Tutorial Week 12

Topics: Orthogonal systems, orthogonal bases, the Stone–Weierstrass theorem.

12.1. Let $(u_i)_{i\in I}$ be an orthonormal basis of an inner product space V and let $v \in V$. Prove that $v = 0$ if and only if $\langle v, u_i \rangle = 0$ for every index $i \in I$.

Solution. If $v = 0$, then $\langle v, u_i \rangle = 0$ by linearity on the first variable.

If $\langle v, u_i \rangle = 0$ for every index *i*, then

$$
\{v\}^{\perp} \supseteq \{u_i \mid i \in I\}.
$$

It then follows from [Proposition 3.40](#page-5-0) that

$$
\{v\}^{\perp} \supseteq \overline{\text{Span}\{u_i \mid i \in I\}} = H.
$$

Hence v is orthogonal to itself; in other words, $\langle v, v \rangle = 0$. By positive definiteness of inner products, it follows that $v = 0$. products, it follows that $v = 0$.

12.2. In this question, we re-examine the Cauchy–Schwarz inequality in retrospect. Let u be a vector of norm 1 in an inner product space V. Define $\pi_u: V \longrightarrow V$ by

$$
\pi_u(v) = \langle v, u \rangle u.
$$

- (a) Prove that π_u is a linear transformation.
- (b) Let v be a vector in V. Prove that $\pi_u(v)$ is orthogonal to $(\mathrm{id}_V \pi_u)(v)$.
- (c) Let v be a vector in V. Prove that $\|\pi_u(v)\| = |\langle v, u \rangle|$.
- (d) Prove the *Cauchy–Schwarz inequality*: if v and w are vectors in V, then

$$
|\langle v, w \rangle| \leq ||v|| \, ||w||.
$$

(e) Prove that π_u is an orthogonal projection with image $\mathbf{F}u$.

Solution.

(a) If v and w are vectors in V , then

$$
\pi_u(v+w) = \langle v+w, u \rangle u = \langle v, u \rangle u + \langle w, u \rangle u = \pi_u(v) + \pi_u(w).
$$

If α is a scalar and v is a vector in V, then

$$
\pi_u(\alpha v) = \langle \alpha v, u \rangle u = \alpha \langle v, w \rangle u = \alpha \pi_u(v).
$$

(b) The vector $\pi_u(v)$ is orthogonal to $(\mathrm{id}_V - \pi_u)(v)$ because

$$
\begin{aligned}\n\left\langle \pi_u(v), (\mathrm{id}_V - \pi_u)(v) \right\rangle &= \left\langle \langle v, u \rangle u, v - \langle v, u \rangle u \right\rangle \\
&= \left\langle \langle v, u \rangle u, v \right\rangle - \left\langle \langle v, u \rangle u, \langle v, u \rangle u \right\rangle \\
&= \langle v, u \rangle \langle u, v \rangle - \langle v, u \rangle \langle u, u \rangle \overline{\langle v, u \rangle} \\
&= \langle v, u \rangle \overline{\langle v, u \rangle} - \langle v, u \rangle \overline{\langle v, u \rangle} = 0.\n\end{aligned}
$$

(c) The equality follows from

$$
\|\pi_u(v)\|^2 = \left\|\langle v, u\rangle u\right\|^2 = \left\langle\langle v, u\rangle u, \langle v, u\rangle u\right\rangle = \langle v, u\rangle \langle u, u\rangle \overline{\langle v, u\rangle} = \left|\langle v, u\rangle\right|^2.
$$

(d) If v is zero, then both sides of the inequality equal 0. Otherwise, put $u = v/||v||$. It follows from part (b), the Pythagorean theorem, and part (c) that

$$
||w||^{2} = ||\pi_{u}(w)||^{2} + ||(\mathrm{id}_{V} - \pi_{u})(w)||^{2} \ge ||\pi_{u}(w)||^{2} = |(w, u)|^{2} = ||\langle w, \frac{v}{||v||}||^{2} = \frac{|\langle w, v \rangle|^{2}}{||v||^{2}},
$$

so $|\langle v, w \rangle| \leq ||v|| ||w||$.

(e) If $v \in V$, then it follows from part (c) and the Cauchy–Schwarz inequality that

$$
\|\pi_u(v)\| = |\langle v, u \rangle| \leq \|v\| \|u\| = \|v\|,
$$

so π_v is continuous. If v is a vector in V, then

$$
\pi_u(\pi_u(v)) = \pi_u(\langle v, u \rangle u) = \langle v, u \rangle \pi_u(u) = \langle v, u \rangle \langle u, u \rangle u = \langle v, u \rangle u = \pi_u(v),
$$

so π_u is a projection. If v and w are vectors in V, then

$$
\big\langle \pi_u(v), w \big\rangle = \big\langle \langle v, u \rangle u, w \big\rangle = \langle v, u \rangle \langle u, w \rangle = \langle v, u \rangle \overline{\langle w, u \rangle} = \big\langle v, \langle w, u \rangle u \big\rangle = \big\langle v, \pi_u(w) \big\rangle,
$$

so π_u is self-adjoint. Hence π_u is an orthogonal projection by [Question 11.2.](#page-5-0)

If v is a vector in V, then $\pi_u(v) = \langle v, u \rangle u \in \mathbf{F}u$, so $\text{im}(\pi_u) \subseteq \mathbf{F}u$. If α is a scalar, then $\pi_u(\alpha u) = \langle \alpha u, u \rangle u = \alpha \langle u, u \rangle u = \alpha u$, so $\mathbf{F}u \subseteq \text{im}(\pi_u)$. Hence $\text{im}(\pi_u) = \mathbf{F}u$. $\pi_u(\alpha u) = \langle \alpha u, u \rangle u = \alpha \langle u, u \rangle u = \alpha u$, so $\mathbf{F} u \subseteq \text{im}(\pi_u)$. Hence $\text{im}(\pi_u) = \mathbf{F} u$.

12.3. In this question, we generalise the results in [Question 12.2.](#page-0-0)

Let $\{u_1, \ldots, u_n\}$ be an orthonormal system in an inner product space V and let U be the span of the orthonormal system. Write π_1, \ldots, π_n for the projections $\pi_{u_1}, \ldots, \pi_{u_n}$ defined in [Question 12.2](#page-0-0) and put

$$
\pi = \pi_1 + \dots + \pi_n.
$$

(a) Prove that

$$
\pi_i \circ \pi_j = \begin{cases} \pi_i & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}
$$

- (b) Prove that π is an orthogonal projection with image U.
- (c) Let v be a vector in V . Prove that

$$
||\pi(v)||^2 = \sum_{i=1}^n | \langle v, u_n \rangle |^2.
$$

(d) Use part (c) to prove the following finite version of the *Bessel's inequality*: if v is a vector in V , then

$$
||v||^2 \ge \sum_{i=1}^n | \langle v, u_i \rangle |^2.
$$

Solution.

(a) If v is a vector in V , then

$$
(\pi_i \circ \pi_j)(v) = \begin{cases} \pi_i((v, u_i)u_i) = \langle v, u_i \rangle \pi_i(u_i) = \langle v, u_i \rangle u_i = \pi_i(v) & \text{if } i = j, \\ \pi_i((v, u_j)u_j) = \langle v, u_j \rangle \pi_i(u_j) = \langle v, u_j \rangle \langle u_j, u_i \rangle u_i = 0 & \text{otherwise.} \end{cases}
$$

(b) As a sum of continuous linear transformations, π is linear and continuous. It follows from part (a) that

$$
\pi \circ \pi = \sum_{i=1}^{n} \sum_{j=1}^{n} \pi_i \circ \pi_j = \sum_{i=1}^{n} \pi_i = \pi,
$$

so π is a projection. Since self-adjoint operators form a real vector space (see [Ques](#page-5-0)[tion 11.9](#page-5-0)), it follows that π is self-adjoint, and therefore an orthogonal projection by [Question 11.2.](#page-5-0)

If v is a vector in V , then

$$
\pi(v) = \pi_1(v) + \dots + \pi_n(v) \in U,
$$

so im(π) $\subseteq U$. If u is a vector in U, then $u = \alpha_1 u_1 + \cdots + \alpha_n u_n$ for some scalars $\alpha_1, \ldots, \alpha_n$. It follows that

$$
\pi(u) = \sum_{i=1}^n \pi_i \Biggl(\sum_{j=1}^n \alpha_j u_j\Biggr) = \sum_{i=1}^n \sum_{j=1}^n \alpha_j \pi_i(u_j) = \sum_{i=1}^n \alpha_i u_i = u,
$$

so $\text{im}(\pi) = U$.

(c) Since $\{u_1, \ldots, u_n\}$ is an orthogonal system, the vectors $\pi_i(v)$ and $\pi_i(v)$ are orthogonal unless $i = j$. It then follows from the Pythagorean theorem and part (c) of [Question 12.2](#page-0-0) that

$$
\|\pi(v)\|^2 = \|\pi_1(v) + \dots + \pi_n(v)\|^2 = \sum_{i=1}^n \|\pi_i(v)\|^2 = \sum_{i=1}^n |\langle v, u_n \rangle|^2.
$$

(d) Since π is an orthogonal projection, the vectors $\pi(v)$ and $(\mathrm{id}_V - \pi)(v)$ are orthogonal by [Proposition 3.38](#page-5-0) and the definition of orthogonal projections. It then follows from the Pythagorean theorem and part (c) that

$$
||v||2 = ||\pi(v)||2 + ||(\mathrm{id}_V - \pi)(v)||2 \ge ||\pi(v)||2 = \sum_{i=1}^{n} | \langle v, u_i \rangle |2.
$$

We say that a subalgebra C of $C_0(X, \mathbf{F})$ *separates points* if for every pair of points x and y in X there is a function f in C such that $f(x) \neq f(y)$. We say that a subalgebra C of $C_0(X, \mathbf{F})$ is *non-vanishing* if for every point x in X there is a function f in C such that $f(x) \neq 0$.

12.4. (*) Let C be a non-vanishing subalgebra of $C_0(X, \mathbf{F})$ that separates points.

- (a) Given two points x and y in X, find a function h in C such that $h(x) = 0$ and $h(y) \neq 0$.
- (b) Prove that $\mathcal C$ interpolates pairs of points.

Solution.

(a) Pick functions f and g in $C_0(X, \mathbf{F})$ such that $f(x) \neq f(y)$ and $g(y) \neq 0$. Put

$$
h = fg - f(x)g.
$$

The function h is still in \mathcal{C} , and

$$
h(x) = f(x)g(x) - f(x)g(x) = 0,
$$

$$
h(y) = f(y)g(y) - f(x)g(y) = (f(y) - f(x))g(y) \neq 0.
$$

(b) Let a and b be two scalars. By part (a), there are functions ϕ and ψ in C such that

$$
\phi(x) = 0
$$
, $\phi(y) \neq 0$, $\psi(x) \neq 0$, and $\psi(y) = 0$.

Put

$$
\Phi = \frac{a\phi}{\phi(x)} + \frac{b\psi}{\psi(y)}.
$$

The function Φ is still in \mathcal{C} , and we have $\Phi(x) = a$ and $\Phi(y) = b$. Hence \mathcal{C} interpolates pairs of points. pairs of points.

If X is a compact metric space and $f: X \longrightarrow \mathbb{C}$ is a function, then we write $\overline{f}: X \longrightarrow \mathbb{C}$ for the function defined by

$$
\overline{f}(x)=\overline{f(x)}.
$$

Given a subalgebra C of $C_0(X, \mathbb{C})$, we say C is *closed under complex conjugation* if $f \in \mathcal{C}$ implies $f \in \mathcal{C}$.

12.5. Let X be a compact metric space and let C be a non-vanishing subalgebra of $C_0(X, \mathbb{C})$. Suppose $\mathcal C$ is closed under complex conjugation and separates points.

- (a) Let $\mathcal{C}_{\mathbf{R}} = \mathcal{C} \cap C_0(X, \mathbf{R})$. Prove that $\mathcal{C}_{\mathbf{R}}$ is dense in $C_0(X, \mathbf{R})$.
- (b) Prove that $\mathcal C$ is dense in $C_0(X, \mathbb C)$.

Solution.

- (a) If x and y are elements of X and if a and b are real numbers, then by [Question 12.4](#page-2-0) there exists a function f in C such that $f(x) = a$ and $f(y) = b$. Put $q = (f + \overline{f})/2$, which is a real-valued function by definition. Since $g(x) = a$ and $g(y) = b$, it follows that $\mathcal{C}_{\mathbf{R}}$ interpolates pairs of points, so $\mathcal{C}_{\mathbf{R}}$ is dense in $C_0(X,\mathbf{R})$ by the Stone–Weierstrass theorem.
- (b) Given a function f in $C_0(X, \mathbb{C})$, we know that $f = g + ih$, where

$$
g = \frac{f + \overline{f}}{2}
$$
 and $h = \frac{f - \overline{f}}{2i}$.

Since g and h both belong to $C_0(X, \mathbf{R})$, it follows that g and h are both in $\overline{\mathcal{C}}$. The subalgebra C is a vector subspace of $C_0(X, \mathbb{C})$, so $f \in \overline{\mathcal{C}}$ by [Proposition 3.7.](#page-5-0) Hence $C_0(X, \mathbb{C}) = \overline{\mathcal{C}}$. $C_0(X, \mathbf{C}) = \overline{\mathcal{C}}$.

12.6. (*) Let $(u_i)_{i\in I}$ be an orthonormal basis of an inner product space V (not necessarily separable) and let v be a vector in V .

(a) Given a a positive integer n , define

$$
J_n = \left\{ i \in I \mid \left| \langle v, u_i \rangle \right| > \frac{1}{n} \right\}.
$$

Prove that J_n has at most $n^2 ||v||^2$ elements.

(b) Put

$$
I_v = \Big\{ i \in I \mid |\langle v, u_i \rangle| \neq 0 \Big\}.
$$

Prove that I_v is countable.

(c) Choose a bijection $o: \mathbb{N} \longrightarrow I_v$. Prove that

$$
v = \sum_{n=1}^{\infty} \langle v, u_{o(n)} \rangle u_{o(n)}.
$$

(d) Justify the notation

$$
\sum_{i \in I} \langle v, u_i \rangle u_i
$$

and convince yourself that

$$
v = \sum_{i \in I} \langle v, u_i \rangle u_i.
$$

Solution.

(a) If J_n has more than $n^2 ||v||^2$ elements, then choose a finite subset S with more than $n^2 ||v||^2$ elements. It follows from Bessel's inequality (part (a) of [Theorem 3.52](#page-5-0) or part (d) of [Question 12.3\)](#page-1-0) that

$$
||v||^2 \ge \sum_{s \in S} | \langle v, u_s \rangle |^2 > \frac{n^2 ||v||^2}{n^2} = ||v||^2,
$$

a contradiction. Hence J_n has at most $n^2 ||v||^2$ elements.

(b) The set I_v is countable because

$$
I_v = \bigcup_{n \in \mathbf{N}} J_n.
$$

(c) Bessel's inequality implies

$$
\sum_{n=1}^{N} | \langle v, u_{o(n)} \rangle |^{2} \leq ||v||^{2}
$$

for every positive integer N , so the sequence

$$
\left(\sum_{n=1}^N \left|\left\langle v, u_{o(n)} \right\rangle\right|^2\right)_{N=1}^\infty
$$

is a non-decreasing sequence with an upper bound $||v||^2$. Hence

$$
(\langle v, u_{o(n)} \rangle)_{n=1}^{\infty} \in \ell^2.
$$

It then follows from [Corollary 3.53](#page-5-0) that $\sum_{n=1}^{\infty} \langle v, u_{o(n)} \rangle u_{o(n)}$ converges to some vector v' in V .

It remains to verify $v' = v$. If m is a natural number, then

$$
\langle v - v', u_{o(m)} \rangle = \langle v - \lim_{N \to \infty} \sum_{n=1}^{N} \langle v, u_{o(n)} \rangle u_{o(n)}, u_{o(m)} \rangle
$$

$$
= \langle v, u_{o(m)} \rangle - \lim_{N \to \infty} \sum_{n=1}^{N} \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_{o(m)} \rangle
$$

$$
= \langle v, u_{o(m)} \rangle - \langle v, u_{o(m)} \rangle = 0,
$$

where $\lim_{N\to\infty}\sum_{n=1}^{N} \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_{o(m)} \rangle = \langle v, u_{o(m)} \rangle$ because

$$
\sum_{n=1}^N \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_{o(m)} \rangle = \begin{cases} 0 & \text{if } n < m, \\ \langle v, u_{o(m)} \rangle & \text{otherwise.} \end{cases}
$$

If $i \in I \setminus I_v$, then

$$
\langle v - v', u_i \rangle = \langle v - \lim_{N \to \infty} \sum_{n=1}^{N} \langle v, u_{o(n)} \rangle u_{o(n)}, u_i \rangle
$$

= $\langle v, u_i \rangle - \lim_{N \to \infty} \sum_{n=1}^{N} \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_i \rangle = 0.$

Hence $v - v'$ is orthogonal to v_i for every v_i , which implies $v = v'$ by [Question 12.1.](#page-0-1)

(d) In part (b), we proved that there are only countably many non-zero summands. Hence we can order the non-zero summands and define the sum to be the sum of the series. In part (c), we shown that the sum does not depend on the ordering of non-zero summands, so the sum is well defined. In addition, part (c) implies the identity

$$
v = \sum_{i \in I} \langle v, u_i \rangle u_i.
$$