MAST30026 Metric and Hilbert Spaces 2024

Tutorial Week 11

Topics: projections, self-adjoint operators, normal operators.

11.1. Consider the function g: (2 — F given by
[ee] l,n
9(z) = n; w2

(a) Find y € £? such that
g(z) = {z,y) for all x € (2.

(b) Deduce that g is linear and Lipschitz and find its norm |g].

4

[Hint: You may use without proof the fact that Z : gO ]
n=1T
Solution.  (a) Setting y = (y,) with
1
Yn = ﬁ)
we certainly have for all z = (x,,) € (%
oo [ee] x
n=1 n=1 T
We should check that y € ¢2:
& <1 7
2 _ 2 = _— = —,
(b) From the previous part we know that g =y, so certainly g is linear and Lipschitz. We
also have )
™
gl =1y"1 = lylle = ;
lgll =TI = lyle Vil
as we have seen in the previous part. ]

11.2. Let H be a Hilbert space. Prove that a projection 7: H — H is an orthogonal
projection if and only if 7 is self-adjoint.

Solution. Suppose w: H — H is an orthogonal projection and suppose x and y are elements
of H. Since

m(z-7(z)) =n(z) - 7*(z) = 7(z) - 7(z) = 0,
it follows that = — () € ker(r) = (im(ﬁ))l, and similarly y - 7(y) € (im(ﬂ))l. In particular,

we have
(r(z),y-7(y)) = (z-7(x),7(y)) =0

which implies

(m(2),y) = (7(2),7(y)) + (7 (x),y - 7(1))
(), 7(y))
w(2),7(y)) + (& - 7 (), 7(y))

().

(
(
(
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Hence 7 is self-adjoint.
Now suppose 7 is self-adjoint. If x € ker(7), then for every element y of H we have

(z,7(y)) = (7(x),y) = (0,y) =0,

so ker(7) ¢ (im(ﬁ))L. Ifxe (im(w))L, then for every element y of H we have

(7(2),y) = {z,7(y)) = 0,

so m(z) = 0 because the inner product is positive-definite. It follows that x € ker(7), and
. 1
hence ker(r) = (im(r))". O

11.3. Let H be a Hilbert space. Prove that a projection m: H — H is orthogonal if and
only if idy —m is an orthogonal projection.

Solution. Since  =idy —(idy —7), it suffices to prove 7 being an orthogonal projection implies
idy —7 is an orthogonal projection.

It follows from part (a) of Proposition 3.38 that idy -7 is a projection. Question 11.2
implies 7 is self-adjoint, so idy — is self-adjoint. Hence idy —7 is an orthogonal projection
because of Question 11.2. O

11.4. Let f e L(H) with H a Hilbert space. Suppose that f is invertible with continuous
inverse. Then the adjoint f* is invertible and

Solution. We want to prove that

*

(f—l)*of*:idH:f*o(f—l) )
We have for all x,y € H:

(z.(F) (W) = (@), ) = (F(f (@), 9) = (x,y)

implying that ( f *1)* o f* =idy, and similarly for the other composition. O]

11.5. Let H be a Hilbert space and let « be a scalar. Prove that aidy is normal (that is,
commutes with its adjoint).

Solution. If x € H, then

(aidH o (aidH)*)(:c) = a(aidy ) ()
= (aidy)* () (linearity)
= (OzidH)* o aidH)(:c). O

Solution. (Alternative): Since idy is self-adjoint, it follows that (aidy)* = @idy. Hence
(aidpy)* o (aidy) = aaidy = [af*idy = a@idy = (aidy) o (aidy)*. O
11.6. Let R: (2 — (? and L: (> — (? be the operators defined by
R(x1,x9,23,...) =(0,21,29,...) and L(xy,xe,x3,...) = (T2,23,74,...)

Find the adjoints of R and L and prove that neither R nor L is normal.
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Solution. It follows from

(R(x),y) = i T = > it = (0, ()

n=1

that R* = L, and therefore L* = (R*)* = R.
Let e; be the sequence whose j-th entry is 1, and all the others are 0. We have

(R*oR)(e1) = L(ez) = €1 and (RoR*)(e1) = R(0) =0,
so R is not normal. Since L = R*, the equations above also imply that L is not normal. [

11.7. Equip R"™ with the standard Euclidean inner product and let f: R® — R" be a linear
transformation with standard matrix representation A.

(a) Prove that the adjoint f*: R® — R”™ has standard matrix representation A?, the
transpose of A.

(b) Prove that f is self-adjoint if and only if A is symmetric.
Solution.

(a) Recall that the standard Euclidean inner product can be written as

(z,y) = y'z.

It follows that
(z, () = (f(2),y) =y' Az = (A'y)'x.

Hence the standard matrix representation of f* is A’.
(b) It follows from part (a) that f = f* if and only if A = A’ O

11.8. Let fe L(H) with H a Hilbert space. Then the maps

p=frof —and  s=f+[f"
are self-adjoint.

Solution. Since f is continuous, the adjoint f* is continuous, so the composition p = f* o f
and the sum s = f + f* are both continuous.
Then

pr=(fof) =fo(f) =fof=p
s=(ff) = () = =S s =

11.9. Let H be a real Hilbert space. Prove that self-adjoint continuous linear operators on H
form a subspace of L(H).

If H is a complex Hilbert space, does the statement still hold? If yes, give a proof for the
statement. If no, find a counterexample, and then find and prove a closest statement that
holds.
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Solution. If f and ¢ are self-adjoint continuous linear operators on H, then

(f+g9) =f"+g"=f+y,

so f + g is self-adjoint.
If f is a self-adjoint continuous linear operator on H and « is a real number, then

(af)" =af =af,

so af is self-adjoint.

If H is complex, then the statement does not hold. The identity function idg: H — H is
self-adjoint, but it is easy to verify (iidy)* = —iidy, so iidy is not self-adjoint. Hence the set
of self-adjoint linear operators on H is not closed under scalar multiplication.

Instead, if we treat L(H) as a real vector space, then the set of self-adjoint linear operators
on H is a subspace of L(H). The proof for closure under addition is the same as the case
for real Hilbert spaces. If f is a self-adjoint continuous linear operator on H and « is a real
number, then

(af)" =af* =af,
so af is self-adjoint. O

11.10. The composition of two self-adjoint maps on a Hilbert space is self-adjoint if and only
if the maps commute.

Solution. We have

(f(9()),y) = (9(2), F(y)) = (,9(f (¥)))

by the self-adjointness of f and g.
So f o g is self-adjoint if and only if go f = f o g, as claimed. O



