MAST30026 Metric and Hilbert Spaces 2024

Tutorial Week 7

Topics: Contractions, (total) boundedness, uniform convergence.

7.1. Find a non-empty metric space X and a contraction f: X — X such that f has no
fixed points.

Solution. Let X =(0,00), which is given the Euclidean topology, and let f: X — X be the
function defined by f(x) = x/2. This is a contraction because if x and y are positive real

numbers then

dx(1(0).fW) = |5~

It has no fixed points because f(x) = implies x =0, but 0 ¢ (0, c0). O

1 1
= §|x —y| = §dX($7y)'

7.2. Find a bounded subset of a metric space that is not totally bounded.

Solution. Endow N with the discrete topology. The set N is bounded because N = By(0).
However, if n is an element of N, then By(n) = {n}, so it is impossible to cover N by finitely
many open balls of radius 1. O]

7.3.
(a) Prove that every subspace of a totally bounded space is totally bounded.

(b) Suppose a metric space X has a totally bounded dense subset D. Prove that X is
totally bounded.

(c) Prove that a metric space X is totally bounded if and only if it is isometric to a subspace
of a compact metric space. [Hint: Completion.]

Solution.

(a) Let S be a subspace of a totally bounded space X. If (z,) be a sequence in S, then it
is also a sequence in X, so it has a Cauchy subsequence by Proposition 2.73. Now it
again follows from Proposition 2.73 that S is totally bounded.

(b) Let € be a positive real number. Since D is totally bounded, there exists a natural
number N and elements x4, ...,z y of D such that

N
Dc LJlIng(wn).
n=1

Since X is the closure of D in X, it follows that

N N
X c UBepa(zn) € UBe(zn).
n=1 n=1

(¢) Suppose a metric space X is totally bounded and let X be a completion of X with
distance-preserving function ¢: X — X. By the definition of completion, we know that
X is isometric to ¢(X), so ¢(X) is totally bounded by Proposition 2.71. It follows from
part (b) that the completion X is totally bounded, and is therefore compact by the
Heine—Borel theorem (Theorem 2.74). Hence X is isometric to the subspace ¢(X) of
the compact metric space X.

Conversely, suppose Y is a compact subspace, S is a subspace of Y, and f: § — X is
an isometry. It follows from the Heine-Borel theorem (Theorem 2.74) that Y is totally
bounded, and therefore S is totally bounded by part (a). Hence X = f(S) is totally
bounded by Proposition 2.71. L
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7.4. For each n € N, consider the function f,: [0,1] — R given by

2

fn(x) =

1+nz

a) Prove that f, is bounded, for all n € N.

(a)

(b) Find the pointwise limit f of the sequence (f,).

(¢) For any n € N, compute the uniform distance de.(f,, f)-
)

(d) Does the sequence (f,,) converge uniformly to f7

Solution.

(a) FixneN. Ifz €[0,1] thenO0<2?2<land 1+n>1+nx>1,s0 1/(1+n) <1/(1+nx) <1,

SO

12

0< <1
1+nx

Thus f,, is bounded.

(b) For x =0 the sequence (f,(x)) = (f,(0)) is the constant sequence 0, so f(0) = 0.

For 0 < 2 <1 we have

. x? 5 . 1

lim =z° lim =0
n—oo 1 + Ny n—oeo 1 + nx

so f(z)=0.

We conclude that the pointwise limit is the constant function f =0 on [0,1].

(c) We have
2

Ao (fry [) = sup .
( " ) 2¢[0,1] 1+nx
Since f, is continuous on a compact interval, it attains its extremal values in [0,1]; in
particular its global maximum is at = =0 or at x = 1 or at a stationary point in (0, 1).
The derivative is @ )

x(2+nx
fa(@) = ==,

(1+nx)

so the stationary points are 0 and —2/n, neither of which lies in (0,1). Moreover
f2(0)=0and f,(1)=1/(1+n), so we conclude that

1
doo ) = .
(o f) = 11
(d) We have (de(fn),f) — 0 as n —> oo, so the convergence is uniform. O

7.5. Let fo: R — R be the function defined by

1+x if -1<2<0,
fo(x)=41-2 if0<wx<l,

0 otherwise.

For each positive integer n, define f,,: R — R by

fu(@) = fo(z = n).
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a) Prove that f,, is bounded, for all n € N.

(a)
(b) Find the pointwise limit f of the sequence (f,).
(c¢) For any n € N, compute the uniform distance de(fy, f)-

(d) Does the sequence (f,,) converge uniformly to f?
Solution.

(a) It is straightforward to see that f,(R) = [0, 1] for every natural number n. Thus f, is
bounded.

(b) Fix a real number x and let N be the smallest positive integer such that = < N. It
follows from the definition of f, that f,(z) =0if n > N. Hence (f(z)) — 0 asn — oo
and therefore f is the constant function sending every real number to 0.

(c) We have
oo (f: f) = sup{dr(f (), 0)} = dr(fu(n),0) = 1.

(d) Since doo(fn, f) does not converge to 0, the sequence (f,) does not converge to f
uniformly. O

7.6.

(a) Prove that every closed interval on R is compact.
(b) Prove that every closed ball in R™ is compact.

¢) (The classical Heine—Borel theorem) Prove that a subset of R™ is compact if and only if
it is bounded and closed.

(d) Prove that every bounded subset of R" is totally bounded.
Solution.

(a) Let a and b be real numbers and let r = max{|al,|b|}. Since [a,b] € B,.(0), it follows
that [a,b] is bounded, and therefore totally bounded by Example 2.69. As a closed
subset of the complete space R, the closed interval [a,b] is also complete. Hence [a,b]
is compact by the Heine-Borel theorem (Theorem 2.74).

(b) Let r be a positive real number and let v be an element of R".

We start with proving D,.(0) is compact. Since [-r,r] is compact, it follows from
Theorem 2.39 that [-r,r]" is compact. Since D,(0) is a closed subset of [-r,r]", it
follows from Proposition 2.36 that D,.(0) is compact.

Let R,: R®* — R be the continuous function defined by R,(w) =v + w (see Proposi-
tion 2.44). Since
D, (v) = R,(D,(0)),

it follows from Proposition 2.37 that D,(v) is compact.

(c) Suppose K is a compact subset of R". It follows from Proposition 2.35 that K is closed
and it follows from the Heine-Borel theorem (Theorem 2.74) that K is totally bounded,
which implies K is bounded by Exercise 2.47.

Conversely, suppose K is a bounded closed subset of R™. It follows from Exercise 2.45
that K is contained in some closed ball D,.(v), which is compact by part (b). Hence K
is compact since it is a closed subset of a compact set (see Proposition 2.36).
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(d) Let S be a bounded subset of R” and suppose S is contained in some closed ball D,.(v)
(see Exercise 2.45), which is compact by part (b) and therefore totally bounded by the
Heine-Borel theorem (Theorem 2.74). It now follows from part (c¢) of Question 7.3 that
S is totally bounded. ]

7.7. (*) Let A = (a;;) be an nxn real matrix with all |a;;| < 1. Prove that any real eigenvalue
A of A satisfies |A| < n.

[Hint: Show that if |A| > n then the function f: R® — R" given by f(v) = 1+ Av is a
contraction for the sup metric topology on R™; then use the Banach Fixed Point Theorem.]

Solution. Suppose |A| > n
We start by proving that the function f from the hint is a contraction. If v and w are
elements of R”, then

LAy
2, i (v = w)

7=1

d(f(v), f(w)) = Jmax [f(v);~ f(w)] = max

i —w;) | <

1
|)\| maXZ |ai;][v; = wy]
7=1
n
<Nmax22: wj| |>\|Z|vj wj|
< ma,
— X

SN gedtn
<d(v,w).

Vi — Wi = —
|J ]| A

Hence f is a contraction.

R is complete, so R™ is complete by Question 6.4. Now it follows from the Banach
Fixed Point Theorem (Theorem 2.66) that there is a unique element v of R™ such that
v = f(v) = + Av, which is equivalent to Av = Av. Since the zero vector satisfies this condition,
this unique vector has to be the zero vector, so A cannot be an eigenvalue of A. O]



