
MAST30026 Metric and Hilbert Spaces 2024

Tutorial Week 11

Topics: projections, self-adjoint operators, normal operators.

11.1. Consider the function g ∶ `2 Ð→ F given by

g(x) =
∞

∑
n=1

xn

n2
.

(a) Find y ∈ `2 such that
g(x) = ⟨x, y⟩ for all x ∈ `2.

(b) Deduce that g is linear and Lipschitz and find its norm ∥g∥.

[Hint: You may use without proof the fact that
∞

∑
n=1

1

n4
= π4

90
.]

Solution. (a) Setting y = (yn) with
yn =

1

n2
,

we certainly have for all x = (xn) ∈ `2:

⟨x, y⟩ =
∞

∑
n=1

xnyn =
∞

∑
n=1

xn

n2
= g(x).

We should check that y ∈ `2:

∥y∥2`2 =
∞

∑
n=1

y2n =
∞

∑
n=1

1

n4
= π4

90
.

(b) From the previous part we know that g = y∨, so certainly g is linear and Lipschitz. We
also have

∥g∥ = ∥y∨∥ = ∥y∥`2 =
π2

3
√
10

,

as we have seen in the previous part.

11.2. Let H be a Hilbert space. Prove that a projection π ∶ H Ð→ H is an orthogonal
projection if and only if π is self-adjoint.

Solution. Suppose π ∶ H Ð→H is an orthogonal projection and suppose x and y are elements
of H. Since

π(x − π(x)) = π(x) − π2(x) = π(x) − π(x) = 0,

it follows that x − π(x) ∈ ker(π) = (im(π))⊥, and similarly y − π(y) ∈ (im(π))⊥. In particular,
we have

⟨π(x), y − π(y)⟩ = ⟨x − π(x), π(y)⟩ = 0,
which implies

⟨π(x), y⟩ = ⟨π(x), π(y)⟩ + ⟨π(x), y − π(y)⟩
= ⟨π(x), π(y)⟩
= ⟨π(x), π(y)⟩ + ⟨x − π(x), π(y)⟩
= ⟨x,π(y)⟩.
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Hence π is self-adjoint.
Now suppose π is self-adjoint. If x ∈ ker(π), then for every element y of H we have

⟨x,π(y)⟩ = ⟨π(x), y⟩ = ⟨0, y⟩ = 0,

so ker(π) ⊆ (im(π))⊥. If x ∈ (im(π))⊥, then for every element y of H we have

⟨π(x), y⟩ = ⟨x,π(y)⟩ = 0,

so π(x) = 0 because the inner product is positive-definite. It follows that x ∈ ker(π), and
hence ker(π) = (im(π))⊥.

11.3. Let H be a Hilbert space. Prove that a projection π ∶ H Ð→ H is orthogonal if and
only if idH −π is an orthogonal projection.

Solution. Since π = idH −(idH −π), it suffices to prove π being an orthogonal projection implies
idH −π is an orthogonal projection.

It follows from part (a) of Proposition 3.38 that idH −π is a projection. Question 11.2
implies π is self-adjoint, so idH −π is self-adjoint. Hence idH −π is an orthogonal projection
because of Question 11.2.

11.4. Let f ∈ L(H) with H a Hilbert space. Suppose that f is invertible with continuous
inverse. Then the adjoint f∗ is invertible and

(f∗)−1 = (f−1)∗.

Solution. We want to prove that

(f−1)∗ ○ f∗ = idH = f∗ ○ (f−1)
∗
.

We have for all x, y ∈H:

⟨x, (f−1)∗(f∗(y))⟩ = ⟨f−1(x), f∗(y)⟩ = ⟨f(f−1(x)), y⟩ = ⟨x, y⟩

implying that (f−1)∗ ○ f∗ = idH , and similarly for the other composition.

11.5. Let H be a Hilbert space and let α be a scalar. Prove that α idH is normal (that is,
commutes with its adjoint).

Solution. If x ∈H, then

(αidH ○ (αidH)∗)(x) = α(αidH)∗(x)
= (αidH)∗(αx) (linearity)
= (αidH)∗ ○ αidH)(x).

Solution. (Alternative): Since idH is self-adjoint, it follows that (α idH)∗ = α idH . Hence

(α idH)∗ ○ (α idH) = αα idH = ∣α∣2 idH = αα idH = (α idH) ○ (α idH)∗.

11.6. Let R ∶ `2 Ð→ `2 and L ∶ `2 Ð→ `2 be the operators defined by

R(x1, x2, x3, . . . ) = (0, x1, x2, . . . ) and L(x1, x2, x3, . . . ) = (x2, x3, x4, . . . )

Find the adjoints of R and L and prove that neither R nor L is normal.
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Solution. It follows from

⟨R(x), y⟩ =
∞

∑
n=2

xn−1yn =
∞

∑
n=1

xnyn+1 = ⟨x,L(y)⟩

that R∗ = L, and therefore L∗ = (R∗)∗ = R.
Let ej be the sequence whose j-th entry is 1, and all the others are 0. We have

(R∗ ○R)(e1) = L(e2) = e1 and (R ○R∗)(e1) = R(0) = 0,

so R is not normal. Since L = R∗, the equations above also imply that L is not normal.

11.7. Equip Rn with the standard Euclidean inner product and let f ∶ Rn Ð→Rn be a linear
transformation with standard matrix representation A.

(a) Prove that the adjoint f∗ ∶ Rn Ð→ Rn has standard matrix representation At, the
transpose of A.

(b) Prove that f is self-adjoint if and only if A is symmetric.

Solution.

(a) Recall that the standard Euclidean inner product can be written as

⟨x, y⟩ = ytx.

It follows that
⟨x, f∗(y)⟩ = ⟨f(x), y⟩ = ytAx = (Aty)tx.

Hence the standard matrix representation of f∗ is At.

(b) It follows from part (a) that f = f∗ if and only if A = At.

11.8. Let f ∈ L(H) with H a Hilbert space. Then the maps

p = f∗ ○ f and s = f + f∗

are self-adjoint.

Solution. Since f is continuous, the adjoint f∗ is continuous, so the composition p = f∗ ○ f
and the sum s = f + f∗ are both continuous.

Then

p∗ = (f∗ ○ f)∗ = f∗ ○ (f∗)∗ = f∗ ○ f = p
s∗ = (f + f∗)∗ = f∗ + (f∗)∗ = f∗ + f = f + f∗ = s.

11.9. Let H be a real Hilbert space. Prove that self-adjoint continuous linear operators on H
form a subspace of L(H).

If H is a complex Hilbert space, does the statement still hold? If yes, give a proof for the
statement. If no, find a counterexample, and then find and prove a closest statement that
holds.
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Solution. If f and g are self-adjoint continuous linear operators on H, then

(f + g)∗ = f∗ + g∗ = f + g,

so f + g is self-adjoint.
If f is a self-adjoint continuous linear operator on H and α is a real number, then

(αf)∗ = αf∗ = αf,

so αf is self-adjoint.
If H is complex, then the statement does not hold. The identity function idH ∶ H Ð→H is

self-adjoint, but it is easy to verify (i idH)∗ = −i idH , so i idH is not self-adjoint. Hence the set
of self-adjoint linear operators on H is not closed under scalar multiplication.

Instead, if we treat L(H) as a real vector space, then the set of self-adjoint linear operators
on H is a subspace of L(H). The proof for closure under addition is the same as the case
for real Hilbert spaces. If f is a self-adjoint continuous linear operator on H and α is a real
number, then

(αf)∗ = αf∗ = αf,
so αf is self-adjoint.

11.10. The composition of two self-adjoint maps on a Hilbert space is self-adjoint if and only
if the maps commute.

Solution. We have
⟨f(g(x)), y⟩ = ⟨g(x), f(y)⟩ = ⟨x, g(f(y))⟩

by the self-adjointness of f and g.
So f ○ g is self-adjoint if and only if g ○ f = f ○ g, as claimed.
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