Tutorial Week 9

Topics: sequence spaces, series.

9.1 (Hölder's Inequality for ℓ^1 and ℓ^{∞}). Prove that if $u = (u_n) \in \ell^{\infty}$ and $v = (v_n) \in \ell^1$, then

$$
\sum_{n=1}^{\infty} |u_n v_n| \leqslant ||u||_{\ell^{\infty}} ||v||_{\ell^1}.
$$

Solution. Very straightforward.

By the definition of ℓ^{∞} and the ℓ^{∞} -norm, we have $|u_n| \leq \|u\|_{\ell^{\infty}}$ for all $n \in \mathbb{N}$. Therefore for any $m \in \mathbb{N}$ we have

$$
\sum_{n=1}^{m} |u_n v_n| \leq ||u||_{\infty} \sum_{n=1}^{m} |v_n|,
$$

but the latter series converges because $v \in \ell^1$, to $||v||_{\ell^1}$ and we get

$$
\sum_{n=1}^{\infty} |u_n v_n| \leq \|u\|_{\ell^{\infty}} \|v\|_{\ell^1}.
$$

9.2. Prove that the norms on the sequence spaces ℓ^{∞} and ℓ^p for $p \neq 2$ cannot defined by inner products.

Solution. We will verify that none of the norms in the question satisfy the Parallelogram Law [\(Proposition 3.12\)](#page-3-0), so they cannot be defined by inner products. Consider $e_1 = (1, 0, 0, 0, 0, ...)$ and $e_2 = (0, 1, 0, 0, 0, ...)$. Then

$$
\|e_1 + e_2\|_{\ell^\infty}^2 + \|e_1 - e_2\|_{\ell^\infty}^2 = 2 \neq 4 = 2(\|e_1\|_{\ell^\infty}^2 + \|e_2\|_{\ell^\infty}^2)
$$

and

$$
||e_1 + e_2||_{\ell^p}^2 + ||e_1 - e_2||_{\ell^p}^2 = 2 \times 2^{2/p} \neq 4 = 2(|e_1||_{\ell^p}^2 + ||e_2||_{\ell^p}^2).
$$

9.3. Suppose $1 \leq p \leq q$. Prove that

 $\ell^p \subseteq \ell^q.$

Show that if $p < q$ then the inclusion is strict: $\ell^p \varphi \ell^q$.

Solution. We prove that

$$
||x||_{\ell^q} \le ||x||_{\ell^p} \qquad \text{for all } x \in \ell^p.
$$

If $||x||_{\ell^p} = 0$ then $x = 0$ so $||x||_{\ell^q} = 0$ and the inequality obviously holds. So suppose $x \neq 0$, then by dividing through by $||x||_{\ell^p}$ we can reduce to proving that

 $||x||_{\ell^q} \le 1$ for all x such that $||x||_{\ell^p} = 1$.

But if $||x||_{\ell^p} = 1$ then

$$
\sum_{n=1}^{\infty} |x_n|^p = 1,
$$

which means that for all $n \in \mathbb{N}$ we have $|x_n|^p \leq 1$, so $|x_n| \leq 1$. However, $p \leq q$ and $|x_n| \leq 1$ implies that $|x_n|^q \leq |x_n|^p$ for all $n \in \mathbb{N}$, so that

$$
||x||_{\ell^q}^q = \sum_{n=1}^{\infty} |x_n|^q \le \sum_{n=1}^{\infty} |x_n|^p = 1.
$$

If $p < q$ then $\alpha \coloneqq q/p > 1$. For each $n \in \mathbb{N}$, let

$$
x_n = \frac{1}{n^{1/p}},
$$

so that

$$
|x_n|^p=\frac{1}{n},\qquad \ |x_n|^q=\frac{1}{n^\alpha}.
$$

We have

$$
\|(x_n)\|_{\ell^p} = \sum_{n=1}^{\infty} \frac{1}{n} = \infty, \qquad \|(x_n)\|_{\ell^q} = \sum_{n=1}^{\infty} \frac{1}{n^{\alpha}} < \infty,
$$

so $(x_n) \in \ell^q \setminus \ell^p$.

9.4. Prove that every finite-dimensional normed vector space is separable.

Solution. Let V be a finite-dimensional normed vector space. If V is a complex normed vector space, then we can restrict the scalars to real numbers to make V a real normed vector space. As a real vector space V is still finite-dimensional because $\dim_{\mathbf{C}} V = 2 \dim_{\mathbf{R}} V$. Hence, without loss of generality, we assume V is a real normed vector space.

Let v_1, \ldots, v_n be a basis of V. By [Theorem 3.6,](#page-3-0) the norm on V is equivalent to the norm $\|\cdot\|_1$ defined by

$$
\|\alpha_1v_1 + \cdots + \alpha_nv_n\|_1 = |\alpha_1| + \cdots + |\alpha_n|.
$$

Since separability is a property of topological spaces and equivalent norms give rise to the same topology (see [Exercise 3.2\)](#page-3-0), we can assume without loss of generality that V is equipped with the norm $\|\cdot\|_1$.

Let W be the Q-vector space spanned by $\{v_1, \ldots, v_n\}$. We claim that $V = \overline{W}$.

If v is a vector in V, then there exists real numbers $\alpha_1, \ldots, \alpha_n$ such that $v = \sum_{i=1}^n \alpha_i v_i$. For each i, there exists a sequence of real numbers (a_{ij}) converging to α_i as $j \rightarrow \infty$. Define $v_j = \sum_{i=1}^n a_{ij} v_i$. We now prove $v_j \longrightarrow v$ as $j \longrightarrow \infty$. If ϵ is a positive real number, then for every index *i* there exists a positive integer N_i such that $n > N_i$ implies $|\alpha_i - a_{ij}| < \epsilon/n$. Put $N = \max\{N_1, \ldots, N_n\}$. It follows that $n > N$ implies

$$
||v - v_j|| = \sum_i |\alpha_i - a_{ij}| < n \cdot (\epsilon/n) = \epsilon.
$$

The space W is countable because it is the Cartesian product of n copies of Q. Hence W is a countable dense subset of V . \Box

9.5. Let c_{00} be the space of sequences with only finitely many nonzero terms (see [Example 3.23\)](#page-3-0), and consider it as a subspace of ℓ^{∞} . Prove that c_{00} is separable.

Solution. Let e_j be the sequence whose j-th entry is 1, and all the others are 0. Since every vector in c_{00} has only finitely many non-zero terms, it follows that c_{00} is spanned by $\{e_1, e_2, \dots\}$. Let V_n be the span of $\{e_1, \dots, e_n\}$, which is separable by [Question 9.4.](#page-1-0) Pick a countable dense subset S_n of V_n and put $S = \bigcup_{n=1}^{\infty} S_n$. We claim that S is a countable dense subset of c_{00} .

As a countable union of countable sets, S is countable because of [Exercise 1.2.](#page-3-0) If v is a vector in c_{00} , then v belongs to V_n for some n, so there exists a sequence in S_n converging to v, which is also a sequence in S converging to v. Hence S is dense in c_{00} .

Alternative: Once you see that c_{00} is spanned by the countable set $\{e_1, e_2, \dots\}$, use [Proposition 3.31.](#page-3-0) \Box

9.6. Consider the subset $c_0 \subseteq \mathbf{F}^N$ of all sequences with limit 0:

$$
c_0 = \big\{ (a_n) \in \mathbf{F}^{\mathbf{N}} \colon (a_n) \longrightarrow 0 \big\}.
$$

 \Box

- (a) Prove that c_0 is a closed subspace of ℓ^{∞} .
- (b) Conclude that c_0 is a Banach space.
- (c) Prove that c_0 is separable.

Solution.

(a) It's pretty clear that c_0 is a subspace of \mathbf{F}^N , and hence of ℓ^{∞} . To show that c_0 is closed in ℓ^{∞} , let $(x_n) \longrightarrow x \in \ell^{\infty}$ with $x_n \in c_0$ for all $n \in \mathbb{N}$. We want to prove that $x \in c_0$.

Write $x_n = (a_{nm}) = (a_{n1}, a_{n2}, a_{n3}, \dots)$ and $x = (a_m) = (a_1, a_2, a_3, \dots)$. Let $\varepsilon > 0$. There exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have

$$
\sup_{m}|a_{m}-a_{nm}|=\|x-x_{n}\|_{\ell^{\infty}}<\frac{\varepsilon}{2}.
$$

Consider the sequence $x_N = (a_{Nm}) \in c_0$. It converges to 0, so that there exists $M \in \mathbb{N}$ such that for any $m \geq M$ we have

$$
|a_{Nm}| < \frac{\varepsilon}{2}.
$$

Therefore, for $m \geq M$, we get

$$
|a_m| = |a_m - a_{Nm} + a_{Nm}| \leq |a_m - a_{Nm}| + |a_{Nm}| < \varepsilon.
$$

Hence $x = (a_m) \longrightarrow 0$.

- (b) Since c_0 is closed and ℓ^{∞} is Banach, c_0 is Banach.
- (c) I claim that c_0 has the same Schauder basis at the one given in [Example 3.32](#page-3-0) for ℓ^p : ${e_1, e_2,...}$ where $e_n = (0,...,0,1,0...)$ with the 1 in the *n*-th spot.

Take $v = (v_n) \in c_0$, then $(v_n) \longrightarrow 0$. I claim that the series

$$
\sum_{n=1}^{\infty} v_n e_n
$$

converges to v with respect to the norm on c_0 , which is the ℓ^{∞} -norm:

$$
\left\|v - \sum_{n=1}^m v_n e_n\right\|_{\ell^\infty} = \left\|(0, \ldots, 0, v_{m+1}, v_{m+2}, v_{m+3}, \ldots)\right\|_{\ell^\infty} = \sup_{n \ge m+1} |v_n|,
$$

and the latter converges to 0 as $m \rightarrow \infty$, since $(v_n) \rightarrow 0$. The uniqueness of the coefficients follows in precisely the same way as for [Example 3.32.](#page-3-0) \Box

- **9.7.** Consider the space ℓ^{∞} of bounded sequences.
	- (a) Let $S \subseteq \ell^{\infty}$ be the subset of sequences (a_n) such that $a_n \in \{0,1\}$ for all $n \in \mathbb{N}$. Prove that S is an uncountable set.

[*Hint*: Mimic Cantor's diagonal argument.]

- (b) Use S to construct an uncountable set T of disjoint open balls in ℓ^{∞} .
- (c) Conclude that ℓ^{∞} is not separable.

Solution.

(a) Suppose S is countable and enumerate its elements:

$$
a_1 = (a_{11}, a_{12}, a_{13}, \dots)
$$

\n
$$
a_2 = (a_{21}, a_{22}, a_{23}, \dots)
$$

\n
$$
a_3 = (a_{31}, a_{32}, a_{33}, \dots)
$$

\n
$$
\vdots
$$

Go down the diagonal of this infinite grid of 0's and 1's, and define $b_n = 1 - a_{nn}$ for all $n \in \mathbb{N}$. Then $b = (b_n) \in S$, but $b \neq a_m$ for any $m \in \mathbb{N}$, contradiction.

(b) If $a = (a_n)$, $b = (b_n) \in S$ with $a \neq b$ then

$$
||a - b|| = \sup_{n} |a_n - b_n| = 1,
$$

so $B_{1/2}(a) \cap B_{1/2}(b) = \emptyset$.

Therefore we can take

$$
T = \{ \mathbf{B}_{1/2}(s) : s \in S \}.
$$

- (c) Any dense subset D of ℓ^{∞} must contain at least one point (in fact, must be dense) in each open ball in the set T. Since T is uncountable, D must also be uncountable, so ℓ^{∞} is not separable. \Box
- **9.8.** Give an example of a series that converges but does not converge absolutely.

Solution. In R, consider

$$
\sum_{n=1}^{\infty} \frac{(-1)^n}{n}.
$$

Taking absolute values we get the harmonic series, which does not converge.

The original series has alternating signs, and its terms in absolute value form a decreasing sequence $(1/n)$ that converges to zero, hence the series converges by the alternating series \Box test.

9.9. If a series $\sum_{n=1}^{\infty} a_n$ in a normed space $(V, \|\cdot\|)$ converges absolutely, then

$$
\Big\|\sum_{n=1}^{\infty}a_n\Big\|\leqslant \sum_{n=1}^{\infty}\|a_n\|.
$$

Solution. This follows from the usual triangle inequality.

For any $m \in \mathbb{N}$, we have

$$
||a_1 + \cdots + a_m|| \le ||a_1|| + \cdots + ||a_m||.
$$

Taking limits as $m \rightarrow \infty$ we get

$$
\left\| \sum_{n=1}^{\infty} a_n \right\| = \left\| \lim_{m \to \infty} \sum_{n=1}^{m} a_n \right\| = \lim_{m \to \infty} \left\| \sum_{n=1}^{m} a_n \right\| \le \lim_{m \to \infty} \sum_{n=1}^{m} \|a_n\| = \sum_{n=1}^{\infty} \|a_n\|.
$$