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Tutorial Week 8

Topics: normed vector spaces, inner product spaces.

8.1. (*) Let V be a normed vector space. Prove that (V,+) is a topological group.

Solution. By Proposition 3.2, the addition a ∶ V × V Ð→ V and the scalar multiplication
s ∶ F × V Ð→ V are both continuous. It is straightforward to verify that the inversion
i ∶ V Ð→ V defined by i(v) = −v is equal to the composition s′ ○f , where s′ ∶ {−1}×V Ð→ V is
the restriction of s to {−1}×V and f ∶ V Ð→ {−1}×V defined by f(v) = (−1, v). The function
s′ is continuous because it is the restriction of the continuous function s to {−1} ×V , while f ′

is continuous by Exercise 2.20, so the inversion i is continuous by Question 2.9. Hence V is a
topological group.

8.2. Let (V, ∥ ⋅ ∥) be a normed space and let S ⊆ V be a subset. Prove that the closure
Span(S) of the span of S is the smallest closed subspace of V that contains S.

Solution. We know that Span(S) is a subspace of V , and by Proposition 3.7 that Span(S) is
a closed subspace of V .

Let W ⊆ V be some closed subspace of V that contains S. Then Span(S) ⊆ W , and so
Span(S) ⊆W =W , whence the minimality property.

8.3. Let v be a non-zero vector in a normed vector space V . Prove that the one-dimensional
subspace Fv ∶= Span(v) of V is isometric to F.

Solution. Let f ∶ FÐ→ Fv be the bijection defined by f(α) = α
∥v∥v. If α and β are elements

of F, then

dF(α,β) = ∣α − β∣ =
∣α − β∣
∥v∥ v = ∥ α

∥v∥v −
β

∥v∥v∥ = dV (f(α), f(β)).

Hence f is an isometry.

8.4. Let W be a finite-dimensional subspace of a normed vector space V . Prove that W is a
closed subset of V .

Solution. If (wn) is a sequence in W and it converges to v in V , then (wn) is Cauchy by
Proposition 2.53. It follows from Proposition 3.8 that W is complete, so v ∈W . Hence W is
closed by part (c) of Proposition 2.50.

8.5. Prove that equivalence of norms is an equivalence relation.

Solution. The relation is reflexive because if ∥ ⋅ ∥ is a norm on a vector space V , then

1 ⋅ ∥v∥ ⩽ ∥v∥ ⩽ 1 ⋅ ∥v∥ for all v ∈ V .

The relation is symmetric because if ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are norms on a vector space V , and if
there exists positive real numbers m and M such that

m∥v∥1 ⩽ ∥v∥2 ⩽M∥v∥1 for all v ∈ V ,

then
1

M
∥v∥2 ⩽ ∥v∥1 ⩽

1

m
∥v∥2 for all v ∈ V .
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The relation is transitive because if ∥ ⋅ ∥1, ∥ ⋅ ∥2, and ∥ ⋅ ∥3 are norms on a vector space V ,
and if there exists positive real numbers m, k, M , and K such that

m∥v∥1 ⩽ ∥v∥2 ⩽M∥v∥1 and k∥v∥2 ⩽ ∥v∥3 ⩽K∥v∥2 for all v ∈ V ,

then
mk∥v∥1 ⩽ ∥v∥2 ⩽MK∥v∥1 for all v ∈ V .

8.6. Let ∥ ⋅ ∥1 and ∥ ⋅ ∥2 be two equivalent norms on a vector space V .

(a) Prove that the identity function idV ∶ (V, ∥ ⋅ ∥1) Ð→ (V, ∥ ⋅ ∥2) is uniformly continuous.

(b) Prove that (V, ∥ ⋅ ∥1) is Banach if and only if (V, ∥ ⋅ ∥2) is Banach.

Solution.

(a) Let m and M be positive real numbers such that

m∥v∥1 ⩽ ∥v∥2 ⩽M∥v∥1 for all v ∈ V

and let d1 and d2 be the metrics defined by ∥ ⋅ ∥1 and ∥ ⋅ ∥2 respectively (see Proposition 3.1
for the definition). If ε is a positive real number, then d1(v,w) < ε/M implies

d2(idV (v), idV (w)) = d2(v,w) = ∥v −w∥2 ⩽M∥v −w∥1 =Md1(v,w) < ε.

Hence idV ∶ (V, ∥ ⋅ ∥1) Ð→ (V, ∥ ⋅ ∥2) is uniformly continuous.

(b) By Question 8.5 and part (a), the equivalence between ∥ ⋅ ∥1 and ∥ ⋅ ∥2 implies the
identity functions idV ∶ (V, ∥ ⋅ ∥1) Ð→ (V, ∥ ⋅ ∥2) and idV ∶ (V, ∥ ⋅ ∥2) Ð→ (V, ∥ ⋅ ∥1) are both
uniformly continuous, so idV ∶ (V, ∥ ⋅ ∥1) Ð→ (V, ∥ ⋅ ∥2) is a uniform homeomorphism (see
Question 6.5). It then follows from part (b) of Question 6.5 that (V, ∥ ⋅ ∥1) is complete if
and only if (V, ∥ ⋅ ∥2) is complete.

8.7. Prove that the following norms on Rn are not defined by inner products:

(a) the `1-norm defined by

∥(x1, . . . , xn)∥1 =
n

∑
i=1

∣xi∣,

(b) the `∞-norm defined by

∥(x1, . . . , xn)∥
∞
=max{∣x1∣, . . . , ∣xn∣}.

Solution. We will verify that neither of the two norms satisfy the Parallelogram Law (Propo-
sition 3.12), so they cannot be defined by inner products. Let e1 = (1,0, . . . ,0) and
e2 = (0,1,0, . . . ,0).

(a) We have ∥e1∥1 = ∥e2∥1 = 1 and ∥e1 + e2∥1 = ∥e1 − e2∥1 = 2, so

∥e1 + e2∥21 + ∥e1 − e2∥21 = 8 ≠ 4 = 2(∥e1∥21 + ∥e2∥21).

(b) We have ∥e1∥∞ = ∥e2∥∞ = ∥e1 + e2∥∞ = ∥e1 − e2∥∞ = 1, so

∥e1 + e2∥2∞ + ∥e1 − e2∥2∞ = 2 ≠ 4 = 2(∥e1∥2∞ + ∥e2∥2∞).
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8.8. Let (V, ⟨ ⋅ , ⋅ ⟩) be a complex inner product space and let T ∶ V Ð→ V be a linear operator.
Show that T = 0 if and only if ⟨Tv, v⟩ = 0 for every vector v in V .

Is this true for real inner product spaces?

Solution. If T = 0, then ⟨Tv, v⟩ = ⟨0, v⟩ = 0 for every vector v in V .
Conversely, suppose ⟨Tv, v⟩ = 0 for every vector v in V . If v and w are two vectors in V ,

then

0 = ⟨T (v +w), v +w⟩
= ⟨Tv, v⟩ + ⟨Tw, v⟩ + ⟨Tv,w⟩ + ⟨Tw,w⟩
= ⟨Tv,w⟩ + ⟨Tw, v⟩.

Substituting v by iv gives

0 = ⟨T (iv),w⟩ + ⟨Tw, iv⟩ = i⟨Tv,w⟩ − i⟨Tw, v⟩,

and it follows that
0 = ⟨Tv,w⟩ − ⟨Tw, v⟩.

Hence ⟨Tv,w⟩ = ⟨Tw,w⟩ = 0. Since the inner product is non-degenerate and w is an arbitrary
vector in V , it follows that Tv = 0 for every vector v in V , and therefore T = 0.

This statement does not hold for real vector spaces. Let V = R2 with the inner product
defined by

⟨(x1, y1), (x2, y2)⟩ = x1x2 + y1y2
and let T be the linear operator defined by T (x, y) = (y,−x). For every vector (x, y) in V , we
have

⟨T (x, y), (x, y)⟩ = ⟨(y,−x), (x, y)⟩ = 0,
but T ≠ 0 because T (1,0) = (0,−1).
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