
MAST30026 Metric and Hilbert Spaces 2024

Tutorial Week 5

Topics: Topological groups, sequences.

5.1. Let d1 and d2 be equivalent metrics (they define the same topology) on a set X. Prove
that a sequence converges to a point x in (X,d1) if and only if it converges to x in (X,d2).

Solution. Since d1 and d2 are interchangeable, it suffices to prove the ‘only if’ part. Let
(xn) be a sequence converging to x in (X,d1). By Proposition 2.21, the identity function
idX ∶ X Ð→X defined by idX(x) = x is continuous as a function from (X,d1) to (X,d2). The
result then follows from Theorem 2.52.

5.2. Let (xn) be a sequence in a metric space X, let ϕ ∶ N Ð→N be an injective function,
and consider the sequence (yn) = (xϕ(n)) in X. Prove that if (xn) converges to x, then so
does (yn).

Does the converse hold?

Solution. Suppose (xn) Ð→ x. Given ε > 0, let N ∈N be such that xn ∈ Bε(x) for all n ⩾ N .
Since ϕ ∶ N Ð→ N is injective, the inverse image ϕ−1({1, . . . ,N − 1}) is a finite set, so it

has a maximal element M . (If the set is empty, just take M = 0.) For all n ⩾M + 1, we have
ϕ(n) ⩾ N , so yn = xϕ(n) ∈ Bε(x).

The converse does not hold. For instance, take (xn) = (1,0,1,0,1,0, . . . ) and ϕ(n) = 2n,
then the sequence (yn) = (0,0,0, . . . ) converges to 0 but (xn) does not converge.

5.3. (*) Let N∗ =N ∪ {∞} and define

T = P(N) ∪ {U ∈ P(N∗) ∶ ∞ ∈ U and N∗ ∖U is finite}.

(a) Prove that T is a topology on N∗.

(b) Prove that (N∗,T ) is compact.

(c) Let X be a metric space and f ∶ (N∗,T ) Ð→X. Prove that f is continuous if and only
if (f(n)) converges to f(∞). (In other words, convergent sequences in X are exactly
continuous functions from (N∗,T ) to X.)

(d) Let X be a metric space and let (xn) be a sequence in X that converges to a point x in
X. Prove that {x} ∪ {xn ∶ n ∈N} is compact.

Solution.

(a) It is clear that ∅ and N∗ belong to T .
Suppose {Ui ∶ i ∈ I} is a collection of members of T . If {Ui ∶ i ∈ I} ⊆ P(N), then
⋃i∈I Ui ∈ P(N) ⊆ T . Otherwise, there exists a member V of {Ui ∶ i ∈ I} such that ∞ ∈ V .
It then follows from

N∗ ∖ (⋃
i∈I

Ui) ⊆N∗ ∖ V

that N∗ ∖ (⋃i∈I Ui) is finite, and therefore ⋃i∈I Ui ∈ T .

For closure under finite intersection, it suffices to prove it for any two members U and
V of T . If at most one of U and V contains ∞, then U ∩ V ∈ P(N). Otherwise, it then
follows from

N∗ ∖ (U ∩ V ) = (N∗ ∖U) ∪ (N∗ ∖ V )
that N∗ ∖ (U ∩ V ) is finite, and therefore U ∩ V ∈ T .
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(b) Let {Ui ∶ i ∈ I} be an open cover of N∗. Pick a member V of the open cover such that
∞ ∈ V . Since V ∈ T , it follows that N∗ ∖ V is finite. For each element x of N∗ ∖ V , pick
a member Vx of the open cover such that x ∈ Vx. It follows that {V } ∪ {Vx ∶ x ∈N∗ ∖V }
is a finite sub-cover of {Ui ∈ i ∈ I}. Hence N∗ is compact.

(c) Suppose f is continuous. It follows that for every positive real number ε, the inverse
image f−1(Bε(f(∞))) is open, and therefore N∗∖f−1(Bε(f(∞))) is finite. Hence there
exists a natural number N such that n ⩾ N implies f(n) ∈ Bε(f(∞)).
Conversely, suppose (f(n)) converges to f(∞). The space N is discrete as a subspace
of N∗, so f ∣N is continuous; this implies f is continuous at every natural number by
Question 3.3. To apply Question 3.3, it remains to prove f is continuous at ∞. Let M
be a neighbourhood of ∞ and pick a positive real number ε such that Bε(f(∞)) ⊆M .
Since f(n) Ð→ f(∞) as n Ð→ ∞, there exists a natural number N such that n ⩾ N
implies f(n) ∈ Bε(f(∞)). This implies

N∗ ∖ f−1(Bε(f(∞))) ⊆ {1, . . . ,N},

so f−1(Bε(f(∞))) is open. Since f−1(Bε(f(∞))) ⊆ f−1(M), it follows that f−1(M) is
a neighbourhood of ∞, so f is continuous at ∞. Now apply Question 3.3 to f , we see
that f is continuous.

(d) Define a function f ∶ N∗ Ð→X by

f(n) =
⎧⎪⎪⎨⎪⎪⎩

xn if n ∈N,
x otherwise.

By part (c), f is continuous, so it follows from Proposition 2.37 that

{x} ∪ {xn ∶ n ∈N} = f(N∗)

is compact.

5.4. Let (X,dX) and (Y, dY ) be metric spaces and let d be the sup norm metric on X × Y :

d((x1, y1), (x2, y2)) =max (dX(x1, x2), dY (y1, y2)).

Prove that ((xn, yn)) Ð→ (x, y) ∈X × Y if and only if (xn) Ð→ x ∈X and (yn) Ð→ y ∈ Y .

Solution. Suppose (xn) Ð→ x and (yn) Ð→ y. Let ε > 0, Nx ∈N such that xn ∈ Bε(x) for all
n ⩾ Nx, and Ny ∈N such that yn ∈ Bε(y) for all n ⩾ Ny. Set N =max{Nx,Ny}, then

d((xn, yn), (x, y)) =max{dX(xn, x), dY (yn, y)} < ε for all n ⩾ N.

Conversely, suppose ((xn, yn)) Ð→ (x, y). Given ε > 0 there exists N ∈ N such that
(xn, yn) ∈ Bε((x, y)) for all n ⩾ N , so

max{dX(xn, x), dY (yn, y)} = d((xn, yn), (x, y)) < ε,

and hence both dX(xn, x) and dY (yn, y) are bounded by ε for all n ⩾ N .

Solution. (Alternative): Define a function f ∶ N∗ Ð→X × Y by

f(n) =
⎧⎪⎪⎨⎪⎪⎩

(xn, yn) if n ∈N,
(x, y) otherwise.

Let πX ∶ X × Y Ð→X and πY ∶ X × Y Ð→ Y be the projections. The result follows from the
following:
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• f is continuous if and only if πX and πY are both continuous (see Question 3.7).

• f is continuous if and only if (xn, yn) converges to (x, y) (part (c) of Question 5.3).

• πX ○ f is continuous if and only if xn converges to x (part (c) of Question 5.3).

• πY ○ f is continuous if and only if yn converges to y (part (c) of Question 5.3).

5.5. (*) Let G be a topological group and let H be a subgroup of G.

(a) Prove that H is closed if it is open. Does the converse hold?

(b) Prove that H is open if it is closed and has finite index. Does the converse hold?

(c) Suppose G is compact and H is open. Prove that H has finite index.

(d) Is the compactness of G necessary in part (c)?

Solution.

(a) Suppose H is open. If g is an element of G, then gH is open because gH = L−1
g−1
(H)

and Lg−1 is continuous by Proposition 2.44. Now the result follows from the equation

G ∖H = ⋃
g∉H

gH.

The converse does not hold. If G = R, which is given the Euclidean topology, and if
H = {0}, then H is a closed subgroup of G but it is not open.

(b) Suppose H is closed. If g is an element of G, then Lg−1 is continuous by Proposition 2.44,
so gH = L−1

g−1
(H) is closed because of Exercise 2.13. Since H is of finite index, it has

are only finitely many cosets H,g1H, . . . , gnH. It follows that

G ∖H =
n

⋃
n=1

gH = G,

which is closed because it is a finite union of closed sets. Hence H is open.
The converse does not hold. Let G =R but endow it with the discrete topology, and let
H = Z. Then H is open in G but it is not of finite index (because if it is, then R is a
finite union of countable sets, and is thus countable by Exercise 1.2).

(c) Arguing as in part (a), we have
G = ⋃

g∈G

gH,

so {gH ∶ g ∈ G} is an open cover of G. Since G is compact, this open cover admits a
finite sub-cover, which implies that H has finite index.

(d) Yes. Let G be any infinite group with the discrete topology, and let H = {e}, then H is
open in G but it does not have finite index.

5.6. (*) Let S and T be subsets of a topological group G. Define

ST = {st ∶ s ∈ S and t ∈ T}.

(a) Suppose S and T are open. Prove that ST is open.

(b) Suppose S and T are connected. Prove that ST is connected.
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(c) Suppose S and T are compact. Prove that ST is compact.

(d) Suppose S is compact and T is closed. Prove that ST is closed.
[Hint: Use Theorem 2.39 after checking that

ST = π2(j−1(m−1(T ))),

where m ∶ G ×GÐ→ G is the multiplication map of G, j is the inclusion of S−1 ×G into
G ×G, and π2 ∶ S−1 ×GÐ→ G is the projection onto the second factor. ]

(e) Assuming without proof the fact that Z + πZ is dense in R, convince yourself that ST
need not be closed even if both S and T are.

Solution.

(a) If g is an element of S, then gT is open because gT = L−1
g−1
(T ) and Lg−1 is continuous

by Proposition 2.44. It then follows from

ST = ⋃
s∈S

sT

that ST is open.

(b) If S or T is empty, then ST ≠ ∅, so it is connected. Otherwise, the product S × T is
connected by Question 4.4, so ST =m(S × T ) is connected by Proposition 2.30.

(c) The product S × T is compact by Theorem 2.39, so ST = m(S × T ) is compact by
Proposition 2.37.

(d) Since inversion is a homeomorphism, it follows from Proposition 2.37 that S−1 is compact.
The inclusion j ∶ S−1 ×GÐ→ G ×G is continuous by Exercise 2.23. Since T is closed, it
follows from Exercise 2.13 that m−1(T ) ⊆ G×G is closed and then j−1(m−1(T )) ⊆ S−1×G
is closed.
We now claim that

ST = π2(j−1(m−1(T )));

and this implies ST is closed because π2 is closed by Theorem 2.39 (here we crucially
need S−1 to be compact). To prove this equation, we start with an element g of ST .
Since g ∈ ST , there exists an element s of S and an element t of T such that g = st. It
follows that (s−1, g) ∈ j−1(m−1(T )), so

g ∈ π2(j−1(m−1(T ))).

For the other inclusion, suppose (s′, g) ∈ j−1(m−1(T )), It follows that s′g ∈ T , so
g ∈ s′−1T , which implies g ∈ ST because s′ ∈ S−1. Hence the equation holds.

(e) Since Z+πZ = ⋃n∈Z(n+πZ), it follows from Exercise 1.2 that Z+πZ ≠R; but we know
it is dense in R, so it cannot be closed. Hence Z and πZ are closed in R, but Z + πZ is
not closed.

4


