Tutorial Week 8

Topics: normed vector spaces, inner product spaces.

8.1. (*) Let V be a normed vector space. Prove that $(V,+)$ is a topological group.

Solution. By [Proposition 3.2,](#page-2-0) the addition $a: V \times V \longrightarrow V$ and the scalar multiplication s: $\mathbf{F} \times V \longrightarrow V$ are both continuous. It is straightforward to verify that the inversion *i*: $V \longrightarrow V$ defined by $i(v) = -v$ is equal to the composition $s' \circ f$, where s' : $\{-1\} \times V \longrightarrow V$ is the restriction of s to $\{-1\} \times V$ and $f: V \longrightarrow \{-1\} \times V$ defined by $f(v) = (-1, v)$. The function s' is continuous because it is the restriction of the continuous function s to $\{-1\} \times V$, while f' is continuous by [Exercise 2.20,](#page-2-0) so the inversion i is continuous by [Question 2.9.](#page-2-0) Hence V is a topological group. \Box

8.2. Let $(V, \|\cdot\|)$ be a normed space and let $S \subseteq V$ be a subset. Prove that the closure $Span(S)$ of the span of S is the smallest closed subspace of V that contains S.

Solution. We know that $Span(S)$ is a subspace of V, and by [Proposition 3.7](#page-2-0) that $\overline{Span(S)}$ is a closed subspace of V.

Let $W \subseteq V$ be some closed subspace of V that contains S. Then $\text{Span}(S) \subseteq W$, and so $\overline{\text{Span}(S)} \subseteq \overline{W} = W$, whence the minimality property. \Box

8.3. Let v be a non-zero vector in a normed vector space V. Prove that the one-dimensional subspace $\mathbf{F}v = \text{Span}(v)$ of V is isometric to F.

Solution. Let $f: \mathbf{F} \longrightarrow \mathbf{F}v$ be the bijection defined by $f(\alpha) = \frac{\alpha}{\|v\|}$ $\frac{\alpha}{\|v\|}v$. If α and β are elements of \mathbf{F} , then

$$
d_{\mathbf{F}}(\alpha, \beta) = |\alpha - \beta| = \frac{|\alpha - \beta|}{\|v\|} v = \left\| \frac{\alpha}{\|v\|} v - \frac{\beta}{\|v\|} v \right\| = d_V\big(f(\alpha), f(\beta)\big).
$$

 \Box

Hence f is an isometry.

8.4. Let W be a finite-dimensional subspace of a normed vector space V. Prove that W is a closed subset of V .

Solution. If (w_n) is a sequence in W and it converges to v in V, then (w_n) is Cauchy by [Proposition 2.53.](#page-2-0) It follows from [Proposition 3.8](#page-2-0) that W is complete, so $v \in W$. Hence W is closed by part (c) of [Proposition 2.50.](#page-2-0) \Box

8.5. Prove that equivalence of norms is an equivalence relation.

Solution. The relation is reflexive because if $\|\cdot\|$ is a norm on a vector space V, then

$$
1 \cdot \|v\| \le \|v\| \le 1 \cdot \|v\| \qquad \text{for all } v \in V.
$$

The relation is symmetric because if $\|\cdot\|_1$ and $\|\cdot\|_2$ are norms on a vector space V, and if there exists positive real numbers m and M such that

$$
m||v||_1 \le ||v||_2 \le M||v||_1 \qquad \text{for all } v \in V,
$$

then

$$
\frac{1}{M}||v||_2 \le ||v||_1 \le \frac{1}{m}||v||_2 \quad \text{for all } v \in V.
$$

The relation is transitive because if $\|\cdot\|_1$, $\|\cdot\|_2$, and $\|\cdot\|_3$ are norms on a vector space V, and if there exists positive real numbers m, k, M , and K such that

$$
m||v||_1 \le ||v||_2 \le M||v||_1
$$
 and $k||v||_2 \le ||v||_3 \le K||v||_2$ for all $v \in V$,

then

$$
mk||v||_1 \le ||v||_2 \le MK||v||_1 \qquad \text{for all } v \in V.
$$

8.6. Let $\|\cdot\|_1$ and $\|\cdot\|_2$ be two equivalent norms on a vector space V.

- (a) Prove that the identity function $\mathrm{id}_V \colon (V, \|\cdot\|_1) \longrightarrow (V, \|\cdot\|_2)$ is uniformly continuous.
- (b) Prove that $(V, \|\cdot\|_1)$ is Banach if and only if $(V, \|\cdot\|_2)$ is Banach.

Solution.

(a) Let m and M be positive real numbers such that

$$
m||v||_1 \le ||v||_2 \le M||v||_1 \qquad \text{for all } v \in V
$$

and let d_1 and d_2 be the metrics defined by $\|\cdot\|_1$ and $\|\cdot\|_2$ respectively (see [Proposition 3.1](#page-2-0)) for the definition). If ϵ is a positive real number, then $d_1(v, w) < \epsilon/M$ implies

$$
d_2\bigl(\mathrm{id}_V(v),\mathrm{id}_V(w)\bigr) = d_2(v,w) = \|v-w\|_2 \leqslant M \|v-w\|_1 = Md_1(v,w) < \epsilon.
$$

Hence $\mathrm{id}_V : (V, \|\cdot\|_1) \longrightarrow (V, \|\cdot\|_2)$ is uniformly continuous.

- (b) By [Question 8.5](#page-0-0) and part (a), the equivalence between $\|\cdot\|_1$ and $\|\cdot\|_2$ implies the identity functions $\mathrm{id}_V \colon (V, \|\cdot\|_1) \longrightarrow (V, \|\cdot\|_2)$ and $\mathrm{id}_V \colon (V, \|\cdot\|_2) \longrightarrow (V, \|\cdot\|_1)$ are both uniformly continuous, so $\mathrm{id}_V : (V, \|\cdot\|_1) \longrightarrow (V, \|\cdot\|_2)$ is a uniform homeomorphism (see [Question 6.5\)](#page-2-0). It then follows from part (b) of [Question 6.5](#page-2-0) that $(V, \|\cdot\|_1)$ is complete if and only if $(V, \|\cdot\|_2)$ is complete. \Box
- **8.7.** Prove that the following norms on \mathbb{R}^n are not defined by inner products:
	- (a) the ℓ^1 -norm defined by

$$
||(x_1,\ldots,x_n)||_1 = \sum_{i=1}^n |x_i|,
$$

(b) the ℓ^{∞} -norm defined by

$$
\|(x_1,\ldots,x_n)\|_{\infty}=\max\{|x_1|,\ldots,|x_n|\}.
$$

Solution. We will verify that neither of the two norms satisfy the Parallelogram Law [\(Propo](#page-2-0)[sition 3.12\)](#page-2-0), so they cannot be defined by inner products. Let $e_1 = (1, 0, \ldots, 0)$ and $e_2 = (0, 1, 0, \ldots, 0).$

(a) We have $||e_1||_1 = ||e_2||_1 = 1$ and $||e_1 + e_2||_1 = ||e_1 - e_2||_1 = 2$, so

$$
||e_1 + e_2||_1^2 + ||e_1 - e_2||_1^2 = 8 \neq 4 = 2(|e_1||_1^2 + ||e_2||_1^2).
$$

(b) We have $||e_1||_{\infty} = ||e_2||_{\infty} = ||e_1 + e_2||_{\infty} = ||e_1 - e_2||_{\infty} = 1$, so

$$
||e_1 + e_2||_{\infty}^2 + ||e_1 - e_2||_{\infty}^2 = 2 \neq 4 = 2(|e_1||_{\infty}^2 + ||e_2||_{\infty}^2).
$$

8.8. Let $(V, \langle \cdot, \cdot \rangle)$ be a complex inner product space and let $T: V \longrightarrow V$ be a linear operator. Show that $T = 0$ if and only if $\langle Tv, v \rangle = 0$ for every vector v in V.

Is this true for real inner product spaces?

Solution. If $T = 0$, then $\langle Tv, v \rangle = \langle 0, v \rangle = 0$ for every vector v in V.

Conversely, suppose $\langle Tv, v \rangle = 0$ for every vector v in V. If v and w are two vectors in V, then

$$
0 = \langle T(v+w), v+w \rangle
$$

= $\langle Tv, v \rangle + \langle Tw, v \rangle + \langle Tv, w \rangle + \langle Tw, w \rangle$
= $\langle Tv, w \rangle + \langle Tw, v \rangle.$

Substituting v by iv gives

$$
0 = \langle T(iv), w \rangle + \langle Tw, iv \rangle = i \langle Tv, w \rangle - i \langle Tw, v \rangle,
$$

and it follows that

$$
0 = \langle Tv, w \rangle - \langle Tw, v \rangle.
$$

Hence $\langle Tv, w \rangle = \langle Tw, w \rangle = 0$. Since the inner product is non-degenerate and w is an arbitrary vector in V, it follows that $Tv = 0$ for every vector v in V, and therefore $T = 0$.

This statement does not hold for real vector spaces. Let $V = \mathbb{R}^2$ with the inner product defined by

$$
\{(x_1,y_1),(x_2,y_2)\}=x_1x_2+y_1y_2
$$

and let T be the linear operator defined by $T(x, y) = (y, -x)$. For every vector (x, y) in V, we have

$$
\big\langle T(x,y),(x,y)\big\rangle=\big\langle (y,-x),(x,y)\big\rangle=0,
$$

 \Box

but $T \neq 0$ because $T(1,0) = (0,-1)$.

3