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Tutorial Week 4

Topics: Connectedness, closed functions, compactness.

4.1. Prove that if a topological space X admits a connected dense subset D, then X is itself
connected.

Solution. If the topological space is empty, then the statement follows from Example 2.28.
So we can suppose X is nonempty. Since the closure of @ in X is still empty, we see that the
dense subset D cannot be empty, so we can pick an element x of D.

Let f: X — {0,1} be a continuous function, where {0,1} is given the discrete topol-
ogy. Since f is continuous, it follows from Exercise 2.13 that ffl( f(w)) is closed. By
Proposition 2.29, the restriction of f to D is constant, so D ¢ f‘l(f(m)), and therefore
X =Dc f'(f(x)). Hence f is constant, which implies that X is connected. O

Solution. (Alternative): Suppose X is disconnected, so X = UuV with U,V open, non-empty,
and disjoint. Then D cUuV with DnU # @, DnV # & (because D is dense), and of course
DnUnV =g, implying that D is a disconnected subset of X by Proposition 2.27. O]

4.2. Let C; and (5 be two connected subsets of a topological space X such that Cy nCy + @.
Prove that C u Cy is connected.

Solution. Let f: C;uCy — {0,1} be a continuous function, where {0, 1} is given the discrete
topology. Since CnC}5 is non-empty, we can pick an element x of C;nCy. By Proposition 2.29,
the restriction of f to Cy and Cy are both constant. Hence we have f(x) = f(y) for every
element y of C7 uCs; in other words, f is a constant function on Cy uCy. By Proposition 2.29,
this implies C u (5 is connected. ]

4.3. Let X be a topological space. Suppose A is a connected subset of X and {C;: i€ I} is
an arbitrary collection of connected subsets of X such that AnC; # @ for all i € I. Then
Au U O,L
iel

is a connected subset of X.

Solution. Let f: AulU;r C; — {0,1} be a continuous function, where {0,1} is given the
discrete topology. Pick an element a of A and consider an arbitrary element x of Au U, C;.
If x € A, then the connectedness of A and Proposition 2.29 imply f(x) = f(a). If x € C; for
some i € I, then it follows from Question 4.3 and Proposition 2.29 that f(z) = f(a). Hence f
is constant, which implies A u U;; C; is connected. O

4.4. Let X and Y be non-empty topological spaces. Prove that X x Y is connected if and
only if both X and Y are connected.

Solution. Suppose X x Y is connected. Recall from Proposition 2.19 that the projections
Tx: XxY — X and my: X xY — Y are continuous. It then follows from Proposition 2.30
that X =mx(X xY) and Y = my (X x Y') are connected.

Conversely, suppose that both X and Y are connected. Let f: X xY — {0,1} be a
continuous function, where {0, 1} is given the discrete topology. Consider two elements (z1,y;)
and (xq,y2) of X x Y. It follows from Exercise 2.20 that {x;} x Y is homeomorphic to Y, and
is therefore connected. This implies that f is constant when restricted to {x;} x Y. Similarly,
f is constant when restricted to X x {y2} because Y is connected. Hence

f(r,y1) = f(@,92) = f(22,902),

and therefore X x Y is connected. L]
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4.5. (a) Prove that the composition of two closed maps is a closed map.

(b) Prove that a continuous bijection between topological spaces is a homeomorphism if
and only if it is closed.

Solution.

(a) Let f: X — Y and g: Y — Z be the two closed maps. Suppose F is a closed subset
of X. Since f is a closed map, it follows that f(F") is a closed subset. Since ¢ is a closed
map, we see that g(f(F)) = (go f)(F) is a closed subset. Hence go f is a closed map.

(b) Let f: X — Y be a continuous bijection between topological spaces and let g: ¥ — X
be its inverse.

Suppose f is a homeomorphism. If F' is a closed subset of X, then f(F) =g '(F) is
closed by continuity of g. Hence f is a closed map.

Conversely, suppose f is a closed map. If F' is a closed subset of X, then g='(F') = f(F)
is closed. It then follows from Exercise 2.13 that ¢ is continuous, and therefore f is a
homeomorphism. O

4.6. Prove that every finite topological space is compact.

Solution. Let X be a finite topological space and consider an open cover {U;: i € [} of X.
For every point x in X, pick a member U, of {U;: i € I} such that x € U,. Now {U,: z € X}
is a finite sub-cover of {U;: i € I'}. Hence X is compact. O

4.7. Let X be a topological space and let K be a subset of X. We will say that K is a compact
subspace of X if the subspace topology on K ¢ X makes K into a compact topological space.
Prove that K is a compact subset of X (as defined at the start of Section 2.5 in the lecture
notes) if and only if it is a compact subspace of X (as defined above).
(In other words, compactness is an intrinsic property of topological spaces: it does not
depend on the ambient topological space.)

Solution. Suppose K is compact as a topological space with the subspace topology from X.
Let v: K — X be the inclusion function, which is continuous by Exercise 2.23. It then
follows from Proposition 2.37 that «(K') is a compact subset of X.

Conversely, suppose K is a compact subset of X. Let {U;: i € I} be an open cover of K in
the subspace K. By the definition of the subspace topology, for every U; there exists an open
subset V; of X such that U; = K;n K. Since {U;: i € I} is an open cover of K in the subspace
K, it follows that {V; €€ I} is an open cover of K in X. The compactness of K as a subset
of X then implies there exists a finite subset J of I such that K c U;c; Vj, and thereforoe

K=Kn(UV;)=UEnV)=UU;

jeJ jeJ jeJ
Hence {U;: i € I'} has a finite sub-cover, which implies K is compact as a subspace of X. [J
4.8. Let K and L be compact subsets of a topological space X. Prove that K u L is compact.
Solution. Consider an arbitrary open cover of K u L:

iel

This is also an open cover of K, so there is a finite subcover that still covers K:

N
KEUUin, in € 1.
n=1
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Similarly, we get a finite subcover that covers L:
M
Lc U U G Jm € 1.
m=1

Letting S = {i1,...,in} U{J1,...,7m}, we get a finite subcover that covers K u L:

KuLec|JU.. O
seS

4.9. Let X be a discrete topological space.

(a) Prove that X is compact if and only if X is finite.

(b) Prove that X is connected if and only if X is empty or is a singleton.
Solution.

(a) If X is finite, then X is compact by Question 4.6.

Conversely, suppose X is compact and consider the open cover {{:C} reX } Its
only subcover is itself (any proper subcollection will miss some points of X), but by

compactness it admits a finite subcover, so the cover itself must have been finite, hence
X is finite.

(b) It follows from Example 2.28 that X is connected if it is empty or is a singleton.

Conversely, if x; # xo are elements of X, then {z;} and X \ {z;} are two disjoint
non-empty open subsets of X such that their union is X, so X is disconnected. O

4.10. Let X be a compact topological space and let Y be a Hausdorff topological space.
Prove that every continuous bijection from X to Y is a homeomorphism.

Solution. Let f: X — Y be a continuous bijection. We will prove f is a closed map; it will
then follow from part (b) of Question 4.5 that f is a homeomorphism.

If Fis a closed subset of X, then it is compact by Proposition 2.36. It follows from
Proposition 2.37 that f(F") is compact, which implies it is a closed subset by Proposition 2.35.
Hence f is a closed map. O

Recall that a topological space is totally disconnected if its only connected subsets are &
and the singletons.

4.11. (*) A topological space X is called totally separated if for every pair (z,y) of distinct
points in X there exist disjoint clopen neighbourhoods U and V' of x and y respectively. Prove
that every totally separated space is totally disconnected.

Solution. Let X be a totally separated space and let .S be a subset of X with two distinct points
x and y. It follows from total separatedness that there exists disjoint clopen neighbourhoods
U and V of z and y respectively. Since U is clopen and does not contain y, it follows that
X \U is a clopen neighbourhood of y. Moreover, SN U and Sn (X \U) are two disjoint
open sets in S such that their union is S. Hence S is not connected, and therefore the only
connected subsets of X are the empty set and the singletons; in other words, X is totally
disconnected. O

4.12. (*) Prove that the following are totally disconnected:

(a) Q equipped with the Euclidean topology:;
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(b)

every discrete topological space.

Solution. We will prove all of them are totally separated, which implies totally disconnectedness
by Question 4.11.

(a)

Let x and y be two distinct rational number. Without loss of generality, we assume
that x < y. The denseness of R\ Q (see Example 2.26) implies that there exists an
irrational number z such that x < z <y. The open sets Q N (-0, z) and QN (z,00) are
open in Q, and their intersection is empty while their union is Q, so Q n (-0, z) is an
clopen neighbourhood of z in Q and Q n (2, o) is a clopen neighbourhood of y. Hence
Q is totally disconnected when equipped with the Euclidean topology.

Let X be a discrete space and let x and y be two points in X. It follows from the
definition of the discrete topology that {x} and {y} are clopen, so they are disjoint
clopen neighbourhoods of x and y respective. Hence X is totally separated. ]



