Tutorial Week 12

Topics: Orthogonal systems, orthogonal bases, the Stone–Weierstrass theorem.

12.1. Let $(u_i)_{i \in I}$ be an orthonormal basis of an inner product space V and let $v \in V$. Prove that v = 0 if and only if $\langle v, u_i \rangle = 0$ for every index $i \in I$.

Solution. If v = 0, then $\langle v, u_i \rangle = 0$ by linearity on the first variable.

If $\langle v, u_i \rangle = 0$ for every index *i*, then

$$\{v\}^{\perp} \supseteq \{ u_i \mid i \in I \}.$$

It then follows from Proposition 3.40 that

$$\{v\}^{\perp} \supseteq \overline{\operatorname{Span}\{u_i \mid i \in I\}} = H.$$

Hence v is orthogonal to itself; in other words, $\langle v, v \rangle = 0$. By positive definiteness of inner products, it follows that v = 0.

12.2. In this question, we re-examine the Cauchy–Schwarz inequality in retrospect. Let u be a vector of norm 1 in an inner product space V. Define $\pi_u: V \longrightarrow V$ by

$$\pi_u(v) = \langle v, u \rangle u.$$

- (a) Prove that π_u is a linear transformation.
- (b) Let v be a vector in V. Prove that $\pi_u(v)$ is orthogonal to $(\mathrm{id}_V \pi_u)(v)$.
- (c) Let v be a vector in V. Prove that $||\pi_u(v)|| = |\langle v, u \rangle|$.
- (d) Prove the Cauchy-Schwarz inequality: if v and w are vectors in V, then

$$|\langle v, w \rangle| \leq ||v|| ||w||.$$

(e) Prove that π_u is an orthogonal projection with image $\mathbf{F}u$.

Solution.

(a) If v and w are vectors in V, then

$$\pi_u(v+w) = \langle v+w, u \rangle u = \langle v, u \rangle u + \langle w, u \rangle u = \pi_u(v) + \pi_u(w)$$

If α is a scalar and v is a vector in V, then

$$\pi_u(\alpha v) = \langle \alpha v, u \rangle u = \alpha \langle v, w \rangle u = \alpha \pi_u(v).$$

(b) The vector $\pi_u(v)$ is orthogonal to $(id_V - \pi_u)(v)$ because

$$\langle \pi_u(v), (\mathrm{id}_V - \pi_u)(v) \rangle = \langle \langle v, u \rangle u, v - \langle v, u \rangle u \rangle$$

= $\langle \langle v, u \rangle u, v \rangle - \langle \langle v, u \rangle u, \langle v, u \rangle u \rangle$
= $\langle v, u \rangle \langle u, v \rangle - \langle v, u \rangle \langle u, u \rangle \overline{\langle v, u \rangle}$
= $\langle v, u \rangle \overline{\langle v, u \rangle} - \langle v, u \rangle \overline{\langle v, u \rangle} = 0.$

(c) The equality follows from

$$\|\pi_u(v)\|^2 = \|\langle v, u \rangle u\|^2 = \langle \langle v, u \rangle u, \langle v, u \rangle u \rangle = \langle v, u \rangle \langle u, u \rangle \overline{\langle v, u \rangle} = |\langle v, u \rangle|^2.$$

(d) If v is zero, then both sides of the inequality equal 0. Otherwise, put u = v/||v||. It follows from part (b), the Pythagorean theorem, and part (c) that

$$\|w\|^{2} = \|\pi_{u}(w)\|^{2} + \|(\mathrm{id}_{V} - \pi_{u})(w)\|^{2} \ge \|\pi_{u}(w)\|^{2} = |\langle w, u \rangle|^{2} = \left|\langle w, \frac{v}{\|v\|}\rangle\right|^{2} = \frac{|\langle w, v \rangle|^{2}}{\|v\|^{2}}$$

so $|\langle v, w \rangle| \leq ||v|| ||w||$.

(e) If $v \in V$, then it follows from part (c) and the Cauchy–Schwarz inequality that

$$\|\pi_u(v)\| = |\langle v, u \rangle| \le \|v\| \|u\| = \|v\|,$$

so π_v is continuous. If v is a vector in V, then

$$\pi_u(\pi_u(v)) = \pi_u(\langle v, u \rangle u) = \langle v, u \rangle \pi_u(u) = \langle v, u \rangle \langle u, u \rangle u = \langle v, u \rangle u = \pi_u(v),$$

so π_u is a projection. If v and w are vectors in V, then

$$\langle \pi_u(v), w \rangle = \langle \langle v, u \rangle u, w \rangle = \langle v, u \rangle \langle u, w \rangle = \langle v, u \rangle \overline{\langle w, u \rangle} = \langle v, \langle w, u \rangle u \rangle = \langle v, \pi_u(w) \rangle,$$

so π_u is self-adjoint. Hence π_u is an orthogonal projection by Question 11.2.

If v is a vector in V, then $\pi_u(v) = \langle v, u \rangle u \in \mathbf{F}u$, so $\operatorname{im}(\pi_u) \subseteq \mathbf{F}u$. If α is a scalar, then $\pi_u(\alpha u) = \langle \alpha u, u \rangle u = \alpha \langle u, u \rangle u = \alpha u$, so $\mathbf{F}u \subseteq \operatorname{im}(\pi_u)$. Hence $\operatorname{im}(\pi_u) = \mathbf{F}u$.

12.3. In this question, we generalise the results in Question 12.2.

Let $\{u_1, \ldots, u_n\}$ be an orthonormal system in an inner product space V and let U be the span of the orthonormal system. Write π_1, \ldots, π_n for the projections $\pi_{u_1}, \ldots, \pi_{u_n}$ defined in Question 12.2 and put

$$\pi = \pi_1 + \dots + \pi_n.$$

(a) Prove that

$$\pi_i \circ \pi_j = \begin{cases} \pi_i & \text{if } i = j, \\ 0 & \text{otherwise.} \end{cases}$$

- (b) Prove that π is an orthogonal projection with image U.
- (c) Let v be a vector in V. Prove that

$$\left\|\pi(v)\right\|^2 = \sum_{i=1}^n |\langle v, u_n \rangle|^2.$$

(d) Use part (c) to prove the following finite version of the *Bessel's inequality*: if v is a vector in V, then

$$\|v\|^2 \ge \sum_{i=1}^n |\langle v, u_i \rangle|^2.$$

Solution.

(a) If v is a vector in V, then

$$(\pi_i \circ \pi_j)(v) = \begin{cases} \pi_i(\langle v, u_i \rangle u_i) = \langle v, u_i \rangle \pi_i(u_i) = \langle v, u_i \rangle u_i = \pi_i(v) & \text{if } i = j, \\ \pi_i(\langle v, u_j \rangle u_j) = \langle v, u_j \rangle \pi_i(u_j) = \langle v, u_j \rangle \langle u_j, u_i \rangle u_i = 0 & \text{otherwise.} \end{cases}$$

(b) As a sum of continuous linear transformations, π is linear and continuous. It follows from part (a) that

$$\pi\circ\pi=\sum_{i=1}^n\sum_{j=1}^n\pi_i\circ\pi_j=\sum_{i=1}^n\pi_i=\pi,$$

so π is a projection. Since self-adjoint operators form a real vector space (see Question 11.9), it follows that π is self-adjoint, and therefore an orthogonal projection by Question 11.2.

If v is a vector in V, then

$$\pi(v) = \pi_1(v) + \dots + \pi_n(v) \in U,$$

so $\operatorname{im}(\pi) \subseteq U$. If u is a vector in U, then $u = \alpha_1 u_1 + \dots + \alpha_n u_n$ for some scalars $\alpha_1, \dots, \alpha_n$. It follows that

$$\pi(u) = \sum_{i=1}^{n} \pi_i \left(\sum_{j=1}^{n} \alpha_j u_j \right) = \sum_{i=1}^{n} \sum_{j=1}^{n} \alpha_j \pi_i(u_j) = \sum_{i=1}^{n} \alpha_i u_i = u,$$

so $\operatorname{im}(\pi) = U$.

(c) Since $\{u_1, \ldots, u_n\}$ is an orthogonal system, the vectors $\pi_i(v)$ and $\pi_j(v)$ are orthogonal unless i = j. It then follows from the Pythagorean theorem and part (c) of Question 12.2 that

$$\|\pi(v)\|^{2} = \|\pi_{1}(v) + \dots + \pi_{n}(v)\|^{2} = \sum_{i=1}^{n} \|\pi_{i}(v)\|^{2} = \sum_{i=1}^{n} |\langle v, u_{n} \rangle|^{2}.$$

(d) Since π is an orthogonal projection, the vectors $\pi(v)$ and $(id_V - \pi)(v)$ are orthogonal by Proposition 3.38 and the definition of orthogonal projections. It then follows from the Pythagorean theorem and part (c) that

$$\|v\|^{2} = \|\pi(v)\|^{2} + \|(\mathrm{id}_{V} - \pi)(v)\|^{2} \ge \|\pi(v)\|^{2} = \sum_{i=1}^{n} |\langle v, u_{i} \rangle|^{2}.$$

We say that a subalgebra \mathcal{C} of $C_0(X, \mathbf{F})$ separates points if for every pair of points x and yin X there is a function f in \mathcal{C} such that $f(x) \neq f(y)$. We say that a subalgebra \mathcal{C} of $C_0(X, \mathbf{F})$ is non-vanishing if for every point x in X there is a function f in \mathcal{C} such that $f(x) \neq 0$.

12.4. (*) Let \mathcal{C} be a non-vanishing subalgebra of $C_0(X, \mathbf{F})$ that separates points.

- (a) Given two points x and y in X, find a function h in C such that h(x) = 0 and $h(y) \neq 0$.
- (b) Prove that \mathcal{C} interpolates pairs of points.

Solution.

(a) Pick functions f and g in $C_0(X, \mathbf{F})$ such that $f(x) \neq f(y)$ and $g(y) \neq 0$. Put

$$h = fg - f(x)g.$$

The function h is still in \mathcal{C} , and

$$h(x) = f(x)g(x) - f(x)g(x) = 0,$$

$$h(y) = f(y)g(y) - f(x)g(y) = (f(y) - f(x))g(y) \neq 0.$$

(b) Let a and b be two scalars. By part (a), there are functions ϕ and ψ in C such that

$$\phi(x) = 0$$
, $\phi(y) \neq 0$, $\psi(x) \neq 0$, and $\psi(y) = 0$

Put

$$\Phi = \frac{a\phi}{\phi(x)} + \frac{b\psi}{\psi(y)}.$$

The function Φ is still in C, and we have $\Phi(x) = a$ and $\Phi(y) = b$. Hence C interpolates pairs of points.

If X is a compact metric space and $f: X \longrightarrow \mathbf{C}$ is a function, then we write $\overline{f}: X \longrightarrow \mathbf{C}$ for the function defined by

$$\overline{f}(x) = f(x).$$

Given a subalgebra \mathcal{C} of $C_0(X, \mathbb{C})$, we say \mathcal{C} is closed under complex conjugation if $f \in \mathcal{C}$ implies $\overline{f} \in \mathcal{C}$.

12.5. Let X be a compact metric space and let \mathcal{C} be a non-vanishing subalgebra of $C_0(X, \mathbb{C})$. Suppose \mathcal{C} is closed under complex conjugation and separates points.

- (a) Let $\mathcal{C}_{\mathbf{R}} = \mathcal{C} \cap C_0(X, \mathbf{R})$. Prove that $\mathcal{C}_{\mathbf{R}}$ is dense in $C_0(X, \mathbf{R})$.
- (b) Prove that \mathcal{C} is dense in $C_0(X, \mathbb{C})$.

Solution.

- (a) If x and y are elements of X and if a and b are real numbers, then by Question 12.4 there exists a function f in C such that f(x) = a and f(y) = b. Put $g = (f + \overline{f})/2$, which is a real-valued function by definition. Since g(x) = a and g(y) = b, it follows that $C_{\mathbf{R}}$ interpolates pairs of points, so $C_{\mathbf{R}}$ is dense in $C_0(X, \mathbf{R})$ by the Stone–Weierstrass theorem.
- (b) Given a function f in $C_0(X, \mathbb{C})$, we know that f = g + ih, where

$$g = \frac{f + \overline{f}}{2}$$
 and $h = \frac{f - \overline{f}}{2i}$.

Since g and h both belong to $C_0(X, \mathbf{R})$, it follows that g and h are both in $\overline{\mathcal{C}}$. The subalgebra \mathcal{C} is a vector subspace of $C_0(X, \mathbf{C})$, so $f \in \overline{\mathcal{C}}$ by Proposition 3.7. Hence $C_0(X, \mathbf{C}) = \overline{\mathcal{C}}$.

12.6. (*) Let $(u_i)_{i \in I}$ be an orthonormal basis of an inner product space V (not necessarily separable) and let v be a vector in V.

(a) Given a positive integer n, define

$$J_n = \Big\{ i \in I \mid |\langle v, u_i \rangle| > \frac{1}{n} \Big\}.$$

Prove that J_n has at most $n^2 ||v||^2$ elements.

(b) Put

$$I_v = \left\{ i \in I \mid |\langle v, u_i \rangle| \neq 0 \right\}.$$

Prove that I_v is countable.

(c) Choose a bijection $o: \mathbf{N} \longrightarrow I_v$. Prove that

$$v = \sum_{n=1}^{\infty} \langle v, u_{o(n)} \rangle u_{o(n)}.$$

(d) Justify the notation

$$\sum_{i \in I} \langle v, u_i \rangle u_i$$

and convince yourself that

$$v = \sum_{i \in I} \langle v, u_i \rangle u_i.$$

Solution.

(a) If J_n has more than $n^2 ||v||^2$ elements, then choose a finite subset S with more than $n^2 ||v||^2$ elements. It follows from Bessel's inequality (part (a) of Theorem 3.52 or part (d) of Question 12.3) that

$$\|v\|^2 \ge \sum_{s \in S} \left| \langle v, u_s \rangle \right|^2 > \frac{n^2 \|v\|^2}{n^2} = \|v\|^2,$$

a contradiction. Hence J_n has at most $n^2 ||v||^2$ elements.

(b) The set I_v is countable because

$$I_v = \bigcup_{n \in \mathbf{N}} J_n$$

(c) Bessel's inequality implies

$$\sum_{n=1}^{N} |\langle v, u_{o(n)} \rangle|^{2} \le ||v||^{2}$$

for every positive integer N, so the sequence

$$\left(\sum_{n=1}^{N} \left| \left\langle v, u_{o(n)} \right\rangle \right|^2 \right)_{N=1}^{\infty}$$

is a non-decreasing sequence with an upper bound $||v||^2$. Hence

$$(\langle v, u_{o(n)} \rangle)_{n=1}^{\infty} \in \ell^2.$$

It then follows from Corollary 3.53 that $\sum_{n=1}^{\infty} \langle v, u_{o(n)} \rangle u_{o(n)}$ converges to some vector v' in V.

It remains to verify v' = v. If m is a natural number, then

$$\langle v - v', u_{o(m)} \rangle = \left\langle v - \lim_{N \to \infty} \sum_{n=1}^{N} \langle v, u_{o(n)} \rangle u_{o(n)}, u_{o(m)} \right\rangle$$
$$= \left\langle v, u_{o(m)} \right\rangle - \lim_{N \to \infty} \sum_{n=1}^{N} \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_{o(m)} \rangle$$
$$= \left\langle v, u_{o(m)} \right\rangle - \left\langle v, u_{o(m)} \right\rangle = 0,$$

where $\lim_{N \to \infty} \sum_{n=1}^{N} \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_{o(m)} \rangle = \langle v, u_{o(m)} \rangle$ because

$$\sum_{n=1}^{N} \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_{o(m)} \rangle = \begin{cases} 0 & \text{if } n < m, \\ \langle v, u_{o(m)} \rangle & \text{otherwise} \end{cases}$$

If $i \in I \setminus I_v$, then

$$\langle v - v', u_i \rangle = \left\langle v - \lim_{N \to \infty} \sum_{n=1}^N \langle v, u_{o(n)} \rangle u_{o(n)}, u_i \right\rangle$$

= $\langle v, u_i \rangle - \lim_{N \to \infty} \sum_{n=1}^N \langle v, u_{o(n)} \rangle \langle u_{o(n)}, u_i \rangle = 0.$

Hence v - v' is orthogonal to v_i for every v_i , which implies v = v' by Question 12.1.

(d) In part (b), we proved that there are only countably many non-zero summands. Hence we can order the non-zero summands and define the sum to be the sum of the series. In part (c), we shown that the sum does not depend on the ordering of non-zero summands, so the sum is well defined. In addition, part (c) implies the identity

$$v = \sum_{i \in I} \langle v, u_i \rangle u_i.$$