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Tutorial Week 12

Topics: Orthogonal systems, orthogonal bases, the Stone–Weierstrass theorem.

12.1. Let (ui)i∈I be an orthonormal basis of an inner product space V and let v ∈ V . Prove
that v = 0 if and only if ⟨v, ui⟩ = 0 for every index i ∈ I.

Solution. If v = 0, then ⟨v, ui⟩ = 0 by linearity on the first variable.
If ⟨v, ui⟩ = 0 for every index i, then

{v}⊥ ⊇ {ui ∣ i ∈ I }.

It then follows from Proposition 3.40 that

{v}⊥ ⊇ Span{ui ∣ i ∈ I } =H.

Hence v is orthogonal to itself; in other words, ⟨v, v⟩ = 0. By positive definiteness of inner
products, it follows that v = 0.

12.2. In this question, we re-examine the Cauchy–Schwarz inequality in retrospect.
Let u be a vector of norm 1 in an inner product space V . Define πu ∶ V Ð→ V by

πu(v) = ⟨v, u⟩u.

(a) Prove that πu is a linear transformation.

(b) Let v be a vector in V . Prove that πu(v) is orthogonal to (idV − πu)(v).

(c) Let v be a vector in V . Prove that ∥πu(v)∥ = ∣⟨v, u⟩∣.

(d) Prove the Cauchy–Schwarz inequality: if v and w are vectors in V , then

∣⟨v,w⟩∣ ⩽ ∥v∥ ∥w∥.

(e) Prove that πu is an orthogonal projection with image Fu.

Solution.

(a) If v and w are vectors in V , then

πu(v +w) = ⟨v +w,u⟩u = ⟨v, u⟩u + ⟨w,u⟩u = πu(v) + πu(w).

If α is a scalar and v is a vector in V , then

πu(αv) = ⟨αv,u⟩u = α⟨v,w⟩u = απu(v).

(b) The vector πu(v) is orthogonal to (idV − πu)(v) because

⟨πu(v), (idV − πu)(v)⟩ = ⟨⟨v, u⟩u, v − ⟨v, u⟩u⟩
= ⟨⟨v, u⟩u, v⟩ − ⟨⟨v, u⟩u, ⟨v, u⟩u⟩

= ⟨v, u⟩⟨u, v⟩ − ⟨v, u⟩⟨u,u⟩⟨v, u⟩
= ⟨v, u⟩⟨v, u⟩ − ⟨v, u⟩⟨v, u⟩ = 0.
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(c) The equality follows from

∥πu(v)∥
2 = ∥⟨v, u⟩u∥2 = ⟨⟨v, u⟩u, ⟨v, u⟩u⟩ = ⟨v, u⟩⟨u,u⟩⟨v, u⟩ = ∣⟨v, u⟩∣2.

(d) If v is zero, then both sides of the inequality equal 0. Otherwise, put u = v/∥v∥. It
follows from part (b), the Pythagorean theorem, and part (c) that

∥w∥2 = ∥πu(w)∥
2 + ∥(idV − πu)(w)∥

2 ⩾ ∥πu(w)∥
2 = ∣⟨w,u⟩∣2 = ∣⟨w, v

∥v∥
⟩∣

2

=
∣⟨w, v⟩∣2

∥v∥2
,

so ∣⟨v,w⟩∣ ⩽ ∥v∥ ∥w∥.

(e) If v ∈ V , then it follows from part (c) and the Cauchy–Schwarz inequality that

∥πu(v)∥ = ∣⟨v, u⟩∣ ⩽ ∥v∥ ∥u∥ = ∥v∥,

so πv is continuous. If v is a vector in V , then

πu(πu(v)) = πu(⟨v, u⟩u) = ⟨v, u⟩πu(u) = ⟨v, u⟩⟨u,u⟩u = ⟨v, u⟩u = πu(v),

so πu is a projection. If v and w are vectors in V , then

⟨πu(v),w⟩ = ⟨⟨v, u⟩u,w⟩ = ⟨v, u⟩⟨u,w⟩ = ⟨v, u⟩⟨w,u⟩ = ⟨v, ⟨w,u⟩u⟩ = ⟨v, πu(w)⟩,

so πu is self-adjoint. Hence πu is an orthogonal projection by Question 11.2.
If v is a vector in V , then πu(v) = ⟨v, u⟩u ∈ Fu, so im(πu) ⊆ Fu. If α is a scalar, then
πu(αu) = ⟨αu,u⟩u = α⟨u,u⟩u = αu, so Fu ⊆ im(πu). Hence im(πu) = Fu.

12.3. In this question, we generalise the results in Question 12.2.
Let {u1, . . . , un} be an orthonormal system in an inner product space V and let U be the

span of the orthonormal system. Write π1, . . . , πn for the projections πu1 , . . . , πun defined in
Question 12.2 and put

π = π1 +⋯ + πn.

(a) Prove that

πi ○ πj =
⎧⎪⎪⎨⎪⎪⎩

πi if i = j,
0 otherwise.

(b) Prove that π is an orthogonal projection with image U .

(c) Let v be a vector in V . Prove that

∥π(v)∥2 =
n

∑
i=1
∣⟨v, un⟩∣

2
.

(d) Use part (c) to prove the following finite version of the Bessel’s inequality: if v is a
vector in V , then

∥v∥2 ⩾
n

∑
i=1
∣⟨v, ui⟩∣

2
.

Solution.
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(a) If v is a vector in V , then

(πi ○ πj)(v) =
⎧⎪⎪⎨⎪⎪⎩

πi(⟨v, ui⟩ui) = ⟨v, ui⟩πi(ui) = ⟨v, ui⟩ui = πi(v) if i = j,
πi(⟨v, uj⟩uj) = ⟨v, uj⟩πi(uj) = ⟨v, uj⟩⟨uj, ui⟩ui = 0 otherwise.

(b) As a sum of continuous linear transformations, π is linear and continuous. It follows
from part (a) that

π ○ π =
n

∑
i=1

n

∑
j=1
πi ○ πj =

n

∑
i=1
πi = π,

so π is a projection. Since self-adjoint operators form a real vector space (see Ques-
tion 11.9), it follows that π is self-adjoint, and therefore an orthogonal projection by
Question 11.2.
If v is a vector in V , then

π(v) = π1(v) +⋯ + πn(v) ∈ U,

so im(π) ⊆ U . If u is a vector in U , then u = α1u1 +⋯+αnun for some scalars α1, . . . , αn.
It follows that

π(u) =
n

∑
i=1
πi(

n

∑
j=1
αjuj) =

n

∑
i=1

n

∑
j=1
αjπi(uj) =

n

∑
i=1
αiui = u,

so im(π) = U .

(c) Since {u1, . . . , un} is an orthogonal system, the vectors πi(v) and πj(v) are orthogonal
unless i = j. It then follows from the Pythagorean theorem and part (c) of Question 12.2
that

∥π(v)∥2 = ∥π1(v) +⋯ + πn(v)∥
2 =

n

∑
i=1
∥πi(v)∥

2 =
n

∑
i=1
∣⟨v, un⟩∣

2
.

(d) Since π is an orthogonal projection, the vectors π(v) and (idV − π)(v) are orthogonal
by Proposition 3.38 and the definition of orthogonal projections. It then follows from
the Pythagorean theorem and part (c) that

∥v∥2 = ∥π(v)∥2 + ∥(idV − π)(v)∥
2 ⩾ ∥π(v)∥2 =

n

∑
i=1
∣⟨v, ui⟩∣

2
.

We say that a subalgebra C of C0(X,F) separates points if for every pair of points x and y
in X there is a function f in C such that f(x) ≠ f(y). We say that a subalgebra C of C0(X,F)
is non-vanishing if for every point x in X there is a function f in C such that f(x) ≠ 0.

12.4. (*) Let C be a non-vanishing subalgebra of C0(X,F) that separates points.

(a) Given two points x and y in X, find a function h in C such that h(x) = 0 and h(y) ≠ 0.

(b) Prove that C interpolates pairs of points.

Solution.

(a) Pick functions f and g in C0(X,F) such that f(x) ≠ f(y) and g(y) ≠ 0. Put

h = fg − f(x)g.

The function h is still in C, and

h(x) = f(x)g(x) − f(x)g(x) = 0,
h(y) = f(y)g(y) − f(x)g(y) = (f(y) − f(x))g(y) ≠ 0.
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(b) Let a and b be two scalars. By part (a), there are functions φ and ψ in C such that

φ(x) = 0, φ(y) ≠ 0, ψ(x) ≠ 0, and ψ(y) = 0.

Put
Φ = aφ

φ(x)
+ bψ

ψ(y)
.

The function Φ is still in C, and we have Φ(x) = a and Φ(y) = b. Hence C interpolates
pairs of points.

If X is a compact metric space and f ∶ X Ð→C is a function, then we write f ∶ X Ð→C
for the function defined by

f(x) = f(x).

Given a subalgebra C of C0(X,C), we say C is closed under complex conjugation if f ∈ C
implies f ∈ C.

12.5. Let X be a compact metric space and let C be a non-vanishing subalgebra of C0(X,C).
Suppose C is closed under complex conjugation and separates points.

(a) Let CR = C ∩C0(X,R). Prove that CR is dense in C0(X,R).

(b) Prove that C is dense in C0(X,C).

Solution.

(a) If x and y are elements of X and if a and b are real numbers, then by Question 12.4
there exists a function f in C such that f(x) = a and f(y) = b. Put g = (f + f)/2, which
is a real-valued function by definition. Since g(x) = a and g(y) = b, it follows that
CR interpolates pairs of points, so CR is dense in C0(X,R) by the Stone–Weierstrass
theorem.

(b) Given a function f in C0(X,C), we know that f = g + ih, where

g = f + f
2

and h = f − f
2i

.

Since g and h both belong to C0(X,R), it follows that g and h are both in C. The
subalgebra C is a vector subspace of C0(X,C), so f ∈ C by Proposition 3.7. Hence
C0(X,C) = C.

12.6. (*) Let (ui)i∈I be an orthonormal basis of an inner product space V (not necessarily
separable) and let v be a vector in V .

(a) Given a a positive integer n, define

Jn = { i ∈ I ∣ ∣⟨v, ui⟩∣ >
1

n
}.

Prove that Jn has at most n2∥v∥2 elements.

(b) Put
Iv = { i ∈ I ∣ ∣⟨v, ui⟩∣ ≠ 0}.

Prove that Iv is countable.
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(c) Choose a bijection o ∶ NÐ→ Iv. Prove that

v =
∞
∑
n=1
⟨v, uo(n)⟩uo(n).

(d) Justify the notation
∑
i∈I
⟨v, ui⟩ui

and convince yourself that
v = ∑

i∈I
⟨v, ui⟩ui.

Solution.

(a) If Jn has more than n2∥v∥2 elements, then choose a finite subset S with more than
n2∥v∥2 elements. It follows from Bessel’s inequality (part (a) of Theorem 3.52 or part
(d) of Question 12.3) that

∥v∥2 ⩾ ∑
s∈S
∣⟨v, us⟩∣

2 > n
2∥v∥2
n2

= ∥v∥2,

a contradiction. Hence Jn has at most n2∥v∥2 elements.

(b) The set Iv is countable because
Iv = ⋃

n∈N
Jn.

(c) Bessel’s inequality implies
N

∑
n=1
∣⟨v, uo(n)⟩∣

2 ⩽ ∥v∥2

for every positive integer N , so the sequence

(
N

∑
n=1
∣⟨v, uo(n)⟩∣

2)
∞

N=1

is a non-decreasing sequence with an upper bound ∥v∥2. Hence

(⟨v, uo(n)⟩)
∞
n=1 ∈ `

2.

It then follows from Corollary 3.53 that ∑∞n=1⟨v, uo(n)⟩uo(n) converges to some vector v′
in V .
It remains to verify v′ = v. If m is a natural number, then

⟨v − v′, uo(m)⟩ = ⟨v − lim
NÐ→∞

N

∑
n=1
⟨v, uo(n)⟩uo(n), uo(m)⟩

= ⟨v, uo(m)⟩ − lim
NÐ→∞

N

∑
n=1
⟨v, uo(n)⟩⟨uo(n), uo(m)⟩

= ⟨v, uo(m)⟩ − ⟨v, uo(m)⟩ = 0,

where limNÐ→∞∑N
n=1⟨v, uo(n)⟩⟨uo(n), uo(m)⟩ = ⟨v, uo(m)⟩ because

N

∑
n=1
⟨v, uo(n)⟩⟨uo(n), uo(m)⟩ =

⎧⎪⎪⎨⎪⎪⎩

0 if n <m,
⟨v, uo(m)⟩ otherwise.
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If i ∈ I ∖ Iv, then

⟨v − v′, ui⟩ = ⟨v − lim
NÐ→∞

N

∑
n=1
⟨v, uo(n)⟩uo(n), ui⟩

= ⟨v, ui⟩ − lim
NÐ→∞

N

∑
n=1
⟨v, uo(n)⟩⟨uo(n), ui⟩ = 0.

Hence v − v′ is orthogonal to vi for every vi, which implies v = v′ by Question 12.1.

(d) In part (b), we proved that there are only countably many non-zero summands. Hence
we can order the non-zero summands and define the sum to be the sum of the series. In
part (c), we shown that the sum does not depend on the ordering of non-zero summands,
so the sum is well defined. In addition, part (c) implies the identity

v = ∑
i∈I
⟨v, ui⟩ui.
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