Tutorial Week 7

Topics: Contractions, (total) boundedness, uniform convergence.

7.1. Find a non-empty metric space X and a contraction $f: X \longrightarrow X$ such that f has no fixed points.

Solution. Let $X = (0, \infty)$, which is given the Euclidean topology, and let $f: X \longrightarrow X$ be the function defined by $f(x) = x/2$. This is a contraction because if x and y are positive real numbers then

$$
d_X(f(x), f(y)) = \left|\frac{x-y}{2}\right| = \frac{1}{2}|x-y| = \frac{1}{2}d_X(x,y).
$$

It has no fixed points because $f(x) = x$ implies $x = 0$, but $0 \notin (0, \infty)$.

7.2. Find a bounded subset of a metric space that is not totally bounded.

Solution. Endow N with the discrete topology. The set N is bounded because $N = B_2(0)$. However, if n is an element of N, then $B_1(n) = \{n\}$, so it is impossible to cover N by finitely many open balls of radius 1. \Box

7.3.

- (a) Prove that every subspace of a totally bounded space is totally bounded.
- (b) Suppose a metric space X has a totally bounded dense subset D . Prove that X is totally bounded.
- (c) Prove that a metric space X is totally bounded if and only if it is isometric to a subspace of a compact metric space. [*Hint*: Completion.]

Solution.

- (a) Let S be a subspace of a totally bounded space X. If (x_n) be a sequence in S, then it is also a sequence in X , so it has a Cauchy subsequence by [Proposition 2.73.](#page-3-0) Now it again follows from Proposition 2.73 that S is totally bounded.
- (b) Let ϵ be a positive real number. Since D is totally bounded, there exists a natural number N and elements x_1, \ldots, x_N of D such that

$$
D \subseteq \bigcup_{n=1}^N \mathbf{B}_{\epsilon/2}(x_n).
$$

Since X is the closure of D in X , it follows that

$$
X \subseteq \bigcup_{n=1}^N \overline{\mathbf{B}_{\epsilon/2}(x_n)} \subseteq \bigcup_{n=1}^N \mathbf{B}_{\epsilon}(x_n).
$$

(c) Suppose a metric space X is totally bounded and let \widehat{X} be a completion of X with distance-preserving function $\iota: X \longrightarrow \widehat{X}$. By the definition of completion, we know that X is isometric to $\iota(X)$, so $\iota(X)$ is totally bounded by [Proposition 2.71.](#page-3-0) It follows from part (b) that the completion \widehat{X} is totally bounded, and is therefore compact by the Heine–Borel theorem [\(Theorem 2.74\)](#page-3-0). Hence X is isometric to the subspace $\iota(X)$ of the compact metric space \widehat{X} .

Conversely, suppose Y is a compact subspace, S is a subspace of Y, and $f: S \longrightarrow X$ is an isometry. It follows from the Heine–Borel theorem (Theorem (2.74)) that Y is totally bounded, and therefore S is totally bounded by part (a). Hence $X = f(S)$ is totally bounded by [Proposition 2.71.](#page-3-0) \Box

 \Box

7.4. For each $n \in \mathbb{N}$, consider the function $f_n: [0,1] \longrightarrow \mathbb{R}$ given by

$$
f_n(x) = \frac{x^2}{1 + nx}.
$$

- (a) Prove that f_n is bounded, for all $n \in \mathbb{N}$.
- (b) Find the pointwise limit f of the sequence (f_n) .
- (c) For any $n \in \mathbb{N}$, compute the uniform distance $d_{\infty}(f_n, f)$.
- (d) Does the sequence (f_n) converge uniformly to f?

Solution.

(a) Fix $n \in \mathbb{N}$. If $x \in [0,1]$ then $0 \le x^2 \le 1$ and $1 + n \ge 1 + nx \ge 1$, so $1/(1+n) \le 1/(1+nx) \le 1$, so

$$
0 \leqslant \frac{x^2}{1 + nx} \leqslant 1.
$$

Thus f_n is bounded.

(b) For $x = 0$ the sequence $(f_n(x)) = (f_n(0))$ is the constant sequence 0, so $f(0) = 0$. For $0 < x \leq 1$ we have

$$
\lim_{n \to \infty} \frac{x^2}{1 + nx} = x^2 \lim_{n \to \infty} \frac{1}{1 + nx} = 0,
$$

so $f(x) = 0$.

We conclude that the pointwise limit is the constant function $f = 0$ on [0,1].

(c) We have

$$
d_{\infty}(f_n, f) = \sup_{x \in [0,1]} \frac{x^2}{1 + nx}.
$$

Since f_n is continuous on a compact interval, it attains its extremal values in [0, 1]; in particular its global maximum is at $x = 0$ or at $x = 1$ or at a stationary point in $(0, 1)$. The derivative is

$$
f'_n(x) = \frac{x(2+nx)}{(1+nx)^2},
$$

so the stationary points are 0 and $-2/n$, neither of which lies in $(0, 1)$. Moreover $f_n(0) = 0$ and $f_n(1) = 1/(1 + n)$, so we conclude that

$$
d_{\infty}(f_n, f) = \frac{1}{1+n}.
$$

 \Box

(d) We have $(d_{\infty}(f_n), f) \rightarrow 0$ as $n \rightarrow \infty$, so the convergence is uniform.

7.5. Let $f_0: \mathbf{R} \longrightarrow \mathbf{R}$ be the function defined by

$$
f_0(x) = \begin{cases} 1+x & \text{if } -1 \leq x \leq 0, \\ 1-x & \text{if } 0 < x \leq 1, \\ 0 & \text{otherwise.} \end{cases}
$$

For each positive integer n, define $f_n: \mathbf{R} \longrightarrow \mathbf{R}$ by

$$
f_n(x) = f_0(x - n).
$$

- (a) Prove that f_n is bounded, for all $n \in \mathbb{N}$.
- (b) Find the pointwise limit f of the sequence (f_n) .
- (c) For any $n \in \mathbb{N}$, compute the uniform distance $d_{\infty}(f_n, f)$.
- (d) Does the sequence (f_n) converge uniformly to f?

Solution.

- (a) It is straightforward to see that $f_n(\mathbf{R}) = [0,1]$ for every natural number n. Thus f_n is bounded.
- (b) Fix a real number x and let N be the smallest positive integer such that $x \leq N$. It follows from the definition of f_n that $f_n(x) = 0$ if $n > N$. Hence $(f(x)) \longrightarrow 0$ as $n \longrightarrow \infty$ and therefore f is the constant function sending every real number to 0.
- (c) We have

$$
d_{\infty}(f_n, f) = \sup_{x \in \mathbf{R}} \{ d_{\mathbf{R}}(f(x), 0) \} = d_{\mathbf{R}}(f_n(n), 0) = 1.
$$

(d) Since $d_{\infty}(f_n, f)$ does not converge to 0, the sequence (f_n) does not converge to f uniformly. \Box

7.6.

- (a) Prove that every closed interval on R is compact.
- (b) Prove that every closed ball in \mathbb{R}^n is compact.
- (c) (*The classical Heine–Borel theorem*) Prove that a subset of \mathbb{R}^n is compact if and only if it is bounded and closed.
- (d) Prove that every bounded subset of \mathbb{R}^n is totally bounded.

Solution.

- (a) Let a and b be real numbers and let $r = \max\{|a|, |b|\}$. Since $[a, b] \subseteq \mathbf{B}_r(0)$, it follows that $[a, b]$ is bounded, and therefore totally bounded by [Example 2.69.](#page-3-0) As a closed subset of the complete space **R**, the closed interval [a, b] is also complete. Hence [a, b] is compact by the Heine–Borel theorem [\(Theorem 2.74\)](#page-3-0).
- (b) Let r be a positive real number and let v be an element of \mathbb{R}^n .

We start with proving $D_r(0)$ is compact. Since $[-r, r]$ is compact, it follows from [Theorem 2.39](#page-3-0) that $[-r, r]^n$ is compact. Since $\mathbf{D}_r(0)$ is a closed subset of $[-r, r]^n$, it follows from [Proposition 2.36](#page-3-0) that $D_r(0)$ is compact.

Let $R_v: \mathbf{R}^n \longrightarrow \mathbf{R}^n$ be the continuous function defined by $R_v(w) = v + w$ (see [Proposi](#page-3-0)[tion 2.44](#page-3-0)). Since

$$
\mathbf{D}_r(v) = R_v(\mathbf{D}_r(0)),
$$

it follows from [Proposition 2.37](#page-3-0) that $\mathbf{D}_r(v)$ is compact.

(c) Suppose K is a compact subset of \mathbb{R}^n . It follows from [Proposition 2.35](#page-3-0) that K is closed and it follows from the Heine–Borel theorem [\(Theorem 2.74\)](#page-3-0) that K is totally bounded, which implies K is bounded by [Exercise 2.47.](#page-3-0)

Conversely, suppose K is a bounded closed subset of \mathbb{R}^n . It follows from [Exercise 2.45](#page-3-0) that K is contained in some closed ball $\mathbf{D}_r(v)$, which is compact by part (b). Hence K is compact since it is a closed subset of a compact set (see [Proposition 2.36\)](#page-3-0).

(d) Let S be a bounded subset of \mathbb{R}^n and suppose S is contained in some closed ball $\mathbb{D}_r(v)$ (see Exercise 2.45), which is compact by part (b) and therefore totally bounded by the Heine–Borel theorem (Theorem 2.74). It now follows from part (c) of [Question 7.3](#page-0-0) that S is totally bounded. \Box

7.7. (*) Let $A = (a_{ij})$ be an $n \times n$ real matrix with all $|a_{ij}| < 1$. Prove that any real eigenvalue λ of A satisfies $|\lambda| < n$.

[*Hint*: Show that if $|\lambda| \geq n$ then the function $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ given by $f(v) = \frac{1}{\lambda}Av$ is a contraction for the sup metric topology on \mathbb{R}^n ; then use the Banach Fixed Point Theorem.

Solution. Suppose $|\lambda| \geq n$.

We start by proving that the function f from the hint is a contraction. If v and w are elements of \mathbf{R}^n , then

$$
d(f(v), f(w)) = \max_{i \in \{1, ..., n\}} |f(v)_i - f(w)_i| = \max_i \left| \sum_{j=1}^n \frac{1}{\lambda} a_{ij} (v_j - w_j) \right|
$$

\n
$$
= \frac{1}{|\lambda|} \max_i \left| \sum_{j=1}^n a_{ij} (v_j - w_j) \right| \le \frac{1}{|\lambda|} \max_i \sum_{j=1}^n |a_{ij}| |v_j - w_j|
$$

\n
$$
< \frac{1}{|\lambda|} \max_i \sum_{j=1}^n |v_j - w_j| = \frac{1}{|\lambda|} \sum_{j=1}^n |v_j - w_j|
$$

\n
$$
\le \frac{n}{|\lambda|} \max_{j \in \{1, ..., n\}} |v_j - w_j| = \frac{n}{|\lambda|} d(v, w)
$$

\n
$$
\le d(v, w).
$$

Hence f is a contraction.

R is complete, so \mathbb{R}^n is complete by Question 6.4. Now it follows from the Banach Fixed Point Theorem (Theorem 2.66) that there is a unique element v of \mathbb{R}^n such that $v = f(v) = \frac{1}{\lambda}Av$, which is equivalent to $Av = \lambda v$. Since the zero vector satisfies this condition, this unique vector has to be the zero vector, so λ cannot be an eigenvalue of A. \Box