MAST30026 Metric and Hilbert Spaces 2024

Tutorial Week 12

Topics: Orthogonal systems, orthogonal bases, the Stone-Weierstrass theorem.

12.1. Let (u;)ie; be an orthonormal basis of an inner product space V' and let v € V. Prove
that v = 0 if and only if (v, ;) = 0 for every index 7 € .

Solution. If v =0, then (v,u;) =0 by linearity on the first variable.
If (v,u;) =0 for every index ¢, then

{v}t2{u;|iel}.

It then follows from Proposition 3.40 that

{v}* 2 Span{w;|iel}=H.

Hence v is orthogonal to itself; in other words, (v,v) = 0. By positive definiteness of inner
products, it follows that v = 0. O]

12.2. In this question, we re-examine the Cauchy—Schwarz inequality in retrospect.
Let u be a vector of norm 1 in an inner product space V. Define m,: V — V by

Tu(v) = (v, u)u.

a) Prove that m, is a linear transformation.

(a)

(b) Let v be a vector in V. Prove that m,(v) is orthogonal to (idy —m,)(v).

(c) Let v be a vector in V. Prove that |7, (v)| = (v, u)|.

(d) Prove the Cauchy—Schwarz inequality: if v and w are vectors in V', then
(v, w)| < ol Jw].

(e) Prove that 7, is an orthogonal projection with image Fu.

Solution.

(a) If v and w are vectors in V', then
Tu(v+w) = (v+w,uyu = (v,u)u+ (w,u)u = 7, (v) + T, (W).
If « is a scalar and v is a vector in V', then

mu(av) = (v, u)u = a(v, w)u = am,(v).

(b) The vector 7,(v) is orthogonal to (idy — m,)(v) because

(Wu(v), (idy - Wu)(v)> = ((v, uyu, v - (v,u>u>
= (v, uyu, v) = ({v, uhu, (v, u)u)
= (v, u){u, v) = (v, u)(u, u)(v, u)
= (v, u){v,u) = (v,u){v,u) =0
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(¢) The equality follows from

Hﬂu(v)H2 = H(v,u)uH2 = ((v,u)u, (v,u)u) = (v, u){u, u){v,u) = |<v,u)‘2.

(d) If v is zero, then both sides of the inequality equal 0. Otherwise, put u = v/||v|. It
follows from part (b), the Pythagorean theorem, and part (c) that

2w, o)
[0l

Jw]? = | ()| + || idy = 7)) (W)[* > [mu ()| = [(w, w)] = Hw ﬁ}

so [(v, w)| < [v] |w].
(e) If v eV, then it follows from part (c¢) and the Cauchy—Schwarz inequality that
|7 ()] = (o, w)] < o] Jul = o],
so m, is continuous. If v is a vector in V', then
ﬂu(m(v)) = ﬂu((v,u)u) = (v, u)m,(u) = (v, u)(u, u)u = (v, u)u = 7, (v),

so m, is a projection. If v and w are vectors in V', then

(Wu(v),w) = ((v,u)u,w) = (v, u)(u, w) = (v,u)(w,u) = (v, (w,u)u) = (v,m(w)),

so m, is self-adjoint. Hence 7, is an orthogonal projection by Question 11.2.
If v is a vector in V, then m,(v) = (v,u)u € Fu, so im(m,) € Fu. If « is a scalar, then

mu(au) = (au, u)u = af{u,u)u = au, so Fu ¢ im(m,). Hence im(7,) = Fu. O

12.3. In this question, we generalise the results in Question 12.2.

Let {uy,...,u,} be an orthonormal system in an inner product space V' and let U be the
span of the orthonormal system. Write my,...,m, for the projections m,,,...,m,, defined in
Question 12.2 and put

T =T+ + Ty,

(a) Prove that

Uy if 7 = j,
T; 0 =
B 0  otherwise.

(b) Prove that 7 is an orthogonal projection with image U.
(c¢) Let v be a vector in V. Prove that

‘ 2

()| = guv,uu .

(d) Use part (c) to prove the following finite version of the Bessel’s inequality: if v is a
vector in V', then

ol > Y)(w, u) -

n
i=1

Solution.
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(a)

If v is a vector in V, then

(ms07)(v) = {TH((U,U'[)Ui) = (v, w;)mi(u;) = (v, u;)u; = m(v) ifi=j,
Y 771‘((”7%')“]') = (v, uj)m;(u;) = (v, u;){u;,w;)u; =0  otherwise.

(b) As a sum of continuous linear transformations, 7 is linear and continuous. It follows

from part (a) that
n n n
WOWZZZWiOWj:ZTi:TF,
i=1j=1 i=1
so 7 is a projection. Since self-adjoint operators form a real vector space (see Ques-

tion 11.9), it follows that 7 is self-adjoint, and therefore an orthogonal projection by
Question 11.2.

If v is a vector in V, then
w(v) =m(v) + -+ 7 (v) €U,

soim(7) € U. If u is a vector in U, then u = ayuy + -+ + au,, for some scalars ayq, ..., .
It follows that

n n n n n
W(U) = ZTF%(Z OéjUj) = Z ZOJJ'?T,L'(U]') = ZOQ'UZ' =u,
=1 = i=1j=1 i=1
so im(7) = U.
Since {u1,...,u,} is an orthogonal system, the vectors m;(v) and m;(v) are orthogonal

unless i = j. It then follows from the Pythagorean theorem and part (c¢) of Question 12.2
that

2 2 & 2 & 2

|7 @)= i)+ mn (@) [ = 2" = Xlw, wn)[
i=1 i=1

Since 7 is an orthogonal projection, the vectors w(v) and (idy — 7)(v) are orthogonal
by Proposition 3.38 and the definition of orthogonal projections. It then follows from
the Pythagorean theorem and part (c) that

Iof? = @)+ Gy ~m @ > r)]” = 3ol 0

We say that a subalgebra C of Co(X,F) separates points if for every pair of points x and y
in X there is a function f in C such that f(z) # f(y). We say that a subalgebra C of Cy(X,F)
is non-vanishing if for every point x in X there is a function f in C such that f(z) # 0.

12.4.

()
(b)

(*) Let C be a non-vanishing subalgebra of Cy(X,F) that separates points.
Given two points z and y in X, find a function A in C such that h(z) =0 and h(y) # 0.

Prove that C interpolates pairs of points.

Solution.

(a)

Pick functions f and g in Cy(X,F) such that f(z) # f(y) and g(y) # 0. Put
h=fg-f(z)g.
The function A is still in C, and
Mz) = f(z)g(x) - f(z)g(x) =0,
h(y) = F()9(y) - [(2)g(y) = (F(y) - f(2))g(y) #0.
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(b) Let a and b be two scalars. By part (a), there are functions ¢ and ¢ in C such that

¢(x) =0, o(y)#0, ¥(x)#0, and ¥(y)=0.
Put
o0, W
o(z)  ¥(y)
The function @ is still in C, and we have ®(z) = a and ®(y) = b. Hence C interpolates
pairs of points. H

If X is a compact metric space and f: X — C is a function, then we write f: X — C
for the function defined by

f@) = f(2).

Given a subalgebra C of Co(X,C), we say C is closed under complex conjugation if f € C
implies f €C.

12.5. Let X be a compact metric space and let C be a non-vanishing subalgebra of Cy(X, C).
Suppose C is closed under complex conjugation and separates points.

(a) Let Cr =CnCy(X,R). Prove that Cgr is dense in Cy(X,R).
(b) Prove that C is dense in Cy(X, C).
Solution.

(a) If 2 and y are elements of X and if a and b are real numbers, then by Question 12.4
there exists a function f in C such that f(z)=a and f(y) = b. Put g = (f + f)/2, which
is a real-valued function by definition. Since g(z) = a and g(y) = b, it follows that
Cr interpolates pairs of points, so Cr is dense in Cy(X,R) by the Stone—Weierstrass
theorem.

(b) Given a function f in Cy(X,C), we know that f = g+ ih, where

_f+f -7
g= 5 and h= 5

Since g and h both belong to Co(X,R), it follows that g and h are both in C. The
subalgebra C is a vector subspace of Co(X,C), so f € C by Proposition 3.7. Hence
Co(X,C) =C. [

12.6. (*) Let (u;):es be an orthonormal basis of an inner product space V' (not necessarily
separable) and let v be a vector in V.

(a) Given a a positive integer n, define

1
Jn:{>€[| , Uyg >—}.
i (v, u;)] -
Prove that J,, has at most n?|v|? elements.

(b) Put
I ={iel||{v,u;)|#0}.

Prove that I, is countable.
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(c¢) Choose a bijection 0: N — I,. Prove that

v= Y {0, o) )to(ny:

n=1

(d) Justify the notation

Z(v,ui)ui

iel
and convince yourself that

v = (v,u)u,.

el
Solution.

(a) If J, has more than n?|v|? elements, then choose a finite subset S with more than
n?||v|? elements. It follows from Bessel’s inequality (part (a) of Theorem 3.52 or part
(d) of Question 12.3) that

n?|ol?

[o]2 > S|, us)[ > = ol

3 =
seS n

a contradiction. Hence J,, has at most n?|v|? elements.
(b) The set I, is countable because
L= Jo

nelN

(c) Bessel’s inequality implies
N
Dolfos o) < lol?

for every positive integer N, so the sequence

N 2\ %
(ol
is a non-decreasing sequence with an upper bound ||v|2. Hence

({v: o)), -, € 2.

It then follows from Corollary 3.53 that Z;’;’d(U, uo(n)>uo(n) converges to some vector v’
inV.

It remains to verify v’ = v. If m is a natural number, then

N
(v =" Up(my) = (v - ;(% uo(n))uo(n>,uo<m)>
N
= (0 tom) = Jim 301ty )it o)

= {0, o)) = (v 1o my) =0,
where limy oo $051 (0, to(n) ) (o) togm) ) = (Vs to(m) ) because

N
Z (7}7 Uo(n) > (uo(n) y Uo(m) > =

n=1

{0 if n<m,

(v, uo(m)) otherwise.
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If1el~1,, then

N

(v—v" u;) = (U - NILII}OO ;@, uo(n)>uo(n),ui>
N
= {v,ui) = Jim 3 (v, to(m) N(ttony, i) = 0.

Hence v — v’ is orthogonal to v; for every v;, which implies v = v' by Question 12.1.

(d) In part (b), we proved that there are only countably many non-zero summands. Hence
we can order the non-zero summands and define the sum to be the sum of the series. In
part (c), we shown that the sum does not depend on the ordering of non-zero summands,
so the sum is well defined. In addition, part (c) implies the identity

v =Y (v, )y, O

iel



