MAST30026 Metric and Hilbert Spaces 2024

Tutorial Week 8

Topics: normed vector spaces, inner product spaces.

8.1. (*) Let V be a normed vector space. Prove that (V,+) is a topological group.

Solution. By Proposition 3.2, the addition a: V xV — V and the scalar multiplication
s: FxV — V are both continuous. It is straightforward to verify that the inversion
i: V — V defined by i(v) = —v is equal to the composition s’ o f, where s': {-1} xV — V' is
the restriction of s to {-1}xV and f: V — {1} xV defined by f(v) = (-1,v). The function
s’ is continuous because it is the restriction of the continuous function s to {-1} x V', while f’
is continuous by Exercise 2.20, so the inversion ¢ is continuous by Question 2.9. Hence V is a
topological group. ]

8.2. Let (V,]-]) be a normed space and let S ¢ V be a subset. Prove that the closure
Span(S) of the span of S is the smallest closed subspace of V' that contains S.

Solution. We know that Span(.S) is a subspace of V', and by Proposition 3.7 that Span(S) is
a closed subspace of V.
Let W ¢ V be some closed subspace of V' that contains S. Then Span(S) ¢ W, and so

Span(S) € W = W, whence the minimality property. ]

8.3. Let v be a non-zero vector in a normed vector space V. Prove that the one-dimensional
subspace Fv := Span(v) of V' is isometric to F.

Solution. Let f: F — Fuv be the bijection defined by f(«) = ov- If v and f are elements
of F, then

o= 5]

V=
[v]

o s

—U = T
(e

dp(a, B) = la—f] = =dv(f(a),f(B)).

Hence f is an isometry. O

8.4. Let W be a finite-dimensional subspace of a normed vector space V. Prove that W is a
closed subset of V.

Solution. If (w,) is a sequence in W and it converges to v in V', then (w,) is Cauchy by
Proposition 2.53. It follows from Proposition 3.8 that W is complete, so v € W. Hence W is
closed by part (c) of Proposition 2.50. O

8.5. Prove that equivalence of norms is an equivalence relation.
Solution. The relation is reflexive because if |- | is a norm on a vector space V', then
Lo <ol €1 for all veV.

The relation is symmetric because if ||-|; and |||z are norms on a vector space V, and if
there exists positive real numbers m and M such that

mlvy < o] < M|, forallveV,
then . X

- < < — forallveV.

vz <ol —Jolz - forall v



MAST30026 Metric and Hilbert Spaces 2024

The relation is transitive because if |- |y, |- |2, and ||- |3 are norms on a vector space V/,
and if there exists positive real numbers m, k, M, and K such that

mlvly <fvla <Mlofy and  Evlz <[ols < Kfvly  forallveV,

then
mk|v|i < |v]a < MK |v|; for all ve V. O

8.6. Let |-|; and |- |2 be two equivalent norms on a vector space V.
(a) Prove that the identity function idy : (V,|-|1) — (V| -|l2) is uniformly continuous.
(b) Prove that (V,|-|1) is Banach if and only if (V)| |2) is Banach.

Solution.

(a) Let m and M be positive real numbers such that
mllv|1 < Jvl2 < Mol for all veV

and let d; and dy be the metrics defined by | - ||; and | - |2 respectively (see Proposition 3.1
for the definition). If € is a positive real number, then d; (v, w) < ¢/M implies

dg(idv(v),idv(w)) =do(v,w) = |[v—w|s < Mjv-w|, = Mdy(v,w) <e.
Hence idy : (V. |-]l1) — (V, |- |2) is uniformly continuous.

(b) By Question 8.5 and part (a), the equivalence between |-[; and |- |, implies the
identity functions idy : (V|- [1) — (V.| |2) and idy: (V.|| ]2) — (V| -||1) are both
uniformly continuous, so idy: (V,|-|1) — (V,]-|2) is a uniform homeomorphism (see
Question 6.5). It then follows from part (b) of Question 6.5 that (V.| |1) is complete if
and only if (V)| -[2) is complete. O

8.7. Prove that the following norms on R™ are not defined by inner products:

(a) the ¢'-norm defined by

[Gorseza)] = Ixz

(b) the ¢*°-norm defined by

= max{|z1],..., ||}

”OO

H(xl,...,a:n)

Solution. We will verify that neither of the two norms satisfy the Parallelogram Law (Propo-
sition 3.12), so they cannot be defined by inner products. Let e; = (1,0,...,0) and
€9 = (0,1,0,...,0).

(a) We have ”61”1 = H€2H1 =1 and “61 +62H1 = H61 —62”1 = 27 SO

ler +eaf + e —eaf} =8 # 4 =2(ler]] + [ez])-

(b) We have [le1]eo = [€2]lo0 = 1 + €2]o0 = €1 = €2]00 = 1, 50

ler +ea|% + er —ea]| 2 =22 4 =2([er |2 + [ea]%). L
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8.8. Let (V (-, -)) be a complex inner product space and let T: V' — V be a linear operator.
Show that 7' =0 if and only if (T'v,v) = 0 for every vector v in V.
Is this true for real inner product spaces?

Solution. If T =0, then (Tv,v) = (0,v) = 0 for every vector v in V.
Conversely, suppose (T'v,v) = 0 for every vector v in V. If v and w are two vectors in V,
then

0= (T(v+w),v+w)
=(Tv,v) + (Tw,v) + (Tv,w) + (Tw,w)
=(Tv,w) + (Tw,v).

Substituting v by v gives
0= (T(iv), w) +(Tw,iv) =i(Tv,w) —i(Tw,v),
and it follows that
0=(Tv,w) - (Tw,v).

Hence (Tv,w) = (T'w,w) = 0. Since the inner product is non-degenerate and w is an arbitrary
vector in V, it follows that Tv = 0 for every vector v in V| and therefore T = 0.

This statement does not hold for real vector spaces. Let V = R? with the inner product
defined by

((xlvyl)v ($2,y2)> =122+ N1Y2
and let T" be the linear operator defined by T'(x,y) = (y,—z). For every vector (x,y) in V', we

have
(T(*Tuy)u (xhy)) = ((yv_x)v (xay)> = 07
but 7" # 0 because 7'(1,0) = (0,-1). O



