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1. Metric and topological spaces

Metrics
Exercise 1.1. Let (X,d) be a metric space. Show that

∣d(x, y) − d(t, y)∣ ⩽ d(x, t)

for all x, y, t ∈X.

Exercise 1.2. Let (X,d) be a metric space. Show that

∣d(x, y) − d(s, t)∣ ⩽ d(x, s) + d(y, t)

for all x, s, y, t ∈X.

Exercise 1.3. Let n ∈ N, X = Rn with the dot product ⋅, ∥x∥ = √x ⋅ x for x ∈ X, and
d(x, y) = ∥x − y∥ for x, y ∈ X. Then (X,d) is a metric space. (The function d is called the
Euclidean metric or `2 metric on Rn.)

[Hint: The Cauchy–Schwarz inequality can be useful for checking the triangle inequality.]

Exercise 1.4. Draw the unit open balls in the metric spaces (R2, d1) (Example 2.3), (R2, d2)
(Exercise 1.3), and (R2, d∞) (Example 2.4).

Exercise 1.5. Let X be a nonempty set and define

d(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≠ y,
0 otherwise.

Prove that (X,d) is a metric space. (The function d is called the discrete metric on X.)

Exercise 1.6. Let n ∈N, X = Fn
2 , and let d(x, y) be the number of indices i ∈ {1, . . . , n} such

that xi ≠ yi. Prove that (X,d) is a metric space. (The function d is called the Hamming
metric.)

Exercise 1.7. Let (X,d) be a metric space and define

d′(x, y) = d(x, y)
1 + d(x, y) .

Prove that (X,d′) is a metric space.
[Hint: Before tackling the triangle inequality, show that if a, b, c ∈R⩾0 satisfy c ⩽ a+ b, then

c
1+c ⩽ a

1+a + b
1+b .]

Exercise 1.8. Let (X,d) be a metric space. Fix x ∈X and let U =X ∖ {x}; prove that U is
an open set.

Exercise 1.9. Let (X,d) be a metric space. Prove that any closed ball in X is a closed set.
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1. Metric and topological spaces

Exercise 1.10. Let X = Q and fix a prime number p. We define a metric dp on X that,
in some sense, measures the distance between rational numbers from the point of view of
divisibility by p. The definition proceeds in several stages:

(a) Define the p-adic valuation vp ∶ ZÐ→ Z⩾0 ∪ {∞} by:

vp(n) = the largest power of p that divides n,

with the convention that vp(0) = ∞.
Show that vp(mn) = vp(m) + vp(n) for all m,n ∈ Z.

(b) Extend to the p-adic valuation vp ∶ QÐ→ Z ∪ {∞} by defining

vp (
m

n
) = vp(m) − vp(n).

Show that for all x, y ∈Q we have

vp(xy) = vp(x) + vp(y)

and
vp(x + y) ⩾min{vp(x), vp(y)},

with equality holding if vp(x) ≠ vp(y).

(c) Next define the p-adic absolute value ∣ ⋅ ∣p ∶ QÐ→Q⩾0 by:

∣x∣p = p−vp(x),

with the convention that ∣0∣p = p−∞ = 0.
Show that for all x, y ∈Q we have

∣xy∣p = ∣x∣p ∣y∣p

and
∣x + y∣p ⩽max{∣x∣p, ∣y∣p},

with equality if ∣x∣p ≠ ∣y∣p.

(d) Finally define the p-adic metric on Q by

dp(x, y) = ∣x − y∣p.

Show that (Q, dp) is indeed a metric space.

Exercise 1.11. Fix a prime p and consider the metric space (Q, dp) where dp is the p-adic
metric from Exercise 1.10.

(a) Let p = 3 and write down 4 elements of B1(2) and 4 elements of B1/9(3).

(b) Back to general prime p now: show that every triangle is isosceles. In other words, given
three points in Q, at least two of the three resulting (p-adic) distances are equal.

(c) Show that every point of an open ball is a centre. In other words, take an open ball
Br(c) with r ∈R⩾0 and c ∈Q and suppose x ∈ Br(c); prove that Br(c) = Br(x).

(d) Show that given any two open balls, either one of them is contained in the other, or
they are completely disjoint.

Exercise 1.12. Show that any p-adic open ball in Q is both an open set and a closed set.
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Topological spaces and continuous functions
Exercise 1.13. Show that the union of any finite collection of closed sets is closed. Show
that the intersection of any arbitrary collection of closed sets is closed.

Exercise 1.14. Let X be a topological space and U ⊆X a subset. Prove that U is open in
X if and only if: for all u ∈ U , there exists an open neighbourhood Vu of u such that Vu ⊆ U .

Exercise 1.15. Let X be a topological space. Prove that a subset U of X is open if and
only if it is a neighbourhood of every element of itself.

Exercise 1.16. Let X and Y be topological spaces, where the topology on Y is the trivial
topology. Prove that every function from X to Y is continuous.

Exercise 1.17.

(a) Let f ∶ X Ð→ Y be a function between two sets X and Y , and let S ⊆ Y . Prove that

f−1(S) =X ∖ f−1(Y ∖ S).

(b) Let f ∶ X Ð→ Y be a function between topological spaces. Prove that f is continuous
if and only if: for any closed subset C ⊆ Y , the inverse image f−1(C) ⊆ X is a closed
subset.

Exercise 1.18. Let f ∶ X Ð→ Y be a function between topological spaces. Given x ∈X, we
say that f is continuous at x if the inverse image f−1(N) of every neighbourhood N of f(x)
is a neighbourhood of x. Prove that f is continuous if and only if it is continuous at every
x ∈X.

Exercise 1.19. Prove Proposition 2.15:
Let X be a set and T1,T2 two topologies on X. The following statements are equivalent:

(a) T2 is coarser than T1 (that is, T2 ⊆ T1);

(b) for any x ∈ X and any T2-open neighbourhood U2
x of x, there exists a T1-open neigh-

bourhood U1
x of x such that U1

x ⊆ U2
x ;

(c) the function f ∶ (X,T1) Ð→ (X,T2) given by f(x) = x is continuous.

Exercise 1.20. Prove that every constant function between topological spaces is continuous.

Exercise 1.21. Let X be a topological space and let S be a subset of X. Prove that the
inclusion ι ∶ S Ð→X defined by ι(x) = x is continuous when S is given the subspace topology
induced from X.

TODO: The induced topology on S is the coarsest topology such that the inclusion
ι ∶ S Ð→X is continuous.

Conclude that the identity function idX ∶ X Ð→X is continuous.

Exercise 1.22. Let f ∶X Ð→ Y be a function between topological spaces. Suppose the
topology on Y is generated by a subset S of P(Y ). Prove that the function f is continuous if
and only if f−1(U) is open for every element U of S.

Exercise 1.23. This is a variation on Tutorial Question 2.7.
Let f ∶X Ð→ Y be a function and TY a topology on Y . Define

TX = {f−1(U) ∶ U ∈ TY }.
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1. Metric and topological spaces

(a) Prove that TX is the coarsest topology on X such that f is continuous. (This topology
is called the initial topology induced by f .)

(b) Let T be another topology on X. Prove that f ∶ (X,T ) Ð→ (Y,TY ) is continuous if and
only if T is finer than TX .

(c) Suppose TY is generated by a subset S of P(Y ). Prove that TX is generated by the set

{f−1(U) ∶ U ∈ S}.

Exercise 1.24. Let X be a topological space and let {y} be a one-point topological space.
Prove that X × {y} (with the product topology) is homeomorphic to X.

Exercise 1.25. A map f ∶ X Ð→ Y between topological spaces is said to be open if for every
open subset U ⊆X, the image f(U) ⊆ Y is an open subset.

(a) Show that an open continuous bijective map f ∶ X Ð→ Y is a homeomorphism.

(b) Suppose S generates the topology on X and let S′ denote the set of all finite intersections
of elements of S. Show that f is open if and only if f(U) ⊆ Y is an open subset for all
U ∈ S′.

(c) Show that the projection maps π1 ∶ X1 ×X2 Ð→ X1 and π2 ∶ X1 ×X2 Ð→ X2 are open
maps.

Exercise 1.26. Generalise Exercise 1.8 to the setting of Hausdorff topological spaces; in
other words, prove that if X is a Hausdorff topological space, then any singleton {x} ⊆X is a
closed set.

Interior and closure
Exercise 1.27. Give an example of a metric space X and an open ball Bε(x) such that

Bε(x) ≠Dε(x).

Exercise 1.28. Let X and Y be topological spaces and let A and B be subsets of X and Y
respectively.

(a) Suppose A and B are closed in X and Y respectively. Prove that if A and B are closed,
then A ×B is closed.

(b) Prove that A ×B = A ×B.

Exercise 1.29. Give explicit continuous surjective functions f ∶ RÐ→ I, where I is:
(a) R (b) (0,∞) (c) (−∞,0) (d) (−∞,0] (e) [−1,1]
(f) (0,1] (g) [0,1) (h) (−π/2, π/2) (i) {0}.

[Hint: Draw some functions you know from calculus and see what their ranges are.]

Exercise 1.30. Let A be a subset of a topological space X. Prove that

X ∖A○ =X ∖A.

Exercise 1.31. Prove that Z is a nowhere dense subset of R.
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Exercise 1.32. Let X be a topological space.

(a) Prove that any subset of a nowhere dense subset of X is nowhere dense in X.

(b) Prove that a subset N ⊆X is nowhere dense if and only if X ∖N is dense in X.

(c) Prove that the union of any finite collection of nowhere dense subsets of X is nowhere
dense in X.

Metric topologies
Exercise 1.33. Let f ∶X Ð→ Y be a function.

(a) Let TX be a topology on X and let TY be the final topology induced by f , see Tutorial
Question 2.7.

i. Give an example where TY is metrisable but TX is not.
ii. Give an example where TX is metrisable but TY is not.

(b) Let TY be a topology on Y and let TX be the initial topology induced by f , see Exer-
cise 1.23.

i. Give an example where TX is metrisable but TY is not.
ii. Give an example where TY is metrisable but TX is not.

[Hint: Consider using Tutorial Questions 2.1 and 2.3.]

Exercise 1.34. Show that any isometry f ∶ X Ð→ Y is continuous.
In particular, any bijective isometry is a homeomorphism.

Exercise 1.35. Let X be a set and let d1, d2 be two metrics on X.

(a) Suppose that there exist m,M ∈R>0 such that

(1.1) md1(x, y) ⩽ d2(x, y) ⩽M d1(x, y) for all x, y ∈X.

Show that d1 and d2 are equivalent.

(b) Prove that the converse of (a) does not hold.
In other words, find a set X and two equivalent metrics d1 and d2 with the property
that there do not exist positive real numbers m and M such that Equation (1.1) holds.

Exercise 1.36. Let X, Y be metric spaces. Show that for any z1, z2 ∈X × Y we have

1

2
d1(z1, z2) ⩽ d∞(z1, z2) ⩽ d1(z1, z2) ⩽ 2d∞(z1, z2).

Conclude that for any conserving metric d on X × Y , any z ∈X × Y and any ε > 0 we have

Bd∞
ε/2
(z) ⊆ Bd1

ε (z) ⊆ Bd
ε(z) ⊆ Bd∞

ε (z) ⊆ Bd1
2ε(z).

Exercise 1.37. Let Y be a subset of a metric space (X,d) and consider the induced metric
on Y .
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1. Metric and topological spaces

(a) Prove that for any y ∈ Y and any r ∈R⩾0 we have

BY
r (y) = BX

r (y) ∩ Y,

where BX
r (y) is the open ball of radius r centred at y in X, and BY

r (y) is the open ball
of radius r centred at y in Y .

(b) Let A ⊆ Y . Prove that A is an open set in Y if and only if there exists an open set U in
X such that A = U ∩ Y .

Exercise 1.38. If (X,dX) and (Y, dY ) are two metric spaces, a metric d on X × Y is said to
be conserving if

d∞((x1, y1), (x2, y2)) ⩽ d((x1, y1), (x2, y2)) ⩽ d1((x1, y1), (x2, y2))

for all (x1, y1), (x2, y2) ∈X × Y .
(For the definitions of d1 and d∞, see Examples 2.3 and 2.4.)
Prove that any conserving metric d defines the product topology on X × Y . (In particular,

all conserving metrics on X × Y are equivalent.)

Exercise 1.39. Let (X,d) be a metric space, where X is a finite set. Prove that d is
topologically equivalent to the discrete metric on X.

Connectedness
Exercise 1.40. Prove that a subset D of a topological space X is disconnected if and only if
there exist open subsets U,V ⊆X such that

D ⊆ U ∪ V, D ∩U ∩ V = ∅, D ∩U ≠ ∅, D ∩ V ≠ ∅.

Exercise 1.41. Prove that a discrete topological space X is connected if and only if X is a
singleton.

Exercise 1.42. Let X be a topological space. Suppose {Cn ∶ n ∈N} is a countable collection
of connected subsets of X such that Cn ∩Cn+1 ≠ ∅ for all n ∈N. Then

⋃
n∈N

Cn

is a connected subset of X.

Exercise 1.43. Prove that if a non-empty topological space X admits a connected dense
subset D, then X is itself connected.

Exercise 1.44. Let X be a topological space. Suppose A is a connected subset of X and
{Ci ∶ i ∈ I} is an arbitrary collection of connected subsets of X such that A ∩Ci ≠ ∅ for all
i ∈ I. Then

A ∪⋃
i∈I

Ci

is a connected subset of X.

Exercise 1.45. Let X and Y be non-empty topological spaces. Prove that X ×Y is connected
if and only if both X and Y are connected.
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Exercise 1.46. A topological space X is called totally separated if X has at least two
distinct elements, and for every two distinct points x, y in X there exist disjoint clopen
neighbourhoods U and V of x and y respectively. Prove that every totally separated space is
totally disconnected.

Exercise 1.47. Prove that the following are totally disconnected:

(a) Q equipped with the Euclidean topology;

(b) every discrete topological space with at least two distinct elements.

Compactness
Exercise 1.48. Let X be a topological space. We say that a collection of closed subsets of
X has the finite intersection property if every finite subcollection has nonempty intersection.

Prove that X is compact if and only if every collection of closed sets with the finite
intersection property has nonempty intersection.

Exercise 1.49. Let S1 = S1((0,0)) = {x, y ∈R ∶ x2 + y2 = 1} be the unit circle in R2.
Consider the function f ∶ [0,1) Ð→ S1 given by the parametrisation

f(t) = ( cos(2πt), sin(2πt)).

Endow [0,1) with the induced metric from R and S1 with the induced metric from R2.
Prove that f is a bijective continuous function, but not a homeomorphism.
(You may use without proof whatever properties of the functions sin and cos you manage

to remember from previous subjects.)

Exercise 1.50. Prove that no two of the following spaces are homeomorphic:

(a) the interval X = [−1,1] in R;

(b) the open unit disc Y in R2;

(c) the closed unit disc Z in R2.

Exercise 1.51. Are the following pairs of spaces homeomorphic or not?

(a) the unit circle in R2 and the unit interval [0,1] in R;

(b) the intervals [0,1] and (0,1) in R;

(c) the intervals [0,1] and [0,2] in R.

Exercise 1.52. Prove Proposition 2.36: A subset K of a topological space X is compact if
and only if, for any collection {Ui ∶ i ∈ I} of open subsets of X such that

K ⊆ ⋃
i∈I

Ui,

there exist n ∈N and i1, . . . , in ∈ I such that

K ⊆ Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .
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1. Metric and topological spaces

Sequences
Exercise 1.53. Let (X,d) be a metric spaces. Prove that

(xn) ∼ (yn) if (d(xn, yn)) Ð→ 0 as nÐ→∞

defines an equivalence relation on the set of sequences in X.

Exercise 1.54. Any sequence has at most one limit.

Exercise 1.55. Let N∗ =N ∪ {∞} and define

T = P(N) ∪ {U ∈ P(N∗) ∶ ∞ ∈ U and N∗ ∖U is finite}.

(a) Prove that T is a topology on N∗.

(b) Prove that (N∗,T ) is compact.

(c) Let X be a metric space and f ∶ (N∗,T ) Ð→X. Prove that f is continuous if and only
if (f(n)) converges to f(∞). (In other words, convergent sequences in X are exactly
continuous functions from (N∗,T ) to X.)

(d) Let X be a metric space and let (xn) be a sequence in X that converges to a point x in
X. Prove that {x} ∪ {xn ∶ n ∈N} is compact.

Exercise 1.56. Let (X,d) be a metric space and (xn), (yn) Cauchy sequences in X. Prove
that (d(xn, yn)) is a Cauchy sequence in R.

Exercise 1.57. Let (X,d) be a metric space and let (xn) ∼ (yn). Prove that (xn) is Cauchy
if and only if (yn) is Cauchy.

Uniform continuity and completeness
Exercise 1.58. We temporarily say a topological space X has property H if the following
holds:

H: for any topological space Y and any continuous functions f, g ∶ Y Ð→X such that
f and g agree on some dense subset D of Y , we have f = g.

(a) Let f, g ∶ Y Ð→ X be continuous functions between topological spaces. Suppose that
X has property H and that f and g agree on some subset S of Y . Prove that f and g
agree on the closure S of S in Y .

(b) Prove that every Hausdorff topological space has property H.

(c) Prove that every topological space with property H is Hausdorff.

(d) Prove that if X is Hausdorff then any continuous function f ∶ D Ð→X has at most one
continuous extension f̃ ∶ Y Ð→X.

Exercise 1.59. Let S be a subset of a metric space (X,dX) and let dS be the induced metric
on S.

(a) Prove that the inclusion function ιS ∶ S Ð→X is uniformly continuous.
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(b) Prove that a function f ∶ (Y, dY ) Ð→ (S, dS) is uniformly continuous if and only if ιS ○ f
is uniformly continuous.

Exercise 1.60. Let (X,dX), (Y, dY ), and (Z,dZ) be metric spaces and let d be a metric on
Y ×Z such that

max{dY (y1, y2), dZ(z1, z2)} ⩽ d((y1, z1), (y2, z2)) ⩽ dY (y1, y2) + dZ(z1, z2)

for every pair of points (y1, z1) and (y2, z2) in Y ×Z.

(a) Prove that the projections πY ∶ Y × Z Ð→ Y and πZ ∶ Y × Z Ð→ Z are uniformly
continuous.

(b) Prove that a function f ∶ X Ð→ Y ×Z is uniformly continuous if and only if both πY ○ f
and πZ ○ f are.

Exercise 1.61. Suppose f ∶ X Ð→ Y is a uniform homeomorphism between metric spaces;
that is, a homeomorphism such that both f and its inverse are uniformly continuous.

(a) Prove that a sequence (xn) is Cauchy in X if and only if (f(xn)) is Cauchy in Y .

(b) Prove that X is complete if and only if Y is complete.

(c) Prove that f ∶ RÐ→ (−π/2, π/2) given by f(x) = arctan(x) is uniformly continuous and
a homeomorphism, but it is not a uniform homeomorphism.

(d) Do you feel strongly that uniformly continuous functions ought to preserve completeness?
(After all, they preserve Cauchy sequences, and completeness is defined in terms of
Cauchy sequences.)
Prove that the function f defined in part (c) does not preserve completeness though it
is uniformly continuous and a homeomorphism.

Exercise 1.62. Give Q ⊆ R the induced metric and consider the sequence (xn) defined
recursively by

x1 = 1, xn+1 =
xn

2
+ 1

xn

for n ∈N.

(a) Prove that 1 ⩽ xn ⩽ 2 for all n ∈ N and breathe a sigh of relief that the recursive
definition does not accidentally divide by 0.

(b) For n ∈N, let yn = xn+1 − xn. Prove that

yn+1 = −
y2n

2xn+1

for all n ∈N.

(c) Prove that
∣yn∣ ⩽

1

2n
for all n ∈N.

(d) Show that (xn) is Cauchy.

(e) Show that (xn) converges to
√
2 in R, and conclude that Q is not complete.

Exercise 1.63. Let (X,dX) and (Y, dY ) be metric spaces and let d be the sup norm metric
on X × Y .
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1. Metric and topological spaces

(a) Prove that the sequence ((xn, yn)) is Cauchy in X × Y if and only if (xn) is Cauchy in
X and (yn) is Cauchy in Y .

(b) Prove that if X and Y are complete then X × Y is complete. Is the converse true?

Exercise 1.64. Let (X,d) be a metric space.

(a) Fix an arbitrary element y ∈ X and consider the function f ∶ X Ð→ R given by
f(x) = d(x, y). Prove that f is uniformly continuous.

(b) Prove that d ∶ X ×X Ð→R is uniformly continuous with respect to the sup metric D
on X ×X.

Exercise 1.65. In the context of the proof of Theorem 2.55, show that if (xn) ∼ (x′n) and
(yn) ∼ (y′n), then

lim
nÐ→∞

d(x′n, y′n) = lim
nÐ→∞

d(xn, yn).

Exercise 1.66. Let X = R>0, Y = R, f ∶ X Ð→ Y given by f(x) = 1
x . For X̂ = R⩾0 and

Ŷ = Y =R, prove that there is no continuous function f̂ ∶ X̂ Ð→ Ŷ such that f̂ ∣X= f .
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A. Appendix: Prerequisites

Equivalence relations
Exercise A.1. Let A, B be sets and f ∶ A Ð→ B a function. For x, y ∈ A, define x ∼ y if
f(x) = f(y). Show that this satisfies the properties of an equivalence relation on A.

Exercise A.2. Let ∼ be an equivalence relation on a set A and let π ∶ A Ð→ A/ ∼ be the
quotient map.

Under what circumstances (if any) is π a bijection?

Exercise A.3. Let A =N ×N and define (a, b) ∼ (c, d) if a + d = b + c.

(a) Show that this satisfies the conditions of an equivalence relation on A.

(b) Construct a bijective function (A/∼) Ð→ Z.

(Don’t forget to prove that your function is well-defined, and that it is bijective.)

Exercise A.4. Let V be a vector space. An endomorphism (aka linear transformation from
V to itself) n ∶ V Ð→ V is nilpotent if there exists k ∈ Z⩾1 such that nk is the constant zero
map V Ð→ V .

An endomorphism u ∶ V Ð→ V is unipotent if u − idV is nilpotent.
Now fix p prime, and let V be the vector space over Fp consisting of set maps N Ð→ Fp.

Given two endomorphisms f, g ∶ V Ð→ V , write f ∼ g if there exists a unipotent endomorphism
u such that f = u ○ g.

(a) Prove that ∼ is reflexive.

(b) Prove that ∼ is symmetric.

(c) Give an example to show that ∼ is not transitive, and thus not an equivalence relation.

Exercise A.5. Let V be a vector space over F, and let W ⊆ V be a subspace. For v, v′ ∈ V ,
write v ∼ v′ if v − v′ ∈W .

(a) Prove that ∼ is an equivalence relation.

(b) Prove that the operations [v] + [v′] ∶= [v + v′] and λ[v] ∶= [λv] are well-defined. This
proves that V /∼ has the structure of a vector space over F. We call V /∼ a quotient
space, and write it as V /W .

(c) Let U be a vector space and f ∶ V Ð→ U a linear transformation such that f(w) = 0 for
all w ∈W . Prove there exists a unique linear transformation g ∶ V /W Ð→ U such that
f = g ○ π, where π ∶ V Ð→ V /W is the quotient map.
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A. Appendix: Prerequisites

(Un)countability
Exercise A.6. Fix a set Ω and let X be the set of all subsets of Ω. For any S,T ∈X, write
S ∼ T if S has the same cardinality as T .

Show that ∼ is an equivalence relation on X.

Exercise A.7. Let f ∶ X Ð→ Y be a function, with X a countable set. Then im(f) is finite
or countable.

[Hint: Reduce to the case f ∶ NÐ→ Y is surjective; construct a right inverse g ∶ Y Ð→N,
which has to be injective, of f .]

Exercise A.8. Show that the union S of any countable collection of countable sets is a
countable set.

[Hint: Construct a surjective function N ×NÐ→ S.]

Exercise A.9. Let W be a Q-vector space with a countable basis B. Show that W is a
countable set.

[Hint: Use Exercise A.8.]
Conclude that R does not have a countable basis as a vector space over Q.

Linear algebra
Exercise A.10. Let V be a vector space over F. Prove that End(V ) ∶= Hom(V,V ) is an
associative unital F-algebra under composition of functions.

Exercise A.11. Let V,W be vector spaces over F and let B be a basis of V . Suppose
g ∶ B Ð→W is a function, and let f ∶ V Ð→W be its extension to V by linearity.

Prove that

(a) f is injective if and only if g(B) is linearly independent in W ;

(b) f is surjective if and only if g(B) spans W ;

(c) f is bijective if and only if g(B) is a basis for W .

Exercise A.12. If S and T are subspaces of a vector space V with field of scalars F, then so
are S + T and αS for any α ∈ F.

Exercise A.13. A complex quadratic form with real coefficients is a map f ∶ Cn Ð→C given
by

f(x) = ∑
1⩽i,j⩽n

aijxixj, aij ∈R.

Use the Spectral Theorem for Cn to prove that there exist linear maps g1, . . . , gn ∶ Cn Ð→C
and constants b1, . . . , bn ∈R such that

f(g1(x), . . . , gn(x)) = b1g1(x)2 + ⋅ ⋅ ⋅ + bngn(x)2.

Uniform continuity and uniform convergence
Exercise A.14. Let f1, f2, . . . be a sequence of continuous functions RÐ→R that are not
uniformly continuous, and that converge pointwise to f ∶ RÐ→R.

(a) Give an example to show that f can be uniformly continuous.

18
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(b) If the convergence fn Ð→ f is uniform, prove that f cannot be uniformly continuous.

Exercise A.15. Let f1, f2, . . . be a sequence of continuous functions RÐ→R that converges
pointwise to f ∶ RÐ→R.

(a) Give an example to show that f need not be continuous. TODO: this is somewhere in
the notes or exercises or tutorials, we should find it and just refer to it.

(b) Suppose that fn Ð→ f uniformly and that every fn is uniformly continuous. Prove that
f is uniformly continuous.
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B. Appendix: Miscellaneous

Zorn’s Lemma
Exercise B.1. Fix a set Ω and let X be the set of all subsets of Ω. Check that ⊆ is a partial
order on X. It is not a total order if Ω has at least two distinct elements.

Exercise B.2. Let (X,⩽) be a nonempty finite poset. (This just means that X is a nonempty
finite set with a partial order ⩽.) Prove that X has a maximal element.

[Hint: You could, for instance, use induction on the number of elements of X.]

Exercise B.3. Prove Theorem 1.2: any vector space V has a basis.
[Hint: Let X be the set of all linearly independent subsets of V , partially ordered by

inclusion. Prove that X has a maximal element B, and prove that this must also span V .]

Exercise B.4. Let f ∶ X Ð→ Y be a surjective map of sets. Let

P (f) = {(sA,A) ∶ A ⊆ Y, sA ∶ AÐ→X, f ○ sA = idA}.

Write (A, sA) ⩽ (B,sB) if and only if A ⊆ B and sB ∣A = sA.

(a) Prove that (P (f),⩽) is a poset.

(b) Prove every nonempty chain in P (f) has an upper bound in P (f).

(c) Deduce that there exists a map s ∶ Y Ð→X such that f ○ s = idY .

Linear algebra
Exercise B.5. Let RN be the set of arbitrary sequences (x1, x2, . . . ) of elements of R.

This is a vector space under the naturally-defined addition of sequences and multiplication
by a scalar.

Let ej ∈RN be the sequence whose j-th entry is 1, and all the others are 0. Describe the
subspace Span{e1, e2, . . .} of RN. Is the set {e1, e2, . . .} a basis of RN?

Exercise B.6. Let V =R viewed as a vector space over Q.
Let α ∈R. Show that the set T = {αn ∶ n ∈N} is Q-linearly independent if and only if α is

transcendental.
(Note: An element α ∈ R is called algebraic if there exists a monic polynomial f ∈ Q[x]

such that f(α) = 0. An element α ∈R is called transcendental if it is not algebraic.)

Exercise B.7. Let V = F[x] be the vector space of polynomials in one variable with coefficients
in F. Given a scalar α ∈ F, consider the function evα ∶ V Ð→ F given by evaluation at α:

evα(f) = f(α).

Prove that evα ∈ V ∨.
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B. Appendix: Miscellaneous

Exercise B.8. TODO: this really does not need W = V , should just do the general case with
bases B for V and C for W , and dual bases B∨ and C∨.

In the setup of Proposition B.4, suppose W = V so that T ∶ V Ð→ V and T ∨ ∶ V ∨ Ð→ V ∨.
Let M be the matrix representation of T with respect to an ordered basis B of V , and let

M∨ be the matrix representation of T ∨ with respect to the dual basis B∨.
Express M∨ in terms of M .

Exercise B.9. Let v1, . . . , vn ∈ V . Define Γ ∶ V ∨ Ð→ Fn by

Γ(ϕ) =
⎡⎢⎢⎢⎢⎢⎣

ϕ(v1)
⋮

ϕ(vn)

⎤⎥⎥⎥⎥⎥⎦
.

(a) Prove that Γ is a linear transformation.

(b) Prove that Γ is injective if and only if {v1, . . . , vn} spans V .

(c) Prove that Γ is surjective if and only if {v1, . . . , vn} is linearly independent.

Exercise B.10. Let T ∶ V Ð→W be a linear transformation of finite-dimensional vector spaces
over F, and let T ∨ ∶ W ∨ Ð→ V ∨ be the dual transformation as defined in Proposition B.4.

(a) Prove that if T is surjective, then T ∨ is injective.

(b) Prove that if T is injective, then T ∨ is surjective.

(c) Give an example to show that (b) does not always hold if we relax the condition that V
and W are finite-dimensional.

Topological groups
Exercise B.11.

(a) Show that a topological group G is Hausdorff if and only if {e} is a closed subset of G.

(b) Show that if G is a Hausdorff topological group then its centre Z is a closed subgroup.

(c) Show that if f ∶ G Ð→ H is a continuous group homomorphism and H is Hausdorff,
then ker(f) is a closed normal subgroup of G.

Exercise B.12. Let f ∶ G Ð→ H be a group homomorphism between topological groups.
Prove that the following are equivalent:

(a) f is continuous;

(b) f is continuous at some element of G;

(c) f is continuous at the identity element eG of G.

Exercise B.13.

(a) Let V be a Q-vector space. Prove that every group homomorphism f ∶ Q Ð→ V is
Q-linear.

(b) What can you say (and prove) about continuous group homomorphisms RÐ→R?
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(c) Suppose that a group homomorphism f ∶ RÐ→R is continuous at some real number.
Prove that f is continuous on R, and conclude that f is R-linear.

(d) Let B be a basis for R as a Q-vector space. (Recall from Exercise B.6 that B is uncount-
able.) Use two distinct irrational elements of B to construct a Q-linear transformation
f ∶ RÐ→R that is not R-linear.

If you would (and why wouldn’t you?), follow the rabbit:

https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation

Exercise B.14. Let G be a topological group and let H be a subgroup of G.

(a) Prove that H is closed if it is open. Does the converse hold?

(b) Prove that H is open if it is closed and has finite index. Does the converse hold?

(c) Suppose G is compact and H is open. Prove that H has finite index.

(d) Is the compactness of G necessary in part (c)?

Exercise B.15. Let S and T be subsets of a topological group G. Define

ST = {st ∶ s ∈ S and t ∈ T}.

(a) Suppose S and T are open. Prove that ST is open.

(b) Suppose S and T are connected. Prove that ST is connected.

(c) Suppose S and T are compact. Prove that ST is compact.

(d) Suppose S is compact and T is closed. Prove that ST is closed.
[Hint: Use Theorem 2.41 after checking that

ST = π2(j−1(m−1(T ))),

where m ∶ G ×GÐ→ G is the multiplication map of G, j is the inclusion of S−1 ×G into
G ×G, and π2 ∶ S−1 ×GÐ→ G is the projection onto the second factor. ]

(e) Assuming without proof the fact that Z + πZ is dense in R, convince yourself that ST
need not be closed even if both S and T are.
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