Tutorial Week 11

Topics: projections, self-adjoint operators, normal operators.

11.1. Consider the function $g: \ell^2 \longrightarrow \mathbf{F}$ given by

$$
g(x) = \sum_{n=1}^{\infty} \frac{x_n}{n^2}.
$$

(a) Find $y \in \ell^2$ such that

$$
g(x) = \langle x, y \rangle \quad \text{for all } x \in \ell^2.
$$

(b) Deduce that g is linear and Lipschitz and find its norm $||g||$.

[*Hint*: You may use without proof the fact that ∞ ∑ $n=1$ 1 $\frac{1}{n^4}$ = π^4 90 .]

Solution. (a) Setting $y = (y_n)$ with

$$
y_n = \frac{1}{n^2},
$$

we certainly have for all $x = (x_n) \in \ell^2$:

$$
\langle x, y \rangle = \sum_{n=1}^{\infty} x_n \overline{y}_n = \sum_{n=1}^{\infty} \frac{x_n}{n^2} = g(x).
$$

We should check that $y \in \ell^2$:

$$
||y||_{\ell^2}^2 = \sum_{n=1}^{\infty} y_n^2 = \sum_{n=1}^{\infty} \frac{1}{n^4} = \frac{\pi^4}{90}.
$$

(b) From the previous part we know that $g = y^{\vee}$, so certainly g is linear and Lipschitz. We also have

$$
||g|| = ||y^{\vee}|| = ||y||_{\ell^2} = \frac{\pi^2}{3\sqrt{10}},
$$

as we have seen in the previous part.

11.2. Let H be a Hilbert space. Prove that a projection $\pi: H \longrightarrow H$ is an orthogonal projection if and only if π is self-adjoint.

Solution. Suppose $\pi: H \longrightarrow H$ is an orthogonal projection and suppose x and y are elements of H. Since

$$
\pi(x - \pi(x)) = \pi(x) - \pi^{2}(x) = \pi(x) - \pi(x) = 0,
$$

it follows that $x - \pi(x) \in \ker(\pi) = (\text{im}(\pi))^\perp$, and similarly $y - \pi(y) \in (\text{im}(\pi))^\perp$. In particular, we have

$$
\big\langle \pi(x), y - \pi(y) \big\rangle = \big\langle x - \pi(x), \pi(y) \big\rangle = 0,
$$

which implies

$$
\begin{aligned} \big\langle \pi(x), y \big\rangle &= \big\langle \pi(x), \pi(y) \big\rangle + \big\langle \pi(x), y - \pi(y) \big\rangle \\ &= \big\langle \pi(x), \pi(y) \big\rangle \\ &= \big\langle \pi(x), \pi(y) \big\rangle + \big\langle x - \pi(x), \pi(y) \big\rangle \\ &= \big\langle x, \pi(y) \big\rangle. \end{aligned}
$$

 \Box

Hence π is self-adjoint.

Now suppose π is self-adjoint. If $x \in \text{ker}(\pi)$, then for every element y of H we have

$$
\langle x, \pi(y) \rangle = \langle \pi(x), y \rangle = \langle 0, y \rangle = 0,
$$

so ker $(\pi) \subseteq (\text{im}(\pi))^\perp$. If $x \in (\text{im}(\pi))^\perp$, then for every element y of H we have

$$
\big\langle \pi(x), y \big\rangle = \big\langle x, \pi(y) \big\rangle = 0,
$$

so $\pi(x) = 0$ because the inner product is positive-definite. It follows that $x \in \text{ker}(\pi)$, and hence ker(π) = $\left(\text{im}(\pi)\right)^{\perp}$. \Box

11.3. Let H be a Hilbert space. Prove that a projection $\pi: H \longrightarrow H$ is orthogonal if and only if $id_H - \pi$ is an orthogonal projection.

Solution. Since $\pi = id_H - (id_H - \pi)$, it suffices to prove π being an orthogonal projection implies $id_H - \pi$ is an orthogonal projection.

It follows from part (a) of [Proposition 3.38](#page-3-0) that $id_H - \pi$ is a projection. [Question 11.2](#page-0-0) implies π is self-adjoint, so id_H –π is self-adjoint. Hence id_H –π is an orthogonal projection because of [Question 11.2.](#page-0-0) \Box

11.4. Let $f \in L(H)$ with H a Hilbert space. Suppose that f is invertible with continuous inverse. Then the adjoint f^* is invertible and

$$
\left(f^*\right)^{-1}=\left(f^{-1}\right)^*.
$$

Solution. We want to prove that

$$
\left(f^{-1}\right)^*\circ f^*=\mathrm{id}_H=f^*\circ\left(f^{-1}\right)^*.
$$

We have for all $x, y \in H$:

$$
\langle x, (f^{-1})^*(f^*(y)) \rangle = \langle f^{-1}(x), f^*(y) \rangle = \langle f(f^{-1}(x)), y \rangle = \langle x, y \rangle
$$

implying that $(f^{-1})^* \circ f^* = id_H$, and similarly for the other composition.

11.5. Let H be a Hilbert space and let α be a scalar. Prove that α id_H is normal (that is, commutes with its adjoint).

Solution. If $x \in H$, then

$$
(\alpha id_H \circ (\alpha id_H)^*) (x) = \alpha (\alpha id_H)^* (x)
$$

= $(\alpha id_H)^* (\alpha x)$ (linearity)
= $(\alpha id_H)^* \circ \alpha id_H (x)$.

 \Box

Solution. (Alternative): Since id_H is self-adjoint, it follows that $(\alpha \mathrm{id}_H)^* = \overline{\alpha} \mathrm{id}_H$. Hence

$$
(\alpha \operatorname{id}_H)^* \circ (\alpha \operatorname{id}_H) = \overline{\alpha} \alpha \operatorname{id}_H = |\alpha|^2 \operatorname{id}_H = \alpha \overline{\alpha} \operatorname{id}_H = (\alpha \operatorname{id}_H) \circ (\alpha \operatorname{id}_H)^*.
$$

11.6. Let $R: \ell^2 \longrightarrow \ell^2$ and $L: \ell^2 \longrightarrow \ell^2$ be the operators defined by

$$
R(x_1, x_2, x_3,...) = (0, x_1, x_2,...)
$$
 and $L(x_1, x_2, x_3,...) = (x_2, x_3, x_4,...)$

Find the adjoints of R and L and prove that neither R nor L is normal.

Solution. It follows from

$$
\langle R(x), y \rangle = \sum_{n=2}^{\infty} x_{n-1} \overline{y_n} = \sum_{n=1}^{\infty} x_n \overline{y_{n+1}} = \langle x, L(y) \rangle
$$

that $R^* = L$, and therefore $L^* = (R^*)^* = R$.

Let e_i be the sequence whose j-th entry is 1, and all the others are 0. We have

$$
(R^* \circ R)(e_1) = L(e_2) = e_1
$$
 and $(R \circ R^*)(e_1) = R(0) = 0$,

so R is not normal. Since $L = R^*$, the equations above also imply that L is not normal. \Box

11.7. Equip \mathbb{R}^n with the standard Euclidean inner product and let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation with standard matrix representation A.

- (a) Prove that the adjoint $f^*: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ has standard matrix representation A^t , the transpose of A.
- (b) Prove that f is self-adjoint if and only if A is symmetric.

Solution.

(a) Recall that the standard Euclidean inner product can be written as

$$
\langle x, y \rangle = y^t x.
$$

It follows that

$$
\langle x, f^*(y) \rangle = \langle f(x), y \rangle = y^t A x = (A^t y)^t x.
$$

Hence the standard matrix representation of f^* is A^t .

(b) It follows from part (a) that $f = f^*$ if and only if $A = A^t$.

11.8. Let $f \in L(H)$ with H a Hilbert space. Then the maps

$$
p = f^* \circ f \qquad \text{and} \qquad s = f + f^*
$$

are self-adjoint.

Solution. Since f is continuous, the adjoint f^* is continuous, so the composition $p = f^* \circ f$ and the sum $s = f + f^*$ are both continuous.

Then

$$
p^* = (f^* \circ f)^* = f^* \circ (f^*)^* = f^* \circ f = p
$$

$$
s^* = (f + f^*)^* = f^* + (f^*)^* = f^* + f = f + f^* = s.
$$

11.9. Let H be a real Hilbert space. Prove that self-adjoint continuous linear operators on H form a subspace of $L(H)$.

If H is a complex Hilbert space, does the statement still hold? If yes, give a proof for the statement. If no, find a counterexample, and then find and prove a closest statement that holds.

 \Box

Solution. If f and g are self-adjoint continuous linear operators on H , then

$$
(f+g)^* = f^* + g^* = f + g,
$$

so $f + g$ is self-adjoint.

If f is a self-adjoint continuous linear operator on H and α is a real number, then

$$
(\alpha f)^* = \alpha f^* = \alpha f,
$$

so αf is self-adjoint.

If H is complex, then the statement does not hold. The identity function $id_H : H \longrightarrow H$ is self-adjoint, but it is easy to verify $(iid_H)^* = -iid_H$, so iid_H is not self-adjoint. Hence the set of self-adjoint linear operators on H is not closed under scalar multiplication.

Instead, if we treat $L(H)$ as a real vector space, then the set of self-adjoint linear operators on H is a subspace of $L(H)$. The proof for closure under addition is the same as the case for real Hilbert spaces. If f is a self-adjoint continuous linear operator on H and α is a real number, then

$$
(\alpha f)^* = \overline{\alpha} f^* = \alpha f,
$$

so αf is self-adjoint.

11.10. The composition of two self-adjoint maps on a Hilbert space is self-adjoint if and only if the maps commute.

Solution. We have

$$
\langle f(g(x)), y \rangle = \langle g(x), f(y) \rangle = \langle x, g(f(y)) \rangle
$$

by the self-adjointness of f and g .

So $f \circ g$ is self-adjoint if and only if $g \circ f = f \circ g$, as claimed.

 \Box

 \Box