Tutorial Week 10

Topics: continuous linear transformations, series, projections.

10.1. Prove that all linear transformations between finite-dimensional normed vector spaces are continuous.

Solution. Let v_1, \ldots, v_m be a basis of V and let w_1, \ldots, w_n be a basis of W. By Theorem 3.6, the norms on V and on W are equivalent to the norms $\|\cdot\|_V$ and $\|\cdot\|_W$ defined by

 $\|\alpha_1 v_1 + \dots + \alpha_m v_m\|_V = |\alpha_1| + \dots + |\alpha_m| \quad \text{and} \quad \|\beta_1 w_1 + \dots + \beta_m w_n\|_V = |\beta_1| + \dots + |\beta_n|.$

Since continuity of f is determined by the topologies on V and W, and since equivalent norms give rise to the same topology (see Exercise 3.2), we can assume without loss of generality that V and W are equipped with the norms $\|\cdot\|_V$ and $\|\cdot\|_W$ respectively.

Put $M = \max\{\|f(v_1)\|_W, \dots, \|f(v_n)\|_W\}$. If $v = \alpha_1 v_1 + \dots + \alpha_m v_m$, then

$$\|f(v)\|_{W} = \|f(\alpha_{1}v_{1} + \dots + \alpha_{m}v_{m})\|_{W}$$

= $\|\alpha_{1}f(v_{1}) + \dots + \alpha_{m}f(v_{m})\|_{W}$
 $\leq \|\alpha_{1}f(v_{1})\|_{W} + \dots + \|\alpha_{m}f(v_{m})\|_{W}$
= $|\alpha_{1}|\|f(v_{1})\|_{W} + \dots + |\alpha_{m}|\|f(v_{m})\|_{W}$
 $\leq \alpha_{1}M + \dots + \alpha_{m}M \leq M\|v\|_{V}.$

Hence f is Lipschitz, and therefore continuous by Proposition 3.25.

10.2. Let $f_1: V \longrightarrow W_1$ and $f_2: V \longrightarrow W_2$ be two continuous linear transformations between normed vector spaces. Prove that the function $f: V \longrightarrow W_1 \times W_2$ defined by $f(v) = (f_1(v), f_2(v))$ is a continuous linear transformation.

Solution. We start with proving that f is linear. If v_1 and v_2 are vectors in V, then

$$f(v_1 + v_2) = (f_1(v_1 + v_2), f_2(v_1 + v_2))$$

= $(f_1(v_1) + f_1(v_2), f_2(v_1) + f_2(v_2))$
= $(f_1(v_1), f_2(v_1)) + (f_1(v_2), f_2(v_2)) = f(v_1) + f(v_2).$

If α is a scalar and v is a vector in V, then

$$f(\alpha v) = (f_1(\alpha v), f_2(\alpha v)) = (\alpha f_1(v), \alpha f_2(v)) = \alpha f(v).$$

Hence f is linear.

It remains to prove that f is continuous. Let $\pi_1: W_1 \times W_2 \longrightarrow V_1$ and $\pi_2: W_1 \times W_2 \longrightarrow W_2$ be the projections. Since $\pi_1 \circ f = f_1$ and $\pi_2 \circ f = f_2$, it follows from Question 3.7 that f is continuous.

10.3. Let c_{00} be the space of sequences with only finitely many nonzero terms (see Example 3.23), which is considered as a subspace of ℓ^{∞} . Let $f: c_{00} \longrightarrow \mathbf{F}^{\mathbf{N}}$ be the function defined by $(f(v))_n = nv_n$.

- (a) Prove that the image of the function f is contained in ℓ^{∞} .
- (b) Let $g: c_{00} \longrightarrow \ell^{\infty}$ be the function defined by g(v) = f(v). Prove that g is not continuous.
- (c) Prove that there exists a discontinuous linear transformation from ℓ[∞] to itself. In this part, you can use the following fact:

Let V and W be **F**-vector spaces. If S is a subspace of V and if $\phi: S \longrightarrow W$ is a linear transformation, then there exists a linear transformation $\tilde{\phi}: V \longrightarrow W$ such that $\phi = \tilde{\phi}|_S$.

Solution.

- (a) Let $v \in c_{00}$. By the definition of c_{00} , there exists a positive integer N such that n > N implies $v_n = 0$. It follows that $(f(v))_n \leq Nv_n$ for every positive integer n. Hence $||f(v)||_{\ell^{\infty}} \leq N ||v||_{\ell^{\infty}} < \infty$, which implies $f(v) \in \ell^{\infty}$.
- (b) For every positive integer n, let $v^{(m)}$ be the vector in ℓ^{∞} defined by

$$v_n^{(m)} = \begin{cases} 1 & \text{if } n \le m, \\ 0 & \text{otherwise.} \end{cases}$$

It is straightforward to verify $||v^{(m)}||_{\ell^{\infty}} = 1$ but $||g(v^{(m)})||_{\ell^{\infty}} = m$ for every positive integer m. Hence g is not Lipschitz, which implies g is not continuous by Proposition 3.25.

- (c) Apply the fact to the discontinuous linear transformation $g: c_{00} \longrightarrow \ell^{\infty}$ in part (b) to obtain a linear transformation $\tilde{g}: \ell^{\infty} \longrightarrow \ell^{\infty}$, which cannot be continuous because otherwise its restriction g would be continuous.
- **10.4.** If $f \in L(V, W)$ with V, W normed spaces, and the series

$$\sum_{n=1}^{\infty} \alpha_n v_n, \qquad \alpha_n \in \mathbf{F}, v_n \in V,$$

converges in V, then the series

$$\sum_{n=1}^{\infty} \alpha_n f(v_n)$$

converges in W to the limit

$$f\left(\sum_{n=1}^{\infty} \alpha_n v_n\right).$$

Solution. Let

$$x_m = \sum_{n=1}^m \alpha_n v_n, \qquad x = \sum_{n=1}^\infty \alpha_n v_n.$$

We know that $(x_m) \longrightarrow x$ in V.

Since $f \in L(V, W)$ is continuous, we have that $(f(x_m)) \longrightarrow f(x)$ in W. But f is also linear, so

$$f(x_m) = \sum_{n=1}^m \alpha_n f(v_n).$$

Hence

$$\left(\sum_{n=1}^m \alpha_n f(v_n)\right) \longrightarrow f(x),$$

so that the series

$$\sum_{n=1}^{\infty} \alpha_n f(v_n) \quad \text{converges to } f(x). \qquad \Box$$

10.5.

(a) Prove that the function $f: \ell^1 \longrightarrow \mathbf{F}$ defined by

$$f((a_n)) = \sum_{n=1}^{\infty} a_n$$

is continuous.

(b) Prove that the following subset is a closed subspace of ℓ^1 :

$$S = \left\{ \left(a_n\right) \in \ell^1 \colon \sum_{n=1}^{\infty} a_n = 0 \right\}.$$

Solution.

(a) First note that this is a reasonable definition, because the infinite series on the right hand side converges in **F**:

$$\left|\sum_{n=1}^{N} a_n\right| \leqslant \sum_{n=1}^{N} |a_n|,$$

and the latter converges as $N \longrightarrow \infty$ since $(a_n) \in \ell^1$.

The function f is linear. It is also Lipschitz, because as we have just seen:

$$|f((a_n))| = |\sum_{n=1}^{\infty} a_n| \leq \sum_{n=1}^{\infty} |a_n| = ||(a_n)||_{\ell^1}.$$

Hence f is continuous by Proposition 3.25.

- (b) As the kernel of the continuous linear functional f, the subset S of ℓ^1 is a closed subspace.
- **10.6.** Fix $j \in \mathbf{N}$ and consider the map $\pi_j \colon \mathbf{F}^{\mathbf{N}} \longrightarrow \mathbf{F}$ given by

$$\pi_j\bigl((a_n)\bigr) = a_j.$$

- (a) Show that π_j is linear.
- (b) Prove that the restriction of π_j to ℓ^p for $1 \leq p \leq \infty$ is continuous and surjective.

Solution.

- (a) Straightforward.
- (b) We have for $a \in \ell^{\infty}$:

$$|\pi_j(a)| = |a_j| \leq \sup_{n \geq 1} \{|a_n|\} = ||a||_{\ell^{\infty}}$$

so π_j is bounded. Similarly for $a \in \ell^p$:

$$|\pi_j(a)| = |a_j| = (|a_j|^p)^{1/p} \leq \left(\sum_{n \geq 1} |a_n|^p\right)^{1/p} = ||a||_{\ell^p}.$$

For the surjectivity we note that for any $a \in \mathbf{F}$ we have $\pi_j((0, \ldots, 0, a, 0, \ldots)) = a$ and $(0, \ldots, 0, a, 0, \ldots) \in \ell^1 \subseteq \ell^p$ for all $1 \leq p \leq \infty$.

10.7. Let V be a normed space and φ, ψ be commuting projections: $\varphi \circ \psi = \psi \circ \varphi$. Prove that $\varphi \circ \psi$ is a projection with image im $\varphi \cap \operatorname{im} \psi$.

Solution. We know that the composition of continuous linear maps is continuous linear, so this is true for $\varphi \circ \psi$. To conclude that it is a projection, we need to compute its square:

$$(\varphi \circ \psi) \circ (\varphi \circ \psi) = (\varphi \circ \varphi) \circ (\psi \circ \psi) = \varphi \circ \psi,$$

where it was crucial that φ and ψ commute.

For the statement about the image, note that $w \in \operatorname{im}(\varphi \circ \psi)$ if and only if there exists $v \in V$ such that

$$w = \varphi(\psi(v)) = \psi(\varphi(v)),$$

which implies that $w \in \operatorname{im} \varphi \cap \operatorname{im} \psi$. So $\operatorname{im} (\varphi \circ \psi) \subseteq \operatorname{im} \varphi \cap \operatorname{im} \psi$.

Conversely, suppose $w \in \operatorname{im} \varphi \cap \operatorname{im} \psi$, then there exists $v \in V$ such that $w = \psi(v)$. But $w \in \operatorname{im} \varphi$ and φ is a projection, so that

$$w = \varphi(w) = \varphi(\psi(v)) \in \operatorname{im}(\varphi \circ \psi). \qquad \Box$$

10.8. Let φ be a nonzero orthogonal projection (that is, φ is not the constant function 0) on an inner product space V. Prove that $\|\varphi\| = 1$.

Solution. We know that $(\operatorname{im} \varphi)^{\perp} = \ker \varphi$. For any x we have

$$\varphi(x-\varphi(x))=\varphi(x)-\varphi^{2}(x)=\varphi(x)-\varphi(x)=0,$$

so $x - \varphi(x) \in \ker \varphi$. Therefore

$$\langle x, \varphi(x) \rangle - \|\varphi(x)\|^2 = \langle x - \varphi(x), \varphi(x) \rangle = 0,$$

 \mathbf{SO}

$$\|\varphi(x)\|^{2} = \langle x, \varphi(x) \rangle \leq \|x\| \|\varphi(x)\|$$

by the Cauchy–Schwarz Inequality. Hence $\|\varphi(x)\| \leq \|x\|$ for all x, hence $\|\varphi\| \leq 1$. However for $x \in \operatorname{im} \varphi$ we have $\varphi(x) = x$ so $\|\varphi(x)\| = \|x\|$ and we conclude that $\|\varphi\| = 1$.