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Tutorial Week 6

Topics: Cauchy sequences, completeness, uniform continuity.

6.1. Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be uniformly continuous functions between metric
spaces. Prove that g ○ f ∶ X Ð→ Z is uniformly continuous.

Solution. Let ε be a positive real number. The uniform continuity of f and g implies that
there exists a positive real number δ such that dY (y1, y2) < δ implies dZ(g(y1), g(y2)) < ε, and
there exists a positive real number γ such that dX(x1, x2) < γ implies dY (f(x1), f(x2)) < δ.
Hence dX(x1, x2) < γ implies dZ((g ○ f)(x1), (g ○ f)(x2)) < ε, and therefore g ○ f is uniformly
continuous.

6.2. Let S be a subset of a metric space (X,dX) and let dS be the induced metric on S.

(a) Prove that the inclusion function ιS ∶ S Ð→X is uniformly continuous.

(b) Prove that a function f ∶ (Y, dY ) Ð→ (S, dS) is uniformly continuous if and only if ιS ○ f
is uniformly continuous.

Solution.

(a) Let ε be a positive real number. Put δ = ε. If elements x1 and x2 of S satisfy
dS(x1, x2) < δ, then

dX(ιS(x1), ιS(x2)) = dS(x1, x2) < ε.

Hence ιS is uniformly continous.

(b) If f is uniformly continuous, then ιS ○ f is uniformly continuous because of part (a) and
Question 6.1.
Conversely, suppose ιS ○f is uniformly continuous. Let ε be a positive real number. Pick
a positive real number δ such that dY (y1, y2) < δ implies dX((ιS ○f)(y1), (ιS ○f)(y2)) < ε.
It follows that dY (y1, y2) < δ implies

dS(f(y1), f(y2)) = dX((ιS ○ f)(y1), (ιS ○ f)(y2)) < ε.

Hence f is uniformly continuous.

6.3. Let (X,dX), (Y, dY ), and (Z,dZ) be metric spaces and let d be a metric on Y ×Z such
that

max{dY (y1, y2), dZ(z1, z2)} ⩽ d((y1, z1), (y2, z2)) ⩽ dY (y1, y2) + dZ(z1, z2)

for every pair of points (y1, z1) and (y2, z2) in Y ×Z.

(a) Prove that the projections πY ∶ Y × Z Ð→ Y and πZ ∶ Y × Z Ð→ Z are uniformly
continuous.

(b) Prove that a function f ∶ X Ð→ Y ×Z is uniformly continuous if and only if both πY ○ f
and πZ ○ f are.

Solution.

(a) If ε is a positive real number, then d((y1, z1), (y2, z2)) < ε implies

dY (πY (y1, z1), πY (y2, z2)) = dY (y1, y2) ⩽ d((y1, z1), (y2, z2)) < ε

and similarly d(πZ(y1, z1), πZ(y2, z2)) < ε. Hence πY and πZ are uniformly continuous.
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(b) If f is uniformly continuous, then it follows from Question 6.1 and part (a) that both
πY ○ f and πZ ○ f are uniformly continuous.
Conversely, suppose both πY ○f and πZ ○f are uniformly continuous. Let ε be a positive
real number. It follows from the uniform continuity of πY ○ f and πZ ○ f that there exist
positive real numbers δY resp. δZ such that dX(x1, x2) < δY , resp. dX(x1, x2) < δZ imply

dY ((πY ○ f)(x1), (πY ○ f)(x2)) < ε/2 resp. dZ((πZ ○ f)(x1), (πZ ○ f)(x2)) < ε/2.

Let δ =min{δY , δZ}. It follows that dX(x1, x2) < δ implies

d(f(x1), f(x2)) ⩽ dY ((πY ○ f)(x1), (πY ○ f)(x2)) + dZ((πZ ○ f)(x1), (πZ ○ f)(x2)) < ε,

so f is uniformly continuous.

6.4. Let (X,dX) and (Y, dY ) be metric spaces and let d be the sup norm metric on X × Y .

(a) Prove that the sequence ((xn, yn)) is Cauchy in X × Y if and only if (xn) is Cauchy in
X and (yn) is Cauchy in Y .

(b) Prove that if X and Y are complete then X × Y is complete. Is the converse true?

Solution.

(a) Suppose ((xn, yn)) is a Cauchy sequence in (X ×Y, d). By part (a) of Question 6.3, both
projections πX ∶ X × Y Ð→ X and πY ∶ X × Y Ð→ Y are uniformly continuous. Hence
(xn) = (πX(xn, yn)) and (yn) = (πY (xn, yn)) are Cauchy because of Proposition 2.60.
Conversely, suppose (xn) is Cauchy in X and (yn) is Cauchy in Y . Fix ε > 0. Let
Nx ∈N be such that for all m,n ⩾ Nx we have dX(xm, xn) < ε. Let Ny ∈N be such that
for all m,n ⩾ Ny we have dY (ym, yn) < ε. Let N = max{Nx,Ny}, then for all m,n ⩾ N
we have

d((xm, ym), (xn, yn)) =max{dX(xm, xn), dY (ym, yn)} < ε,

so ((xn, yn)) is Cauchy in X × Y .

(b) Let ((xn, yn)) be a Cauchy sequence in X × Y . By part (a), (xn) is Cauchy in X
and (yn) is Cauchy in Y . Since X and Y are complete, we have (xn) Ð→ x ∈ X and
(yn) Ð→ y ∈ Y . By Question 5.4, ((xn, yn)) Ð→ (x, y) ∈X × Y .
The converse also holds: suppose X × Y is complete. Let (xn) be a Cauchy sequence
in X, and fix some y ∈ Y . Then by (a) we have that ((xn, y)) is Cauchy in X × Y , so
((xn, y)) Ð→ (x, y) ∈ X × Y , which by Question 5.4 implies that (xn) Ð→ x ∈ X. The
same proof gives us that Y is complete.

6.5. Suppose f ∶ X Ð→ Y is a uniform homeomorphism between metric spaces; that is, a
homeomorphism such that both f and its inverse are uniformly continuous.

(a) Prove that a sequence (xn) is Cauchy in X if and only if (f(xn)) is Cauchy in Y .

(b) Prove that X is complete if and only if Y is complete.

(c) Prove that f ∶ RÐ→ (−π/2, π/2) given by f(x) = arctan(x) is uniformly continuous and
a homeomorphism, but it is not a uniform homeomorphism.
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(d) Do you feel strongly that uniformly continuous functions ought to preserve completeness?
(After all, they preserve Cauchy sequences, and completeness is defined in terms of
Cauchy sequences.)
Prove that the function f defined in part (c) does not preserve completeness though it
is uniformly continuous and a homeomorphism.

Solution. Let g ∶ Y Ð→X denote the inverse of f .

(a) By Proposition 2.60, (xn) being Cauchy implies (f(xn)) is Cauchy, while (f((xn))

being Cauchy implies (xn) = (g(f(xn))) is Cauchy.

(b) Since X and Y are interchangeable, it suffices to prove one direction. Suppose X is
complete and (yn) is a Cauchy sequence in Y . It follows that (g(yn)) is Cauchy in
X, and therefore converges to some point x in X By Theorem 2.52, (yn) = (f(g(yn)))
converges to f(x). Hence Y is complete.

(c) Since f has an inverse tan ∶ (−π/2, π/2) Ð→ R, and both f and tan are continuous.
Hence f is a homeomorphism.
Given x1 < x2, apply the Mean Value Theorem to f(x) = arctan(x) on [x1, x2] to get
some ξ ∈ (x1, x2) such that

∣f(x2) − f(x1)∣ = ∣f
′
(ξ)∣ ∣x2 − x1∣ =

1

1 + ξ2
∣x2 − x1∣ ⩽ ∣x2 − x1∣.

So for any ε > 0 we can take δ = ε and conclude that f is uniformly continuous.
However, its inverse tan ∶ (−π/2, π/2) Ð→ R is not uniformly continuous, because
(−π/2, π/2) is totally bounded (since bounded in R), but R is not totally bounded.
(Use Proposition 2.71.)

(d) The codomain (−π/2, π/2) is not complete because (π/2 − 1/n) is Cauchy but does not
converge in (−π/2, π/2). However, the domain R is complete.

6.6. Let (X,dX) and (Y, dY ) be metric spaces and f ∶ X Ð→ Y a surjective continuous
function. Suppose that X is complete and for all x1, x2 ∈X we have

dX(x1, x2) ⩽ dY (f(x1), f(x2)).

Prove that Y is complete.
In particular, distance-preserving maps preserve completeness.

Solution. Let (yn) be a Cauchy sequence in Y . For each n ∈N, let xn ∈ f−1(yn). I claim that
(xn) is a Cauchy sequence in X. Fix ε > 0. Let N ∈N be such that for all m,n ⩾ N we have
dY (ym, yn) < ε. Then for all m,n ⩾ N we have

dX(xm, xn) ⩽ dY (f(xm), f(xn)) = dY (ym, yn) < ε,

so (xn) is indeed Cauchy in X.
Since X is complete, we have (xn) Ð→ x ∈X, so that by the continuity of f we conclude

that (yn) = (f(xn)) Ð→ f(x) ∈ Y .

6.7. Let (X,d) be a metric space.

(a) Fix an arbitrary element y ∈ X and consider the function f ∶ X Ð→ R given by
f(x) = d(x, y). Prove that f is uniformly continuous.
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(b) Prove that d ∶ X ×X Ð→R is uniformly continuous with respect to the sup metric D
on X ×X.

Solution.

(a) Let ε > 0. Set δ = ε. If x,x′ ∈X satisfy d(x,x′) < δ = ε, then

∣f(x) − f(x′)∣ = ∣d(x, y) − d(x′, y)∣ ⩽ d(x,x′) < ε.

(b) Let ε > 0. By part (a), there exists positive real numbers δ1 and δ2 such that d(x1, x′1) < δ1
and d(x2, x′2) < δ2 imply

dR(d(x1, x2), d(x
′

1, x2)) < ε/2 and dR(d(x
′

1, x2), d(x
′

1, x
′

2)) < ε/2.

Set δ =min{δ1, δ2}. If (x1, x2), (x′1, x
′

2) ∈X ×X satisfy

max{d(x1, x
′

1), d(x2, x
′

2)} =D((x1, x2), (x
′

1, x
′

2)) < ε

then

dR(d(x1, x2), d(x
′

1, x
′

2)) ⩽ dR(d(x1, x2), d(x
′

1, x2)) + dR(d(x
′

1, x2), d(x
′

1, x
′

2)) < ε.

Hence d is uniformly continuous.
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