Tutorial Week 12

Topics: Orthogonal systems, orthogonal bases, the Stone–Weierstrass theorem.

12.1. Let $(u_i)_{i\in I}$ be an orthonormal basis of an inner product space V and let $v \in V$. Prove that $v = 0$ if and only if $\langle v, u_i \rangle = 0$ for every index $i \in I$.

12.2. In this question, we re-examine the Cauchy–Schwarz inequality in retrospect. Let u be a vector of norm 1 in an inner product space V. Define $\pi_u: V \longrightarrow V$ by

$$
\pi_u(v) = \langle v, u \rangle u.
$$

- (a) Prove that π_u is a linear transformation.
- (b) Let v be a vector in V. Prove that $\pi_u(v)$ is orthogonal to $(\mathrm{id}_V \pi_u)(v)$.
- (c) Let v be a vector in V. Prove that $\|\pi_u(v)\| = |\langle v, u \rangle|$.
- (d) Prove the *Cauchy–Schwarz inequality*: if v and w are vectors in V, then

$$
|\langle v, w \rangle| \leq ||v|| \, ||w||.
$$

(e) Prove that π_u is an orthogonal projection with image $\mathbf{F}u$.

12.3. In this question, we generalise the results in [Question 12.2.](#page-0-0)

Let $\{u_1, \ldots, u_n\}$ be an orthonormal system in an inner product space V and let U be the span of the orthonormal system. Write π_1, \ldots, π_n for the projections $\pi_{u_1}, \ldots, \pi_{u_n}$ defined in [Question 12.2](#page-0-0) and put

$$
\pi = \pi_1 + \dots + \pi_n.
$$

(a) Prove that

$$
\pi_i \circ \pi_j = \begin{cases} \pi_i & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}
$$

- (b) Prove that π is an orthogonal projection with image U.
- (c) Let v be a vector in V. Prove that

$$
||\pi(v)||^2 = \sum_{i=1}^n | \langle v, u_n \rangle |^2.
$$

(d) Use part (c) to prove the following finite version of the *Bessel's inequality*: if v is a vector in V , then

$$
||v||^2 \geqslant \sum_{i=1}^n \bigl| \langle v, u_i \rangle \bigr|^2.
$$

We say that a subalgebra C of $C_0(X, \mathbf{F})$ *separates points* if for every pair of points x and y in X there is a function f in C such that $f(x) \neq f(y)$. We say that a subalgebra C of $C_0(X, \mathbf{F})$ is *non-vanishing* if for every point x in X there is a function f in C such that $f(x) \neq 0$.

12.4. (*) Let C be a non-vanishing subalgebra of $C_0(X, \mathbf{F})$ that separates points.

- (a) Given two points x and y in X, find a function h in C such that $h(x) = 0$ and $h(y) \neq 0$.
- (b) Prove that $\mathcal C$ interpolates pairs of points.

If X is a compact metric space and $f: X \longrightarrow \mathbb{C}$ is a function, then we write $\overline{f}: X \longrightarrow \mathbb{C}$ for the function defined by

$$
\overline{f}(x)=f(x).
$$

Given a subalgebra C of $C_0(X, \mathbb{C})$, we say C is *closed under complex conjugation* if $f \in \mathcal{C}$ implies $\overline{f} \in \mathcal{C}$.

12.5. Let X be a compact metric space and let C be a non-vanishing subalgebra of $C_0(X, \mathbb{C})$. Suppose $\mathcal C$ is closed under complex conjugation and separates points.

- (a) Let $\mathcal{C}_{\mathbf{R}} = \mathcal{C} \cap C_0(X, \mathbf{R})$. Prove that $\mathcal{C}_{\mathbf{R}}$ is dense in $C_0(X, \mathbf{R})$.
- (b) Prove that $\mathcal C$ is dense in $C_0(X, \mathbb C)$.

12.6. (*) Let $(u_i)_{i\in I}$ be an orthonormal basis of an inner product space V (not necessarily separable) and let v be a vector in V .

(a) Given a a positive integer n , define

$$
J_n = \left\{ i \in I \mid \left| \langle v, u_i \rangle \right| > \frac{1}{n} \right\}.
$$

Prove that J_n has at most $n^2 ||v||^2$ elements.

(b) Put

$$
I_v = \Big\{ i \in I \mid |\langle v, u_i \rangle| \neq 0 \Big\}.
$$

Prove that I_v is countable.

(c) Choose a bijection $o: \mathbb{N} \longrightarrow I_v$. Prove that

$$
v = \sum_{n=1}^{\infty} \langle v, u_{o(n)} \rangle u_{o(n)}.
$$

(d) Justify the notation

$$
\sum_{i\in I}\langle v,u_i\rangle u_i
$$

and convince yourself that

$$
v=\sum_{i\in I}\langle v,u_i\rangle u_i.
$$