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Tutorial Week 5
Topics: Topological groups, sequences.

5.1. Let d; and dy be equivalent metrics (they define the same topology) on a set X. Prove
that a sequence converges to a point x in (X,d;) if and only if it converges to = in (X, dy).

Solution. Since d; and ds are interchangeable, it suffices to prove the ‘only if’ part. Let
(z,,) be a sequence converging to x in (X,d;). By Proposition 2.21, the identity function
idyx: X — X defined by idx(x) = x is continuous as a function from (X, d;) to (X,ds). The
result then follows from Theorem 2.52. ]

5.2. Let (x,) be a sequence in a metric space X, let ¢: N — N be an injective function,
and consider the sequence (y,) = (x¢(n)) in X. Prove that if (z,) converges to x, then so

does (yy).
Does the converse hold?

Solution. Suppose (z,) — z. Given € >0, let N € N be such that x, € B.(x) for all n> N.
Since ¢: N — N is injective, the inverse image @‘1({1, .., N - 1}) is a finite set, so it
has a maximal element M. (If the set is empty, just take M =0.) For all n > M + 1, we have
@©(n) 2 N, 50 Yy = Tym) € Bo().
The converse does not hold. For instance, take (x,) = (1,0,1,0,1,0,...) and ¢(n) = 2n,
then the sequence (y,) = (0,0,0,...) converges to 0 but (x,) does not converge. O

5.3. (*) Let N* =Nu{co} and define
T=P(N)u{UeP(N*): coeU and N*\ U is finite}.
(a) Prove that T is a topology on N*.
(b) Prove that (N*,7) is compact.

(c) Let X be a metric space and f: (N*,7) — X. Prove that f is continuous if and only
if ( f (n)) converges to f(o0). (In other words, convergent sequences in X are exactly
continuous functions from (N*,7T) to X.)

(d) Let X be a metric space and let (z,,) be a sequence in X that converges to a point = in
X. Prove that {z} u{z,: n € N} is compact.

Solution.

(a) It is clear that @ and N* belong to 7.
Suppose {U;: i € I} is a collection of members of 7. If {U;: i € I} ¢ P(N), then
User Ui € P(N) € T. Otherwise, there exists a member V' of {U;: i € I} such that oo € V.
It then follows from
AN (UATS NG

iel
that N* ~ (Uid Ui) is finite, and therefore U;c; U; € T.

For closure under finite intersection, it suffices to prove it for any two members U and
V of T. If at most one of U and V' contains oo, then U nV € P(N). Otherwise, it then
follows from

NN (UnV)=(N*~U)u(N*\V)
that N* N (U nV) is finite, and therefore UnV e T.
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(b) Let {U;: i €I} be an open cover of N*. Pick a member V' of the open cover such that
oo € V. Since V € T, it follows that N* \ V' is finite. For each element x of N* \ V| pick
a member V. of the open cover such that z € V,. It follows that {V}u{V,: z e N*\V}
is a finite sub-cover of {U; €i € I}. Hence N* is compact.

(c) Suppose f is continuous. It follows that for every positive real number ¢, the inverse
image ffl(Be(f(oo))) is open, and therefore N* \ f*l(Be(f(oo))) is finite. Hence there
exists a natural number N such that n > N implies f(n) € B.(f(o0)).

Conversely, suppose ( f (n)) converges to f(o0). The space N is discrete as a subspace
of N*, so f|n is continuous; this implies f is continuous at every natural number by
Question 3.3. To apply Question 3.3, it remains to prove f is continuous at co. Let M
be a neighbourhood of oo and pick a positive real number e such that B.(f(o0)) € M.
Since f(n) — f(o0) as n —> oo, there exists a natural number N such that n > N
implies f(n) € B.(f(o0)). This implies

NN fH(Be(f(00))) € {1,..., N},

o f‘l(BE(f(oo))) is open. Since f‘l(BE(f(oo))) c f~Y(M), it follows that f~1(M) is
a neighbourhood of oo, so f is continuous at co. Now apply Question 3.3 to f, we see
that f is continuous.

(d) Define a function f: N* — X by
x, ifneN,
o]

x  otherwise.

By part (c), f is continuous, so it follows from Proposition 2.37 that
{z}u{zn: neN} = f(N)
is compact. ]
5.4. Let (X,dx) and (Y,dy) be metric spaces and let d be the sup norm metric on X x Y
d((l’hyl), ($27y2)) = maX(dx(l'ul’z),dY(?/l,yﬂ)-
Prove that ((2,, ) — (2,y) € X xY if and only if (2,) — z € X and (y,) — yeY.

Solution. Suppose (x,) — x and (y,) — y. Let € >0, N, € N such that z,, € B.(z) for all
n > N,, and N, € N such that y, € B.(y) for all n > N,. Set N = max{N,, N,}, then

(2, yn), (2,y)) = max{dx (vn, ), dy (yn, y)} <& foralln>N.

Conversely, suppose ((xn,yn)) — (x,y). Given € > 0 there exists N € N such that
(T, Yn) € Bo((7,y)) for all n > N, so

maX{dX(ZD,“ x)a dY(yn7 y)} = d((‘rna yn)? (ZE, y)) < &,
and hence both dx(z,,z) and dy(y,,y) are bounded by ¢ for all n > N. ]
Solution. (Alternative): Define a function f: N* — X x Y by
TnyYn) if neN,
fny= { o) €N
(z,y) otherwise.

Let mx: X xY — X and my: X xY — Y be the projections. The result follows from the
following;:
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 f is continuous if and only if 7y and 7y are both continuous (see Question 3.7).

[ is continuous if and only if (x,,y,) converges to (z,y) (part (c) of Question 5.3).

e 7y o f is continuous if and only if z,, converges to x (part (c) of Question 5.3).

e Ty o f is continuous if and only if y,, converges to y (part (c) of Question 5.3). ]
5.5. (*) Let G be a topological group and let H be a subgroup of G.
Prove that H is closed if it is open. Does the converse hold?

(a
(

)
b) Prove that H is open if it is closed and has finite index. Does the converse hold?
(c¢) Suppose G is compact and H is open. Prove that H has finite index.

)

(d) Is the compactness of G necessary in part (c)?
Solution.

(a) Suppose H is open. If g is an element of G, then gH is open because gH = L;L(H)
and Lg1 is continuous by Proposition 2.44. Now the result follows from the equation

GNH=|JgH.

g¢H

The converse does not hold. If G = R, which is given the Euclidean topology, and if
H = {0}, then H is a closed subgroup of G but it is not open.

(b) Suppose H is closed. If g is an element of G, then L1 is continuous by Proposition 2.44,
so gH = L;_ll(H ) is closed because of Exercise 2.13. Since H is of finite index, it has
are only finitely many cosets H, g1 H, ..., g,H. It follows that

G NH=|JyH=aG,
n=1
which is closed because it is a finite union of closed sets. Hence H is open.

The converse does not hold. Let G = R but endow it with the discrete topology, and let
H =7Z. Then H is open in G but it is not of finite index (because if it is, then R is a
finite union of countable sets, and is thus countable by Exercise 1.2).

(¢) Arguing as in part (a), we have

G=ygH,

geG

so {gH: g € G} is an open cover of G. Since G is compact, this open cover admits a
finite sub-cover, which implies that H has finite index.

(d) Yes. Let G be any infinite group with the discrete topology, and let H = {e}, then H is
open in GG but it does not have finite index. ]

5.6. (*) Let S and T be subsets of a topological group G. Define
ST ={st: seS and teT}.
(a) Suppose S and T are open. Prove that ST is open.

(b) Suppose S and T are connected. Prove that ST is connected.
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(¢) Suppose S and T are compact. Prove that ST is compact.

(d) Suppose S is compact and 7' is closed. Prove that ST is closed.
[Hint: Use Theorem 2.39 after checking that

ST = 7r2<j_1(m_1(T))),

where m: G x G — @G is the multiplication map of G, j is the inclusion of S~! x G into
G x G, and my: S71 x G — @G is the projection onto the second factor. |

(e) Assuming without proof the fact that Z + 7Z is dense in R, convince yourself that ST
need not be closed even if both S and T are.

Solution.

(a) If g is an element of S, then ¢T is open because g7 = L;L(T) and L, is continuous
by Proposition 2.44. It then follows from

ST = U sT
seS

that ST is open.

(b) If S or T is empty, then ST # @&, so it is connected. Otherwise, the product S x T is
connected by Question 4.4, so ST =m(S xT') is connected by Proposition 2.30.

(c¢) The product S x T is compact by Theorem 2.39, so ST = m(S x T') is compact by
Proposition 2.37.

(d) Since inversion is a homeomorphism, it follows from Proposition 2.37 that S=! is compact.
The inclusion j: S~! x G — G x G is continuous by Exercise 2.23. Since T is closed, it
follows from Exercise 2.13 that m~'(T') € Gx G is closed and then j~'(m~'(T)) ¢ S~'xG
is closed.

We now claim that
ST = @( fl(mfl(T)));

and this implies ST is closed because 7 is closed by Theorem 2.39 (here we crucially
need S~ to be compact). To prove this equation, we start with an element g of ST
Since g € ST, there exists an element s of S and an element ¢ of T" such that g = st. It
follows that (s71,g) € j—l(m‘l(T)), SO

ge Wz(j_l(m_l(T))).

For the other inclusion, suppose (s',g) € j‘l(m‘l(T)), It follows that s'g € T, so
g € s''T, which implies g € ST because s’ € S~1. Hence the equation holds.

(e) Since Z+7Z = Upez(n+7Z), it follows from Exercise 1.2 that Z + 7Z + R;; but we know
it is dense in R, so it cannot be closed. Hence Z and nZ are closed in R, but Z + 7Z is
not closed. O



