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Tutorial Week 4
Topics: Connectedness, closed functions, compactness.

4.1. Prove that if a topological space X admits a connected dense subset D, then X is itself
connected.

Solution. If the topological space is empty, then the statement follows from Example 2.28.
So we can suppose X is nonempty. Since the closure of ∅ in X is still empty, we see that the
dense subset D cannot be empty, so we can pick an element x of D.

Let f ∶ X Ð→ {0,1} be a continuous function, where {0,1} is given the discrete topol-
ogy. Since f is continuous, it follows from Exercise 2.13 that f−1(f(x)) is closed. By
Proposition 2.29, the restriction of f to D is constant, so D ⊆ f−1(f(x)), and therefore
X =D ⊆ f−1(f(x)). Hence f is constant, which implies that X is connected.

Solution. (Alternative): Suppose X is disconnected, so X = U ∪V with U,V open, non-empty,
and disjoint. Then D ⊆ U ∪ V with D ∩U ≠ ∅, D ∩ V ≠ ∅ (because D is dense), and of course
D ∩U ∩ V = ∅, implying that D is a disconnected subset of X by Proposition 2.27.

4.2. Let C1 and C2 be two connected subsets of a topological space X such that C1 ∩C2 ≠ ∅.
Prove that C1 ∪C2 is connected.

Solution. Let f ∶ C1∪C2 Ð→ {0,1} be a continuous function, where {0,1} is given the discrete
topology. Since C1∩C2 is non-empty, we can pick an element x of C1∩C2. By Proposition 2.29,
the restriction of f to C1 and C2 are both constant. Hence we have f(x) = f(y) for every
element y of C1 ∪C2; in other words, f is a constant function on C1 ∪C2. By Proposition 2.29,
this implies C1 ∪C2 is connected.

4.3. Let X be a topological space. Suppose A is a connected subset of X and {Ci ∶ i ∈ I} is
an arbitrary collection of connected subsets of X such that A ∩Ci ≠ ∅ for all i ∈ I. Then

A ∪⋃
i∈I

Ci

is a connected subset of X.

Solution. Let f ∶ A ∪ ⋃i∈I Ci Ð→ {0,1} be a continuous function, where {0,1} is given the
discrete topology. Pick an element a of A and consider an arbitrary element x of A ∪⋃i∈I Ci.
If x ∈ A, then the connectedness of A and Proposition 2.29 imply f(x) = f(a). If x ∈ Ci for
some i ∈ I, then it follows from Question 4.3 and Proposition 2.29 that f(x) = f(a). Hence f
is constant, which implies A ∪⋃i∈I Ci is connected.

4.4. Let X and Y be non-empty topological spaces. Prove that X × Y is connected if and
only if both X and Y are connected.

Solution. Suppose X × Y is connected. Recall from Proposition 2.19 that the projections
πX ∶ X ×Y Ð→X and πY ∶ X ×Y Ð→ Y are continuous. It then follows from Proposition 2.30
that X = πX(X × Y ) and Y = πY (X × Y ) are connected.

Conversely, suppose that both X and Y are connected. Let f ∶ X × Y Ð→ {0,1} be a
continuous function, where {0,1} is given the discrete topology. Consider two elements (x1, y1)
and (x2, y2) of X ×Y . It follows from Exercise 2.20 that {x1} ×Y is homeomorphic to Y , and
is therefore connected. This implies that f is constant when restricted to {x1} × Y . Similarly,
f is constant when restricted to X × {y2} because Y is connected. Hence

f(x1, y1) = f(x1, y2) = f(x2, y2),

and therefore X × Y is connected.
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4.5. (a) Prove that the composition of two closed maps is a closed map.

(b) Prove that a continuous bijection between topological spaces is a homeomorphism if
and only if it is closed.

Solution.

(a) Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be the two closed maps. Suppose F is a closed subset
of X. Since f is a closed map, it follows that f(F ) is a closed subset. Since g is a closed
map, we see that g(f(F )) = (g ○ f)(F ) is a closed subset. Hence g ○ f is a closed map.

(b) Let f ∶ X Ð→ Y be a continuous bijection between topological spaces and let g ∶ Y Ð→X
be its inverse.
Suppose f is a homeomorphism. If F is a closed subset of X, then f(F ) = g−1(F ) is
closed by continuity of g. Hence f is a closed map.
Conversely, suppose f is a closed map. If F is a closed subset of X, then g−1(F ) = f(F )
is closed. It then follows from Exercise 2.13 that g is continuous, and therefore f is a
homeomorphism.

4.6. Prove that every finite topological space is compact.

Solution. Let X be a finite topological space and consider an open cover {Ui ∶ i ∈ I} of X.
For every point x in X, pick a member Ux of {Ui ∶ i ∈ I} such that x ∈ Ux. Now {Ux ∶ x ∈X}
is a finite sub-cover of {Ui ∶ i ∈ I}. Hence X is compact.

4.7. Let X be a topological space and let K be a subset of X. We will say that K is a compact
subspace of X if the subspace topology on K ⊆X makes K into a compact topological space.

Prove that K is a compact subset of X (as defined at the start of Section 2.5 in the lecture
notes) if and only if it is a compact subspace of X (as defined above).

(In other words, compactness is an intrinsic property of topological spaces: it does not
depend on the ambient topological space.)

Solution. Suppose K is compact as a topological space with the subspace topology from X.
Let ι ∶ K Ð→ X be the inclusion function, which is continuous by Exercise 2.23. It then
follows from Proposition 2.37 that ι(K) is a compact subset of X.

Conversely, suppose K is a compact subset of X. Let {Ui ∶ i ∈ I} be an open cover of K in
the subspace K. By the definition of the subspace topology, for every Ui there exists an open
subset Vi of X such that Ui =Ki ∩K. Since {Ui ∶ i ∈ I} is an open cover of K in the subspace
K, it follows that {Vi ∈ i ∈ I} is an open cover of K in X. The compactness of K as a subset
of X then implies there exists a finite subset J of I such that K ⊆ ⋃j∈J Vj, and thereforoe

K =K ∩ (⋃
j∈J

Vj) = ⋃
j∈J

(K ∩ Vj) = ⋃
j∈J

Uj.

Hence {Ui ∶ i ∈ I} has a finite sub-cover, which implies K is compact as a subspace of X.

4.8. Let K and L be compact subsets of a topological space X. Prove that K ∪L is compact.

Solution. Consider an arbitrary open cover of K ∪L:

K ∪L ⊆ ⋃
i∈I

Ui.

This is also an open cover of K, so there is a finite subcover that still covers K:

K ⊆
N

⋃
n=1

Uin , in ∈ I.
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Similarly, we get a finite subcover that covers L:

L ⊆
M

⋃
m=1

Ujm , jm ∈ I.

Letting S = {i1, . . . , iN} ∪ {j1, . . . , jM}, we get a finite subcover that covers K ∪L:

K ∪L ⊆ ⋃
s∈S

Us.

4.9. Let X be a discrete topological space.

(a) Prove that X is compact if and only if X is finite.

(b) Prove that X is connected if and only if X is empty or is a singleton.

Solution.

(a) If X is finite, then X is compact by Question 4.6.
Conversely, suppose X is compact and consider the open cover {{x} ∶ x ∈ X}. Its
only subcover is itself (any proper subcollection will miss some points of X), but by
compactness it admits a finite subcover, so the cover itself must have been finite, hence
X is finite.

(b) It follows from Example 2.28 that X is connected if it is empty or is a singleton.
Conversely, if x1 ≠ x2 are elements of X, then {x1} and X ∖ {x1} are two disjoint
non-empty open subsets of X such that their union is X, so X is disconnected.

4.10. Let X be a compact topological space and let Y be a Hausdorff topological space.
Prove that every continuous bijection from X to Y is a homeomorphism.

Solution. Let f ∶ X Ð→ Y be a continuous bijection. We will prove f is a closed map; it will
then follow from part (b) of Question 4.5 that f is a homeomorphism.

If F is a closed subset of X, then it is compact by Proposition 2.36. It follows from
Proposition 2.37 that f(F ) is compact, which implies it is a closed subset by Proposition 2.35.
Hence f is a closed map.

Recall that a topological space is totally disconnected if its only connected subsets are ∅
and the singletons.

4.11. (*) A topological space X is called totally separated if for every pair (x, y) of distinct
points in X there exist disjoint clopen neighbourhoods U and V of x and y respectively. Prove
that every totally separated space is totally disconnected.

Solution. Let X be a totally separated space and let S be a subset of X with two distinct points
x and y. It follows from total separatedness that there exists disjoint clopen neighbourhoods
U and V of x and y respectively. Since U is clopen and does not contain y, it follows that
X ∖ U is a clopen neighbourhood of y. Moreover, S ∩ U and S ∩ (X ∖ U) are two disjoint
open sets in S such that their union is S. Hence S is not connected, and therefore the only
connected subsets of X are the empty set and the singletons; in other words, X is totally
disconnected.

4.12. (*) Prove that the following are totally disconnected:

(a) Q equipped with the Euclidean topology;
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(b) every discrete topological space.

Solution. We will prove all of them are totally separated, which implies totally disconnectedness
by Question 4.11.

(a) Let x and y be two distinct rational number. Without loss of generality, we assume
that x < y. The denseness of R ∖Q (see Example 2.26) implies that there exists an
irrational number z such that x < z < y. The open sets Q ∩ (−∞, z) and Q ∩ (z,∞) are
open in Q, and their intersection is empty while their union is Q, so Q ∩ (−∞, z) is an
clopen neighbourhood of x in Q and Q ∩ (z,∞) is a clopen neighbourhood of y. Hence
Q is totally disconnected when equipped with the Euclidean topology.

(b) Let X be a discrete space and let x and y be two points in X. It follows from the
definition of the discrete topology that {x} and {y} are clopen, so they are disjoint
clopen neighbourhoods of x and y respective. Hence X is totally separated.
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