\langle v, u_n \rangle|^2.$$

(d) Use part (c) to prove the following finite version of the *Bessel's inequality*: if v is a vector in V, then

$$\|v\|^2 \ge \sum_{i=1}^n |\langle v, u_i \rangle|^2.$$

We say that a subalgebra \mathcal{C} of $C_0(X, \mathbf{F})$ separates points if for every pair of points x and yin X there is a function f in \mathcal{C} such that $f(x) \neq f(y)$. We say that a subalgebra \mathcal{C} of $C_0(X, \mathbf{F})$ is non-vanishing if for every point x in X there is a function f in \mathcal{C} such that $f(x) \neq 0$.

12.4. (*) Let \mathcal{C} be a non-vanishing subalgebra of $C_0(X, \mathbf{F})$ that separates points.

- (a) Given two points x and y in X, find a function h in C such that h(x) = 0 and $h(y) \neq 0$.
- (b) Prove that \mathcal{C} interpolates pairs of points.

If X is a compact metric space and $f: X \longrightarrow \mathbf{C}$ is a function, then we write $\overline{f}: X \longrightarrow \mathbf{C}$ for the function defined by

$$\overline{f}(x) = f(x).$$

Given a subalgebra \mathcal{C} of $C_0(X, \mathbb{C})$, we say \mathcal{C} is closed under complex conjugation if $f \in \mathcal{C}$ implies $\overline{f} \in \mathcal{C}$.

12.5. Let X be a compact metric space and let \mathcal{C} be a non-vanishing subalgebra of $C_0(X, \mathbb{C})$. Suppose \mathcal{C} is closed under complex conjugation and separates points.

- (a) Let $\mathcal{C}_{\mathbf{R}} = \mathcal{C} \cap C_0(X, \mathbf{R})$. Prove that $\mathcal{C}_{\mathbf{R}}$ is dense in $C_0(X, \mathbf{R})$.
- (b) Prove that \mathcal{C} is dense in $C_0(X, \mathbf{C})$.

12.6. (*) Let $(u_i)_{i \in I}$ be an orthonormal basis of an inner product space V (not necessarily separable) and let v be a vector in V.

(a) Given a positive integer n, define

$$J_n = \Big\{ i \in I \mid |\langle v, u_i \rangle| > \frac{1}{n} \Big\}.$$

Prove that J_n has at most $n^2 ||v||^2$ elements.

(b) Put

$$I_v = \left\{ i \in I \mid |\langle v, u_i \rangle| \neq 0 \right\}.$$

Prove that I_v is countable.

(c) Choose a bijection $o: \mathbf{N} \longrightarrow I_v$. Prove that

$$v = \sum_{n=1}^{\infty} \langle v, u_{o(n)} \rangle u_{o(n)}.$$

(d) Justify the notation

$$\sum_{i \in I} \langle v, u_i \rangle u_i$$

and convince yourself that

$$v = \sum_{i \in I} \langle v, u_i \rangle u_i.$$