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1. Metric and topological spaces

Metrics
Exercise 1.1. Let (X,d) be a metric space. Show that

∣d(x, y) − d(t, y)∣ ⩽ d(x, t)

for all x, y, t ∈X.

Exercise 1.2. Let (X,d) be a metric space. Show that

∣d(x, y) − d(s, t)∣ ⩽ d(x, s) + d(y, t)

for all x, s, y, t ∈X.

Exercise 1.3. Let n ∈ N, X = Rn with the dot product ⋅, ∥x∥ = √x ⋅ x for x ∈ X, and
d(x, y) = ∥x − y∥ for x, y ∈ X. Then (X,d) is a metric space. (The function d is called the
Euclidean metric or `2 metric on Rn.)

[Hint: The Cauchy–Schwarz inequality can be useful for checking the triangle inequality.]

Exercise 1.4. Draw the unit open balls in the metric spaces (R2, d1) (Example 2.3), (R2, d2)
(Exercise 1.3), and (R2, d∞) (Example 2.4).

Exercise 1.5. Let X be a nonempty set and define

d(x, y) =
⎧⎪⎪⎨⎪⎪⎩

1 if x ≠ y,
0 otherwise.

Prove that (X,d) is a metric space. (The function d is called the discrete metric on X.)

Exercise 1.6. Let n ∈N, X = Fn
2 , and let d(x, y) be the number of indices i ∈ {1, . . . , n} such

that xi ≠ yi. Prove that (X,d) is a metric space. (The function d is called the Hamming
metric.)

Exercise 1.7. Let (X,d) be a metric space and define

d′(x, y) = d(x, y)
1 + d(x, y) .

Prove that (X,d′) is a metric space.
[Hint: Before tackling the triangle inequality, show that if a, b, c ∈R⩾0 satisfy c ⩽ a+ b, then

c
1+c ⩽ a

1+a + b
1+b .]

Exercise 1.8. Let (X,d) be a metric space. Fix x ∈X and let U =X ∖ {x}; prove that U is
an open set.

Exercise 1.9. Let (X,d) be a metric space. Prove that any closed ball in X is a closed set.
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1. Metric and topological spaces

Exercise 1.10. (*) Let X =Q and fix a prime number p. We define a metric dp on X that,
in some sense, measures the distance between rational numbers from the point of view of
divisibility by p. The definition proceeds in several stages:

(a) Define the p-adic valuation vp ∶ ZÐ→ Z⩾0 ∪ {∞} by:

vp(n) = the largest power of p that divides n,

with the convention that vp(0) = ∞.
Show that vp(mn) = vp(m) + vp(n) for all m,n ∈ Z.

(b) Extend to the p-adic valuation vp ∶ QÐ→ Z ∪ {∞} by defining

vp (
m

n
) = vp(m) − vp(n).

Show that for all x, y ∈Q we have

vp(xy) = vp(x) + vp(y)

and
vp(x + y) ⩾min{vp(x), vp(y)},

with equality holding if vp(x) ≠ vp(y).

(c) Next define the p-adic absolute value ∣ ⋅ ∣p ∶ QÐ→Q⩾0 by:

∣x∣p = p−vp(x),

with the convention that ∣0∣p = p−∞ = 0.
Show that for all x, y ∈Q we have

∣xy∣p = ∣x∣p ∣y∣p

and
∣x + y∣p ⩽max{∣x∣p, ∣y∣p},

with equality if ∣x∣p ≠ ∣y∣p.

(d) Finally define the p-adic metric on Q by

dp(x, y) = ∣x − y∣p.

Show that (Q, dp) is indeed a metric space.

Exercise 1.11. (*) Fix a prime p and consider the metric space (Q, dp) where dp is the p-adic
metric from Exercise 1.10.

(a) Let p = 3 and write down 4 elements of B1(2) and 4 elements of B1/9(3).

(b) Back to general prime p now: show that every triangle is isosceles. In other words, given
three points in Q, at least two of the three resulting (p-adic) distances are equal.

(c) Show that every point of an open ball is a centre. In other words, take an open ball
Br(c) with r ∈R⩾0 and c ∈Q and suppose x ∈ Br(c); prove that Br(c) = Br(x).

(d) Show that given any two open balls, either one of them is contained in the other, or
they are completely disjoint.

Exercise 1.12. (*) Show that any p-adic open ball in Q is both an open set and a closed set.

6



MAST30026 MHS

Topological spaces and continuous functions
Exercise 1.13. Show that the union of any finite collection of closed sets is closed. Show
that the intersection of any arbitrary collection of closed sets is closed.

Exercise 1.14. Let X be a topological space and U ⊆X a subset. Prove that U is open in
X if and only if: for all u ∈ U , there exists an open neighbourhood Vu of u such that Vu ⊆ U .

Exercise 1.15. Let X be a topological space. Prove that a subset U of X is open if and
only if it is a neighbourhood of every element of itself.

Exercise 1.16. Let X and Y be topological spaces, where the topology on Y is the trivial
topology. Prove that every function from X to Y is continuous.

Exercise 1.17.

(a) Let f ∶ X Ð→ Y be a function between two sets X and Y , and let S ⊆ Y . Prove that

f−1(S) =X ∖ f−1(Y ∖ S).

(b) Let f ∶ X Ð→ Y be a function between topological spaces. Prove that f is continuous
if and only if: for any closed subset C ⊆ Y , the inverse image f−1(C) ⊆ X is a closed
subset.

Exercise 1.18. Let f ∶ X Ð→ Y be a function between topological spaces. Given x ∈X, we
say that f is continuous at x if the inverse image f−1(N) of every neighbourhood N of f(x)
is a neighbourhood of x. Prove that f is continuous if and only if it is continuous at every
x ∈X.

Exercise 1.19. Prove Proposition 2.15:
Let X be a set and T1,T2 two topologies on X. The following statements are equivalent:

(a) T2 is coarser than T1 (that is, T2 ⊆ T1);

(b) for any x ∈ X and any T2-open neighbourhood U2
x of x, there exists a T1-open neigh-

bourhood U1
x of x such that U1

x ⊆ U2
x ;

(c) the function f ∶ (X,T1) Ð→ (X,T2) given by f(x) = x is continuous.

Exercise 1.20. Prove that every constant function between topological spaces is continuous.

Exercise 1.21. Let X be a topological space and let S be a subset of X. Prove that the
inclusion ι ∶ S Ð→X defined by ι(x) = x is continuous when S is given the subspace topology
induced from X.

TODO: The induced topology on S is the coarsest topology such that the inclusion
ι ∶ S Ð→X is continuous.

Conclude that the identity function idX ∶ X Ð→X is continuous.

Exercise 1.22. Let f ∶X Ð→ Y be a function between topological spaces. Suppose the
topology on Y is generated by a subset S of P(Y ). Prove that the function f is continuous if
and only if f−1(U) is open for every element U of S.

Exercise 1.23. This is a variation on Tutorial Question 2.7.
Let f ∶X Ð→ Y be a function and TY a topology on Y . Define

TX = {f−1(U) ∶ U ∈ TY }.
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1. Metric and topological spaces

(a) Prove that TX is the coarsest topology on X such that f is continuous. (This topology
is called the initial topology induced by f .)

(b) Let T be another topology on X. Prove that f ∶ (X,T ) Ð→ (Y,TY ) is continuous if and
only if T is finer than TX .

(c) Suppose TY is generated by a subset S of P(Y ). Prove that TX is generated by the set

{f−1(U) ∶ U ∈ S}.

Exercise 1.24. Let X be a topological space and let {y} be a one-point topological space.
Prove that X × {y} (with the product topology) is homeomorphic to X.

Exercise 1.25. A map f ∶ X Ð→ Y between topological spaces is said to be open if for every
open subset U ⊆X, the image f(U) ⊆ Y is an open subset.

(a) Show that an open continuous bijective map f ∶ X Ð→ Y is a homeomorphism.

(b) Suppose S generates the topology on X and let S′ denote the set of all finite intersections
of elements of S. Show that f is open if and only if f(U) ⊆ Y is an open subset for all
U ∈ S′.

(c) Show that the projection maps π1 ∶ X1 ×X2 Ð→ X1 and π2 ∶ X1 ×X2 Ð→ X2 are open
maps.

Exercise 1.26. Generalise Exercise 1.8 to the setting of Hausdorff topological spaces; in
other words, prove that if X is a Hausdorff topological space, then any singleton {x} ⊆X is a
closed set.

Interior and closure
Exercise 1.27. Give an example of a metric space X and an open ball Bε(x) such that

Bε(x) ≠Dε(x).

Exercise 1.28. Let X and Y be topological spaces and let A and B be subsets of X and Y
respectively.

(a) Suppose A and B are closed in X and Y respectively. Prove that if A and B are closed,
then A ×B is closed.

(b) Prove that A ×B = A ×B.

(c) Conclude that if A is dense in X and B is dense in Y then A ×B is dense in X × Y .

Exercise 1.29. (*) Give explicit continuous surjective functions f ∶ RÐ→ I, where I is:
(a) R (b) (0,∞) (c) (−∞,0) (d) (−∞,0] (e) [−1,1]
(f) (0,1] (g) [0,1) (h) (−π/2, π/2) (i) {0}.

[Hint: Draw some functions you know from calculus and see what their ranges are.]

Exercise 1.30. Let A be a subset of a topological space X. Prove that

X ∖A○ =X ∖A.
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Exercise 1.31. (*) Prove that Z is a nowhere dense subset of R.

Exercise 1.32. (*) Let X be a topological space.

(a) Prove that any subset of a nowhere dense subset of X is nowhere dense in X.

(b) Prove that a subset N ⊆X is nowhere dense if and only if X ∖N is dense in X.

(c) Prove that the union of any finite collection of nowhere dense subsets of X is nowhere
dense in X.

Metric topologies
Exercise 1.33. Let f ∶ X Ð→ Y be a function.

(a) Let TX be a topology on X and let TY be the final topology induced by f , see Tutorial
Question 2.7.

i. Give an example where TY is metrisable but TX is not.
ii. Give an example where TX is metrisable but TY is not.

(b) Let TY be a topology on Y and let TX be the initial topology induced by f , see Exer-
cise 1.23.

i. Give an example where TX is metrisable but TY is not.
ii. Give an example where TY is metrisable but TX is not.

[Hint: Consider using Tutorial Questions 2.1 and 2.3.]

Exercise 1.34. Show that any isometry f ∶ X Ð→ Y is continuous.
In particular, any bijective isometry is a homeomorphism.

Exercise 1.35. Let X be a set and let d1, d2 be two metrics on X.

(a) Suppose that there exist m,M ∈R>0 such that

(1.1) md1(x, y) ⩽ d2(x, y) ⩽M d1(x, y) for all x, y ∈X.

Show that d1 and d2 are equivalent.

(b) Prove that the converse of (a) does not hold.
In other words, find a set X and two equivalent metrics d1 and d2 with the property
that there do not exist positive real numbers m and M such that Equation (1.1) holds.

Exercise 1.36. If (X,dX) and (Y, dY ) are two metric spaces, a metric d on X × Y is said to
be conserving if

d∞((x1, y1), (x2, y2)) ⩽ d((x1, y1), (x2, y2)) ⩽ d1((x1, y1), (x2, y2))

for all (x1, y1), (x2, y2) ∈X × Y .
(For the definitions of d1 and d∞, see Examples 2.3 and 2.4.)
Prove that any conserving metric d defines the product topology on X × Y . (In particular,

all conserving metrics on X × Y are equivalent.)
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1. Metric and topological spaces

Exercise 1.37. Let X, Y be metric spaces. Show that for any z1, z2 ∈X × Y we have

1

2
d1(z1, z2) ⩽ d∞(z1, z2) ⩽ d1(z1, z2) ⩽ 2d∞(z1, z2).

Conclude that for any conserving metric d on X × Y , any z ∈X × Y and any ε > 0 we have

Bd∞
ε/2
(z) ⊆ Bd1

ε (z) ⊆ Bd
ε(z) ⊆ Bd∞

ε (z) ⊆ Bd1
2ε(z).

Exercise 1.38. Let Y be a subset of a metric space (X,d) and consider the induced metric
on Y .

(a) Prove that for any y ∈ Y and any r ∈R⩾0 we have

BY
r (y) = BX

r (y) ∩ Y,

where BX
r (y) is the open ball of radius r centred at y in X, and BY

r (y) is the open ball
of radius r centred at y in Y .

(b) Let A ⊆ Y . Prove that A is an open set in Y if and only if there exists an open set U in
X such that A = U ∩ Y .

Exercise 1.39. Let (X,d) be a metric space, where X is a finite set. Prove that d is
topologically equivalent to the discrete metric on X.

Connectedness
Exercise 1.40. Prove that a subset D of a topological space X is disconnected if and only if
there exist open subsets U,V ⊆X such that

D ⊆ U ∪ V, D ∩U ∩ V = ∅, D ∩U ≠ ∅, D ∩ V ≠ ∅.

Exercise 1.41. Prove that a discrete topological space X is connected if and only if X is a
singleton.

Exercise 1.42. Let X be a topological space. Suppose {Cn ∶ n ∈N} is a countable collection
of connected subsets of X such that Cn ∩Cn+1 ≠ ∅ for all n ∈N. Then

⋃
n∈N

Cn

is a connected subset of X.

Exercise 1.43. Prove that if a non-empty topological space X admits a connected dense
subset D, then X is itself connected.

Exercise 1.44. Let X be a topological space. Suppose A is a connected subset of X and
{Ci ∶ i ∈ I} is an arbitrary collection of connected subsets of X such that A ∩Ci ≠ ∅ for all
i ∈ I. Then

A ∪⋃
i∈I

Ci

is a connected subset of X.

Exercise 1.45. Let X and Y be non-empty topological spaces. Prove that X ×Y is connected
if and only if both X and Y are connected.
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Exercise 1.46. (*) A topological space X is called totally separated if X has at least two
distinct elements, and for every two distinct points x, y in X there exist disjoint clopen
neighbourhoods U and V of x and y respectively. Prove that every totally separated space is
totally disconnected.

Exercise 1.47. (*) Prove that the following are totally disconnected:

(a) Q equipped with the Euclidean topology;

(b) every discrete topological space with at least two distinct elements.

Compactness
Exercise 1.48. Let X be a topological space. We say that a collection of closed subsets of
X has the finite intersection property if every finite subcollection has nonempty intersection.

Prove that X is compact if and only if every collection of closed sets with the finite
intersection property has nonempty intersection.

Exercise 1.49. Let S1 = S1((0,0)) = {x, y ∈R ∶ x2 + y2 = 1} be the unit circle in R2.
Consider the function f ∶ [0,1) Ð→ S1 given by the parametrisation

f(t) = ( cos(2πt), sin(2πt)).

Endow [0,1) with the induced metric from R and S1 with the induced metric from R2.
Prove that f is a bijective continuous function, but not a homeomorphism.
(You may use without proof whatever properties of the functions sin and cos you manage

to remember from previous subjects.)

Exercise 1.50. Prove that no two of the following spaces are homeomorphic:

(a) the interval X = [−1,1] in R;

(b) the open unit disc Y in R2;

(c) the closed unit disc Z in R2.

Exercise 1.51. Are the following pairs of spaces homeomorphic or not?

(a) the unit circle in R2 and the unit interval [0,1] in R;

(b) the intervals [0,1] and (0,1) in R;

(c) the intervals [0,1] and [0,2] in R.

Exercise 1.52. Prove Proposition 2.36: A subset K of a topological space X is compact if
and only if, for any collection {Ui ∶ i ∈ I} of open subsets of X such that

K ⊆ ⋃
i∈I

Ui,

there exist n ∈N and i1, . . . , in ∈ I such that

K ⊆ Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .
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1. Metric and topological spaces

Sequences
Exercise 1.53. Let (X,d) be a metric spaces. Prove that

(xn) ∼ (yn) if (d(xn, yn)) Ð→ 0 as nÐ→∞

defines an equivalence relation on the set of sequences in X.

Exercise 1.54. Any sequence has at most one limit.

Exercise 1.55. (*) Let N∗ =N ∪ {∞} and define

T = P(N) ∪ {U ∈ P(N∗) ∶ ∞ ∈ U and N∗ ∖U is finite}.

(a) Prove that T is a topology on N∗.

(b) Prove that (N∗,T ) is compact.

(c) Let X be a metric space and f ∶ (N∗,T ) Ð→X. Prove that f is continuous if and only
if (f(n)) converges to f(∞). (In other words, convergent sequences in X are exactly
continuous functions from (N∗,T ) to X.)

(d) Let X be a metric space and let (xn) be a sequence in X that converges to a point x in
X. Prove that {x} ∪ {xn ∶ n ∈N} is compact.

Exercise 1.56. Let (X,d) be a metric space and (xn), (yn) Cauchy sequences in X. Prove
that (d(xn, yn)) is a Cauchy sequence in R.

Exercise 1.57. Let (X,d) be a metric space and let (xn) ∼ (yn). Prove that (xn) is Cauchy
if and only if (yn) is Cauchy.

Uniform continuity and completeness
Exercise 1.58. We temporarily say a topological space X has property H if the following
holds:

H: for any topological space Y and any continuous functions f, g ∶ Y Ð→X such that
f and g agree on some dense subset D of Y , we have f = g.

(a) Let f, g ∶ Y Ð→ X be continuous functions between topological spaces. Suppose that
X has property H and that f and g agree on some subset S of Y . Prove that f and g
agree on the closure S of S in Y .

(b) Prove that every Hausdorff topological space has property H.

(c) Prove that every topological space with property H is Hausdorff.

(d) Prove that if X is Hausdorff then any continuous function f ∶ D Ð→X has at most one
continuous extension f̃ ∶ Y Ð→X.

Exercise 1.59. Let S be a subset of a metric space (X,dX) and let dS be the induced metric
on S.

(a) Prove that the inclusion function ιS ∶ S Ð→X is uniformly continuous.

12
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(b) Prove that a function f ∶ (Y, dY ) Ð→ (S, dS) is uniformly continuous if and only if ιS ○ f
is uniformly continuous.

Exercise 1.60. Let (X,dX), (Y, dY ), and (Z,dZ) be metric spaces and let d be a metric on
Y ×Z such that

max{dY (y1, y2), dZ(z1, z2)} ⩽ d((y1, z1), (y2, z2)) ⩽ dY (y1, y2) + dZ(z1, z2)

for every pair of points (y1, z1) and (y2, z2) in Y ×Z.

(a) Prove that the projections πY ∶ Y × Z Ð→ Y and πZ ∶ Y × Z Ð→ Z are uniformly
continuous.

(b) Prove that a function f ∶ X Ð→ Y ×Z is uniformly continuous if and only if both πY ○ f
and πZ ○ f are.

Exercise 1.61. Suppose f ∶ X Ð→ Y is a uniform homeomorphism between metric spaces;
that is, a homeomorphism such that both f and its inverse are uniformly continuous.

(a) Prove that a sequence (xn) is Cauchy in X if and only if (f(xn)) is Cauchy in Y .

(b) Prove that X is complete if and only if Y is complete.

(c) Prove that f ∶ RÐ→ (−π/2, π/2) given by f(x) = arctan(x) is uniformly continuous and
a homeomorphism, but it is not a uniform homeomorphism.

(d) Do you feel strongly that uniformly continuous functions ought to preserve completeness?
(After all, they preserve Cauchy sequences, and completeness is defined in terms of
Cauchy sequences.)
Prove that the function f defined in part (c) does not preserve completeness though it
is uniformly continuous and a homeomorphism.

Exercise 1.62. Give Q ⊆ R the induced metric and consider the sequence (xn) defined
recursively by

x1 = 1, xn+1 =
xn
2
+ 1

xn
for n ∈N.

(a) Prove that 1 ⩽ xn ⩽ 2 for all n ∈ N and breathe a sigh of relief that the recursive
definition does not accidentally divide by 0.

(b) For n ∈N, let yn = xn+1 − xn. Prove that

yn+1 = −
y2n

2xn+1
for all n ∈N.

(c) Prove that
∣yn∣ ⩽

1

2n
for all n ∈N.

(d) Show that (xn) is Cauchy.

(e) Show that (xn) converges to
√
2 in R, and conclude that Q is not complete.

Exercise 1.63. Let (X,dX) and (Y, dY ) be metric spaces and let d be the sup norm metric
on X × Y .

13



1. Metric and topological spaces

(a) Prove that the sequence ((xn, yn)) is Cauchy in X × Y if and only if (xn) is Cauchy in
X and (yn) is Cauchy in Y .

(b) Prove that if X and Y are complete then X × Y is complete. Is the converse true?

Exercise 1.64. Let (X,d) be a metric space.

(a) Fix an arbitrary element y ∈ X and consider the function f ∶ X Ð→ R given by
f(x) = d(x, y). Prove that f is uniformly continuous.

(b) Prove that d ∶ X ×X Ð→R is uniformly continuous with respect to the sup metric D
on X ×X.

Exercise 1.65. In the context of the proof of Theorem 2.55, show that if (xn) ∼ (x′n) and
(yn) ∼ (y′n), then

lim
nÐ→∞

d(x′n, y′n) = lim
nÐ→∞

d(xn, yn).

Exercise 1.66. Let X = R>0, Y = R, f ∶ X Ð→ Y given by f(x) = 1
x . For X̂ = R⩾0 and

Ŷ = Y =R, prove that there is no continuous function f̂ ∶ X̂ Ð→ Ŷ such that f̂ ∣X= f .

Exercise 1.67. Let f ∶ RÐ→R be a contraction and define F ∶ RÐ→R by

F (x) = x + f(x).

(a) Use the Banach Fixed Point Theorem to show that the equation x + f(x) = a has a
unique solution for any a ∈R.

(b) Deduce that F is a bijection.

(c) Show that F is continuous.

(d) Show that F −1 is continuous (so it is a homeomorphism).

Exercise 1.68. Let X be the interval (0,1/3) in R with the Euclidean metric. Show that
f ∶ X Ð→X defined by f(x) = x2 is a contraction, but does not have a fixed point in X. Why
does this not contradict the Banach Fixed Point Theorem?

Exercise 1.69. Let (X,d) be a complete metric space and f ∶ X Ð→X be a function. Let
g = f ○ f , that is, g(x) = f(f(x)). Suppose that g ∶ X Ð→ X is a contraction. Prove that f
has a unique fixed point.

Boundedness and total boundedness
Exercise 1.70. Show that a subset S ⊆X is bounded if and only if S ⊆Dr(x) for some r ⩾ 0
and some x ∈X.

Exercise 1.71. Prove that any Cauchy sequence (xn) in a metric space (X,d) is bounded,
that is there exists C ⩾ 0 such that d(xn, xm) ⩽ C for all n,m ∈N.

Exercise 1.72.

(a) Prove that every closed interval on R is compact.

(b) Prove that every closed ball in Rn is compact.
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(c) (The classical Heine–Borel theorem) Prove that a subset of Rn is compact if and
only if it is bounded and closed.

(d) Prove that every bounded subset of Rn is totally bounded.

Exercise 1.73. Let (X,d) be a metric space and let A, B be bounded sets. Then A ∪B is
bounded.

Exercise 1.74. Prove that a function f ∶ X Ð→ Y between metric spaces is bounded if and
only if f(X) is a bounded subset of Y .

Exercise 1.75. Let X, Y be metric spaces and S ⊆X, T ⊆ Y totally bounded subsets. Prove
that S×T is a totally bounded subset of X ×Y (where the latter is equipped with a conserving
metric d).

Exercise 1.76. Suppose X and Y are metric spaces with the property that every bounded
subset of either of them is totally bounded. Prove that the same is true in the product X × Y
(equipped with a conserving metric).

Exercise 1.77. (*) Let K be a sequentially compact subset of a metric space X. Prove that
any open cover of K has a Lebesgue number.

Exercise 1.78. Which of the following metric spaces are compact?

(a) The unit circle in R2.

(b) The unit open disk in R2.

(c) The closed unit ball in the space `∞ of bounded real sequences (a1, a2, . . . ).

Exercise 1.79. Let C be a nonempty compact subset of a metric space (X,d). Prove that
there exist points a, b ∈ C such that

d(a, b) = sup{d(x, y) ∶ x, y ∈ C}.

In other words, the diameter of C is realised as the distance between two points of C.

Exercise 1.80.

(a) Suppose f ∶ Rn Ð→Rn is a continuous function and S is a bounded subset of Rn. Prove
that f(S) is bounded.

(b) Find a uniformly continuous function f ∶ X Ð→ Y between metric spaces and a bounded
subset B of X such that f(B) is unbounded.

Exercise 1.81.

(a) Suppose f ∶ Rn Ð→Rn is a continuous function and S is a totally bounded subset of
Rn. Prove that f(S) is totally bounded.

(b) Find a continuous function f ∶ X Ð→ Y between metric spaces and a totally bounded
subset S of X such that f(S) is not totally bounded.

15



1. Metric and topological spaces

Function spaces
Exercise 1.82. Let X be a set and Y a metric space, and consider the metric space B(X,Y )
of bounded functions X Ð→ Y , with the uniform metric d∞ (see Proposition 2.67).

Fix x ∈ X and consider the “evaluation at x” function evx ∶ B(X,Y ) Ð→ Y given by
evx(f) = f(x). Prove that evx is uniformly continuous.

Exercise 1.83. For each n ∈N define fn ∶ [0,1] Ð→R by

fn(x) =
nx2

1 + nx.

Convince yourself that fn is continuous.
Find the pointwise limit f of the sequence (fn) and determine whether the sequence

converges uniformly to f .

Exercise 1.84. Let X, Y be metric spaces and let (fn) be a sequence in C0(X,Y ) that
converges uniformly to f ∈ C0(X,Y ). If (xn) Ð→ x in X, then (fn(xn)) Ð→ f(x) in Y .

Exercise 1.85. (*) Let p1(x) = 0 and

pn+1(x) = pn(x) −
pn(x)2 − x2

2
= pn(x) −

(pn(x) − ∣x∣)(pn(x) + ∣x∣)
2

for n ⩾ 1.

Prove that, for all x ∈ [−1,1] and all n ⩾ 1:

(a) 0 ⩽ pn(x) ⩽ ∣x∣;

(b) pn(x) ⩽ pn+1(x);

(c) ∣x∣ − pn+1(x) ⩽ ∣x∣ (1 − ∣x∣2 )
n
.

Exercise 1.86. (*) Fix n ⩾ 1 and consider the function f ∶ [0,1] Ð→R given by

f(t) = t(1 − t
2
)
n

.

Prove that
f(t) < 2

n + 1 for all t ∈ [0,1].

Exercise 1.87. Prove that for any a > 0, there is a sequence (qn) in xR[x] such that
(qn) Ð→ ∣x∣ uniformly on [−a, a].

[Hint: Take the sequence of polynomials given by Lemma 2.73 and use it to construct
(qn).]

Exercise 1.88. (*) Let X be a metric space with at least two points.
Prove that a subalgebra A of C0(X,R) separates points of X and is non-vanishing on X if

and only if, for every (x1, y1), (x2, y2) ∈X ×R with x1 ≠ x2, there exists h ∈ A such that

f(x1) = y1 and f(x2) = y2.

[Hint: For the “if” direction, given (x1, y1), (x2, y2) ∈ X ×R with x1 ≠ x2, find elements
k1, k2 ∈ A such that k1(x1) = 0, k1(x2) ≠ 0, k2(x1) ≠ 0, k2(x2) = 0.]
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Exercise 1.89. If X is a compact metric space and f ∶ X Ð→C is a function, then we write
f ∶ X Ð→C for the function defined by

f(x) = f(x).

Given a subalgebra C of C0(X,C), we say C is closed under complex conjugation if f ∈ C
implies f ∈ C.

Let X be a compact metric space and let C be a C-subalgebra of C0(X,C). Suppose C is
closed under complex conjugation, is non-vanishing, and separates points.

Let CR = C ∩C0(X,R).

(a) Prove that if g ∈ C then Re(f), Im(f) ∈ CR.

(b) Prove that CR is dense in C0(X,R).

(c) Prove that C is dense in C0(X,C).

Exercise 1.90. Let X = [0,1] × [0,1] be the unit square with the induced topology from R2.
Find a subalgebra A of C0(X,C) that is dense.
[Hint: Check out Tutorial Question 8.3 and Exercise 1.89.]

Exercise 1.91. Let X = S1 be the unit circle with the induced topology from R2.
Find a subalgebra A of C0(X,C) that is dense.
[Hint: A sneaky way is to use Exercise 1.90. A nice way is to get complex exponentials

involved.]

(*) Compactness in function spaces
Exercise 1.92. (*) We say that a collection F of functions X Ð→ Y between metric spaces
is equicontinuous if given ε > 0 there exists δ > 0 such that for all f ∈ F and all x1, x2 ∈X with
dX(x1, x2) < δ we have dY (f(x1), f(x2)) < ε.

(a) Prove that a singleton F = {f} is equicontinuous if and only if f is uniformly continuous.

(b) Prove that the set F of all contractions X Ð→ Y is equicontinuous.

Exercise 1.93. (*) Let X be a totally bounded metric space and Y a complete metric space.
Suppose F = (fn) is an equicontinuous sequence in C0(X,Y ) such that (fn(z)) converges in
Y for every z in a dense subset Z of X. Then (fn) converges uniformly in C0(X,Y ).

Exercise 1.94. (*) Let X be a metric space and let Z be a countable subset of X. Then every
bounded sequence (fn) in C0(X,Rm) has a subsequence (fnk

) such that (fnk
(z)) converges

in Rm for every z ∈ Z.
[Hint: Try to replicate the proof of Proposition 2.65.]

Exercise 1.95. (*) (This is the Arzelà–Ascoli Theorem.)
If X is a totally bounded metric space and K ⊆ C0(X,Rm) is a bounded, closed, and

equicontinuous subset, then K is compact.

Exercise 1.96. (*) If X and Y are metric spaces with X compact and K ⊆ C0(X,Y ) is
compact, then K is bounded, closed, and equicontinuous.

(This is a converse to the Arzelà–Ascoli Theorem, see Exercise 1.95.)
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2. Normed and Hilbert spaces

Norms and inner products
Exercise 2.1. Let (V, ∥ ⋅ ∥) be a normed vector space. Prove that the norm function
∥ ⋅ ∥ ∶ V Ð→R⩾0 is uniformly continuous.

Exercise 2.2. Two norms ∥ ⋅ ∥1 and ∥ ⋅ ∥2 on a vector space V are equivalent if and only if
they define the same topology on V .

Exercise 2.3. Let (V, ∥ ⋅ ∥) be a normed space and let S,T be subsets of V and α ∈ F. Prove
that

(a) If S and T are bounded, so are S + T and αS.

(b) If S and T are totally bounded, so are S + T and αS.

(c) If S and T are compact, so are S + T and αS.

Exercise 2.4. Let (V, ⟨⋅, ⋅⟩) be an inner product space. Prove that the inner product is a
continuous function.

Exercise 2.5. If (V, ⟨⋅, ⋅⟩) is an inner product space then

4⟨v,w⟩ =
⎧⎪⎪⎨⎪⎪⎩

∥v +w∥2 − ∥v −w∥2 if F =R
∥v +w∥2 − ∥v −w∥2 + i∥v + iw∥2 − i∥v − iw∥2 if F =C.

[Hint: Look at the proof of Proposition 3.10.]

Exercise 2.6. (*) Suppose (V, ∥ ⋅ ∥) is a normed space over F =C such that

∥v +w∥2 + ∥v −w∥2 = 2(∥v∥2 + ∥w∥2) for all v,w ∈ V.

Define [⋅, ⋅] ∶ V × V Ð→R by

4[v,w] ∶= ∥v +w∥2 − ∥v −w∥2.

(a) Prove that, for all v,w ∈ V , we have

[w, v] = [v,w](2.1)
[iv, iw] = [v,w](2.2)
[iv,w] = −[v, iw].(2.3)

(b) Prove that

(2.4) [2u,w] + [2v,w] = 2[u + v,w] for all u, v,w ∈ V.

Conclude that

(2.5) [2v,w] = 2[v,w] for all v,w ∈ V,

and then that

(2.6) [u,w] + [v,w] = [u + v,w] for all u, v,w ∈ V.
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(c) Prove that, for all v,w ∈ V , we have

[nv,w] = n[v,w] for all n ∈N(2.7)
[nv,w] = n[v,w] for all n ∈ Z(2.8)
[qv,w] = q[v,w] for all q ∈Q(2.9)
[xv,w] = x[v,w] for all x ∈R.(2.10)

(d) Prove that

[v, v] ⩾ 0 for all v ∈ V and [v, v] = 0 if and only if v = 0.

(e) Show that parts (a)–(d) imply that the function ⟨⋅, ⋅⟩ ∶ V × V Ð→C given by

4⟨v,w⟩ ∶= 4[v,w] + 4i[v, iw] = ∥v +w∥2 − ∥v −w∥2 + i∥v + iw∥2 − i∥v − iw∥2

is an inner product on V with associated norm ∥ ⋅ ∥.

Exercise 2.7. Let (V, ∥ ⋅ ∥) be a normed space and let S ⊆ V be a subset. Prove that the
closure Span(S) of the span of S is the smallest closed subspace of V that contains S.

Exercise 2.8. Let v be a non-zero vector in a normed vector space V . Prove that the
one-dimensional subspace Fv ∶= Span(v) of V is isometric to F.

Exercise 2.9. Let W be a finite-dimensional subspace of a normed vector space V . Prove
that W is a closed subset of V .

Exercise 2.10. Prove that equivalence of norms is an equivalence relation.

Exercise 2.11. Let ∥ ⋅ ∥1 and ∥ ⋅ ∥2 be two equivalent norms on a vector space V .

(a) Prove that the identity function idV ∶ (V, ∥ ⋅ ∥1) Ð→ (V, ∥ ⋅ ∥2) is uniformly continuous.

(b) Prove that (V, ∥ ⋅ ∥1) is Banach if and only if (V, ∥ ⋅ ∥2) is Banach.

Exercise 2.12. Let (V, ⟨ ⋅ , ⋅ ⟩) be a complex inner product space and let T ∶ V Ð→ V be a
linear operator. Show that T = 0 if and only if ⟨Tv, v⟩ = 0 for every vector v in V .

Is this true for real inner product spaces?

Exercise 2.13. Give an example of a series that converges but does not converge absolutely.

Bounded linear functions
Exercise 2.14. Let V,W be inner product spaces and let f ∈ L(V,W ). Prove that

∥f∥ = sup
∥v∥V =∥w∥W =1

∣⟨f(v),w⟩W ∣.

[Hint: Use Tutorial Question 9.1.]

Exercise 2.15. Let V =R2 viewed as a normed space with the Euclidean norm. Compute
the norm of each of the following elements M ∈ L(V ) directly from the description of the
operator norm:

∥M∥ = sup
∥v∥=1

∥M(v)∥.
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(a) A = (0 1
0 0
);

(b) B = ( 0 1
−1 0

);

(c) C = (a 0
0 b
) for a, b ∈R.

Exercise 2.16. Let V,W be normed spaces, with V Banach, and let f ∈ L(V,W ). Suppose
that there exists a constant c > 0 such that

∥f(v)∥W ⩾ c ∥v∥V for all v ∈ V.
Then im(f) is a closed subspace of W .
Exercise 2.17. Prove that all linear transformations between finite-dimensional normed
vector spaces are continuous.
Exercise 2.18. Let f1 ∶ V Ð→W1 and f2 ∶ V Ð→W2 be two continuous linear transformations
between normed vector spaces. Prove that the function f ∶ V Ð→ W1 ×W2 defined by
f(v) = (f1(v), f2(v)) is a continuous linear transformation.
Exercise 2.19. If f ∈ L(V,W ) with V,W normed spaces, and the series

∞

∑
n=1

αnvn, αn ∈ F, vn ∈ V,

converges in V , then the series
∞

∑
n=1

αnf(vn)

converges in W to the limit

f (
∞

∑
n=1

αnvn) .

Convexity
Exercise 2.20. Any interval I ⊆R is convex.
Exercise 2.21. Prove that, if (V, ∥⋅∥) is a normed space, then f ∶ V Ð→R given by f(v) = ∥v∥
is a convex function.
Exercise 2.22. (*) Let I ⊆ R be an interval and let f ∶ I Ð→ R be a twice-differentiable
function.

The aim of this Exercise is to check the familiar calculus fact: f is convex if and only if
f ′′(x) ⩾ 0 for all x ∈ I.

It was heavily inspired by Alexander Nagel’s Wisconsin notes [1]:

https://people.math.wisc.edu/~ajnagel/convexity.pdf

(a) For any s, t ∈ I with s < t, define the linear function Ls,t ∶ [s, t] Ð→R by

Ls,t(x) = f(s) + (
x − s
t − s ) (f(t) − f(s)).

Convince yourself that this is the equation of the secant line joining (s, f(s)) to (t, f(t)).
Prove that f is convex on I if any only if

f(x) ⩽ Ls,t(x) for all s, t ∈ I such that s < t and all s ⩽ x ⩽ t.
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2. Normed and Hilbert spaces

(b) Check that for all s, t ∈ I such that s < t we have

Ls,t(x) − f(x) =
x − s
t − s (f(t) − f(x)) −

t − x
t − s (f(x) − f(s)).

(c) Use the Mean Value Theorem for f twice to prove that there exist ξ, ζ with x < ξ < t
and s < ζ < x such that

Ls,t(x) − f(x) =
(t − x)(x − s)

t − s (f ′(ξ) − f ′(ζ)).

(d) Use the Mean Value Theorem once more to conclude that if f ′′(x) ⩾ 0 for all x ∈ I, then
f is convex on I.

(e) Now we prove the converse. From this point on, assume that f ∶ I Ð→ R is twice-
differentiable and convex, and let s, t ∈ I○.

1. Show that if s < x < t then

f(x) − f(s)
x − s ⩽ f(t) − f(x)

t − x .

2. Conclude that if s < x1 < x2 < t then

f(x1) − f(s)
x1 − s

⩽ f(t) − f(x2)
t − x2

.

3. Conclude that if s < t then f ′(s) ⩽ f ′(t), and finally that f ′′(x) ⩾ 0 on I.

Exercise 2.23. (a) Prove that the function exp ∶ RÐ→R given by exp(x) = ex is convex.

(b) Prove that for any a, b ⩾ 0 such that a + b = 1 we have xa yb ⩽ ax + by.

Exercise 2.24. Prove that for any p ⩾ 1 and x, y ⩾ 0 we have

xp + yp ⩽ (x + y)p.

Exercise 2.25. Let p ⩾ 1, q > 0, x, y ⩾ 0, and a, b ⩾ 0 such that a + b = 1. Prove that

min{x, y} ⩽ (ax−q + by−q)−1/q

⩽ xayb

⩽ (ax1/p + by1/p)p

⩽ ax + by

⩽ (axp + byp)1/p

⩽max{x, y}.

Exercise 2.26. Let (V, ∥ ⋅ ∥) be a normed space and take r, s > 0, u, v ∈ V , α ∈ F×. Show that

(a) Br(u + v) = Br(u) + {v};

(b) αB1(0) = B∣α∣(0);

(c) Br(v) = rB1(0) + {v};
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(d) rB1(0) + sB1(0) = (r + s)B1(0);

(e) Br(u) +Bs(v) = Br+s(u + v);

(f) B1(0) is a convex subset of V ;

(g) any open ball in V is convex.

Exercise 2.27. Let f ∶ V Ð→W is a linear transformation between vector spaces.

(a) If U is a subspace of V , then its image f(U) is a subspace of W .

(b) If U is a subspace of W , then its preimage f−1(U) is a subspace of V .

(c) If S is a convex subset of V , then its image f(S) is a convex subset of W .

(d) If S is a convex subset of W , then its preimage f−1(S) is a convex subset of V .

Sequence spaces
Exercise 2.28. For any n ∈N, give a linear isometry Fn Ð→ `2. (Take the Euclidean norm
on Fn.)

Exercise 2.29. Consider the map f ∶ `1 Ð→ FN given by

f((an)) = (
an
n
) .

(a) Prove that f maps to `1 and f ∶ `1 Ð→ `1 is linear, continuous, and injective.

(b) Prove that the image W of f is not closed in `1.

Exercise 2.30. Prove that the norms on the sequence spaces `∞ and `p for p ≠ 2 cannot
defined by inner products.

Exercise 2.31. Prove directly that any Cauchy sequence in `∞ converges, so that `∞ is a
Banach space.

Exercise 2.32. Consider the subset c0 ⊆ FN of all sequences with limit 0:

c0 = {(an) ∈ FN ∶ (an) Ð→ 0}.

(a) Prove that c0 is a closed subspace of `∞.

(b) Conclude that c0 is a Banach space.

(c) Prove that c0 is separable.

Exercise 2.33. Consider the space `∞ of bounded sequences.

(a) Let S ⊆ `∞ be the subset of sequences (an) such that an ∈ {0,1} for all n ∈ N. Prove
that S is an uncountable set.
[Hint: Mimic Cantor’s diagonal argument.]

(b) Use S to construct an uncountable set T of disjoint open balls in `∞.

(c) Conclude that `∞ is not separable.
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2. Normed and Hilbert spaces

Exercise 2.34. Consider the subset c of FN consisting of all convergent sequences (with any
limit).

(a) Convince yourself that c is a vector subspace of `∞.

(b) Prove that lim ∶ cÐ→ F given by

(an) z→ lim
nÐ→∞

(an)

is a continuous surjective linear map.

(c) Prove that the formula

J((an)) = R((an)) − ( lim
nÐ→∞

an) (1,1, . . . )

defines a linear homeomorphism J ∶ cÐ→ c0. (Here R denotes the right shift map.)

(d) Conclude that c is Banach.

[Hint: Exercise 2.32 should come in handy here and in the following part.]

(e) Show that c is separable and find a Schauder basis for c.

Exercise 2.35. Consider the maps Heven,Hodd ∶ FN Ð→ FN defined by

Heven((an)) = (a2n), Hodd((an)) = (a2n−1)

and construct f ∶ FN Ð→ FN ×FN as

f(a) = (Heven(a),Hodd(a)).

(a) Prove that the restriction of Heven and Hodd to `p gives continuous linear functions
Heven,Hodd ∶ `p Ð→ `p for all p ∈R⩾1 and for p = ∞.

(b) Prove that f is an invertible linear map.

In the next two parts, recall that on the product V ×W of two normed spaces we can work
with the norm given by

∥(v,w)∥ ∶= ∥v∥V + ∥w∥W .

(c) Take p = 1 and show that the restriction f ∶ `1 Ð→ `1 × `1 is a bijective linear isometry.

(Recall that we can work with the norm on `1 × `1 given by

∥(x, y)∥ ∶= ∥x∥`1 + ∥y∥`1 .)

(d) Show that the statement from part (c) does not hold for the space `∞; prove the
strongest statement that you can for `∞.
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Dual spaces
Exercise 2.36. (*) Let U,V,W be normed spaces over F and let β ∶ U × V Ð→ W be a
bilinear map.

We say that β is bounded if there exists c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

Prove that β is continuous at (0,0) if and only if β is bounded if and only if β is continuous
on U × V .

Exercise 2.37. (*) Let U,V,W be nonzero normed spaces over F and let β ∶ U × V Ð→W
be a nonzero bilinear map. Then β is not uniformly continuous.

Exercise 2.38. (*) Let U,V,W be normed spaces.
Define the norm of a continuous bilinear map β ∶ U × V Ð→W , and show that it is a norm

on the vector space Bil(U,V ;W ) of continuous bilinear maps U × V Ð→W .
[Hint: Have a look at Exercise 2.36 to remember what it says.]

Exercise 2.39. (*) Let U,V,W be normed spaces over F.
Suppose β ∶ U × V Ð→W is a continuous bilinear map.
Consider the linear function βU ∶ U Ð→ Hom(V,W ) given by βU(u) = fu, where

fu ∶ V Ð→W is defined by fu(v) = β(u, v).

(a) Prove that for any u ∈ U , fu ∈ L(V,W ), in other words fu is continuous.

(b) By part (a) we can think of βU as a function U Ð→ L(V,W ).
Prove that βU ∶ U Ð→ L(V,W ) is continuous.

Exercise 2.40. In Theorem 3.29 we saw that the function

β ∶ `∞ × `1 Ð→ F defined by β(u, v) z→
∞

∑
n=1

unvn

is a continuous bilinear map.
Show that there is a continuous linear function `∞ Ð→ (`1)∨ that is a bijective isometry.
Conclude that `∞ is a Banach space.

Exercise 2.41. Flip the factors in Exercise 2.40:
In Theorem 3.29 we saw that the function

`1 × `∞ Ð→ F defined by (u, v) z→
∞

∑
n=1

unvn

is a continuous bilinear map.

(a) Show that there is a continuous linear function `1 Ð→ (c0)∨ that is a bijective isometry.
(Recall that c0 ⊆ `∞ consists of all convergent sequences with limit 0.)
[Hint: It may be useful to prove surjectivity first, and then the isometry property.]

(b) Conclude that `1 is a Banach space.

(c) Where in your proof for (a) did you make use of the fact that you are working with c0
rather than `∞?
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Orthogonality
Exercise 2.42. Let (V, ⟨⋅, ⋅⟩) be an inner product space and let R,S be subsets of V .

(a) Prove that S ∩ S⊥ = 0.

(b) Prove that if R ⊆ S then S⊥ ⊆ R⊥.

(c) Prove that S ⊆ (S⊥)⊥.

(d) Prove that S⊥ = Span(S)
⊥

.

Exercise 2.43. Let V be a normed space and ϕ,ψ be commuting projections: ϕ ○ ψ = ψ ○ ϕ.
Prove that ϕ ○ ψ is a projection with image imϕ ∩ imψ.

Exercise 2.44. We explore the Hilbert Projection Theorem when V is a Banach space but
not a Hilbert space.

(a) Let V =R2 with the `1-norm, that is

∥(x1, x2)∥ = ∣x1∣ + ∣x2∣.

Let Y = B1(0), the closed unit ball around 0. Find two distinct closest points in Y to
x = (−1,1) ∈ V .

(b) Can you find a similar example for V =R2 with the `∞-norm:

∥(x1, x2)∥ =max{∣x1∣, ∣x2∣}?

(c) Let V be a normed space and Y a convex subset of V . Fix x ∈ V . Let Z ⊆ Y be the set
of all closest points in Y to x. Prove that Z is convex.

Orthonormal bases
Exercise 2.45. In this question, we re-examine the Cauchy–Schwarz inequality in retrospect.

Let u be a vector of norm 1 in an inner product space V . Define πu ∶ V Ð→ V by

πu(v) = ⟨v, u⟩u.

(a) Prove that πu is a linear transformation.

(b) Let v be a vector in V . Prove that πu(v) is orthogonal to (idV − πu)(v).

(c) Let v be a vector in V . Prove that ∥πu(v)∥ = ∣⟨v, u⟩∣.

(d) Prove the Cauchy–Schwarz inequality: if v and w are vectors in V , then

∣⟨v,w⟩∣ ⩽ ∥v∥ ∥w∥.

(e) Prove that πu is an orthogonal projection with image Fu.

Exercise 2.46. In this question, we generalise the results in Exercise 2.45.
Let {u1, . . . , un} be an orthonormal system in an inner product space V and let U be the

span of the orthonormal system. Write π1, . . . , πn for the projections πu1 , . . . , πun defined in
Exercise 2.45 and put

π = π1 +⋯ + πn.
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(a) Prove that

πi ○ πj =
⎧⎪⎪⎨⎪⎪⎩

πi if i = j,
0 otherwise.

(b) Prove that π is an orthogonal projection with image U .

(c) Let v be a vector in V . Prove that

∥π(v)∥2 =
n

∑
i=1

∣⟨v, un⟩∣
2
.

(d) Use part (c) to prove the following finite version of the Bessel’s inequality: if v is a
vector in V , then

∥v∥2 ⩾
n

∑
i=1

∣⟨v, ui⟩∣
2
.

Exercise 2.47. (*) Every nonzero Hilbert space H has an orthonormal basis.
[Hint: Use Zorn’s Lemma (Lemma B.1) and mimic the proof of the existence of bases for

arbitrary vector spaces (Theorem 1.2).]

Exercise 2.48. (*) Let (ui)i∈I be an orthonormal basis of an inner product space V (not
necessarily separable) and let v be a vector in V .

(a) Given a a positive integer n, define

Jn = { i ∈ I ∣ ∣⟨v, ui⟩∣ >
1

n
}.

Prove that Jn has at most n2∥v∥2 elements.

(b) Put
Iv = { i ∈ I ∣ ∣⟨v, ui⟩∣ ≠ 0}.

Prove that Iv is countable.

(c) Choose a bijection o ∶ NÐ→ Iv. Prove that

v =
∞

∑
n=1

⟨v, uo(n)⟩uo(n).

(d) Justify the notation
∑
i∈I

⟨v, ui⟩ui

and convince yourself that
v = ∑

i∈I

⟨v, ui⟩ui.

Exercise 2.49. Let H be an infinite-dimensional Hilbert space and let D ∶= D1(0) be the
closed unit ball in H.

(a) Use Gram–Schmidt orthogonalisation to produce a countable orthonormal set {e1, e2, . . .}.

(b) Conclude that D is not totally bounded.

(c) Conclude that D is not compact.

(d) Conclude that H is not isometric to Fn for any n ∈N.
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2. Normed and Hilbert spaces

Adjoint maps
Exercise 2.50. Prove that f z→ f∗ is conjugate-linear, in other words that

(αf + βg)∗ = αf∗ + βg∗ for all α,β ∈ F, f, g ∈ L(X,Y ).

Exercise 2.51. Prove that f z→ f∗ is an involution, in other words that

(f∗)∗ = f for all f ∈ L(X,Y ).

Exercise 2.52. Let X,Y,Z be Hilbert spaces.

(a) Prove that (f ○ g)∗ = g∗ ○ f∗ for all g ∈ L(X,Y ), f ∈ L(Y,Z).

(b) Prove that id∗X = idX .

Exercise 2.53. Let f ∈ L(X,Y ) with X,Y Hilbert spaces.

(a) Prove that ∥f∗∥ = ∥f∥, so f z→ f∗ is an isometry.

(b) Prove that ∥f∗ ○ f∥ = ∥f∥2.

Exercise 2.54. Let f ∶ X Ð→ Y be a continuous linear map of Hilbert spaces. Prove that

ker (f∗) = ( im f)⊥ and im (f∗) = (ker f)⊥.

Exercise 2.55. Let X be a Hilbert space, f ∈ L(X), and W a closed subspace of X. Then
W is f -invariant if and only if W ⊥ is (f∗)-invariant.

Exercise 2.56. Let f ∈ L(H) with H a Hilbert space. Suppose that f is invertible with
continuous inverse. Then the adjoint f∗ is invertible and

(f∗)−1 = (f−1)∗.

Exercise 2.57. Let a = (an) ∈ `∞ and consider f ∶ `2 Ð→ FN given by

f(x) = (a1x1, a2x2, . . . , anxn, . . . ).

(a) Prove that the image of f is contained in `2 and that f ∶ `2 Ð→ `2 is linear and continuous.

(b) Find the norm ∥f∥.

(c) Show that if an ∈R for all n ∈N then f is self-adjoint.

Exercise 2.58. Let H be a Hilbert space and let π ∶ H Ð→H be a projection. Prove that π
is an orthogonal projection if and only if it is self-adjoint.

Exercise 2.59. Use Exercise 2.58 to give an alternative proof of Tutorial Question 11.3:
Let H be a Hilbert space and let π ∶ H Ð→H be a projection. Prove that π is an orthogonal

projection if and only if idH −π is an orthogonal projection.

Exercise 2.60. Let H be a Hilbert space and let α be a scalar. Prove that α idH is normal
(that is, commutes with its adjoint).

Exercise 2.61. Let H be a real Hilbert space. Prove that self-adjoint continuous linear
operators on H form a subspace of L(H).

If H is a complex Hilbert space, does the statement still hold? If yes, give a proof for the
statement. If no, find a counterexample, and then find and prove a closest statement that
holds.
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Exercise 2.62. Consider the function g ∶ `2 Ð→ F given by

g(x) =
∞

∑
n=1

xn
n2
.

(a) Find y ∈ `2 such that
g(x) = ⟨x, y⟩ for all x ∈ `2.

(b) Deduce that g is linear and bounded and find its norm ∥g∥.

[Hint: You may use without proof the fact that
∞

∑
n=1

1

n4
= π

4

90
.]

Exercise 2.63. Consider the normed subspace of `∞ given by the sequences with only finitely
many nonzero terms:

c00 = {(an) ∈ FN ∶ there exists N ∈N such that an = 0 for all n ⩾ N}.
Prove that c00 is not complete.

Exercise 2.64. Let c00 be the space of sequences with only finitely many nonzero terms (see
Exercise 2.63), and consider it as a subspace of `∞. Prove that c00 is separable.
Exercise 2.65. Let c00 be the space of sequences with only finitely many nonzero terms (see
Exercise 2.63), which is considered as a subspace of `∞. Let f ∶ c00 Ð→ FN be the function
defined by (f(v))

n
= nvn.

(a) Prove that the image of the function f is contained in `∞.

(b) Let g ∶ c00 Ð→ `∞ be the function defined by g(v) = f(v). Prove that g is not continuous.

(c) Prove that there exists a discontinuous linear transformation from `∞ to itself.
In this part, you can use the following fact:

Let V and W be F-vector spaces. If S is a subspace of V and if
φ ∶ S Ð→ W is a linear transformation, then there exists a linear
transformation φ̃ ∶ V Ð→W such that φ = φ̃∣S.

Compact operators
Exercise 2.66. Let V and W be normed spaces. If f ∶ V Ð→W is a bounded operator such
that f(V ) is finite-dimensional, then f is compact.
Exercise 2.67. In the realm of normed spaces, the composition of a bounded operator and a
compact operator (in either direction) is compact.
Exercise 2.68. Let X and Y be Hilbert spaces. Let (fn) be a convergent sequence in L(X,Y )
and let f = lim(fn). Prove that f∗ = lim(f∗n).
Exercise 2.69. Try to mimic the approach in Example 3.62 with the sequence of functions
fn ∶ `2 Ð→ `2 given by

fn(x)j =
⎧⎪⎪⎨⎪⎪⎩

xj if j ⩽ n,
0 if j > n.

What happens?
Exercise 2.70. Recall the right shift operator R ∶ `2 Ð→ `2

R(a1, a2, . . . ) = (0, a1, a2, . . . ).
(a) Prove that R has no complex eigenvalues.

(b) Is R a compact map?
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A. Appendix: Prerequisites

Equivalence relations
Exercise A.1. Let A, B be sets and f ∶ A Ð→ B a function. For x, y ∈ A, define x ∼ y if
f(x) = f(y). Show that this satisfies the properties of an equivalence relation on A.

Exercise A.2. Let ∼ be an equivalence relation on a set A and let π ∶ A Ð→ A/ ∼ be the
quotient map.

Under what circumstances (if any) is π a bijection?

Exercise A.3. Let A =N ×N and define (a, b) ∼ (c, d) if a + d = b + c.

(a) Show that this satisfies the conditions of an equivalence relation on A.

(b) Construct a bijective function (A/∼) Ð→ Z.

(Don’t forget to prove that your function is well-defined, and that it is bijective.)

Exercise A.4. Let V be a vector space. An endomorphism (aka linear transformation from
V to itself) n ∶ V Ð→ V is nilpotent if there exists k ∈ Z⩾1 such that nk is the constant zero
map V Ð→ V .

An endomorphism u ∶ V Ð→ V is unipotent if u − idV is nilpotent.
Now fix p prime, and let V be the vector space over Fp consisting of set maps N Ð→ Fp.

Given two endomorphisms f, g ∶ V Ð→ V , write f ∼ g if there exists a unipotent endomorphism
u such that f = u ○ g.

(a) Prove that ∼ is reflexive.

(b) Prove that ∼ is symmetric.

(c) Give an example to show that ∼ is not transitive, and thus not an equivalence relation.

Exercise A.5. Let V be a vector space over F, and let W ⊆ V be a subspace. For v, v′ ∈ V ,
write v ∼ v′ if v − v′ ∈W .

(a) Prove that ∼ is an equivalence relation.

(b) Prove that the operations [v] + [v′] ∶= [v + v′] and λ[v] ∶= [λv] are well-defined. This
proves that V /∼ has the structure of a vector space over F. We call V /∼ a quotient
space, and write it as V /W .

(c) Let U be a vector space and f ∶ V Ð→ U a linear transformation such that f(w) = 0 for
all w ∈W . Prove there exists a unique linear transformation g ∶ V /W Ð→ U such that
f = g ○ π, where π ∶ V Ð→ V /W is the quotient map.
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(Un)countability
Exercise A.6. (*) Fix a set Ω and let X be the set of all subsets of Ω. For any S,T ∈ X,
write S ∼ T if S has the same cardinality as T .

Show that ∼ is an equivalence relation on X.

Exercise A.7. Let f ∶ X Ð→ Y be a function, with X a countable set. Then im(f) is finite
or countable.

[Hint: Reduce to the case f ∶ NÐ→ Y is surjective; construct a right inverse g ∶ Y Ð→N,
which has to be injective, of f .]

Exercise A.8. Show that the union S of any countable collection of countable sets is a
countable set.

[Hint: Construct a surjective function N ×NÐ→ S.]

Exercise A.9. (*) Let W be a Q-vector space with a countable basis B. Show that W is a
countable set.

[Hint: Use Exercise A.8.]
Conclude that R does not have a countable basis as a vector space over Q.

Linear algebra
Exercise A.10. Let V be a vector space over F. Prove that End(V ) ∶= Hom(V,V ) is an
associative unital F-algebra under composition of functions.

Exercise A.11. Let V,W be vector spaces over F and let B be a basis of V . Suppose
g ∶ B Ð→W is a function, and let f ∶ V Ð→W be its extension to V by linearity.

Prove that

(a) f is injective if and only if g(B) is linearly independent in W ;

(b) f is surjective if and only if g(B) spans W ;

(c) f is bijective if and only if g(B) is a basis for W .

Exercise A.12. If S and T are subspaces of a vector space V with field of scalars F, then so
are S + T and αS for any α ∈ F.

Exercise A.13. A complex quadratic form with real coefficients is a map f ∶ Cn Ð→C given
by

f(x) = ∑
1⩽i,j⩽n

aijxixj, aij ∈R.

Use the Spectral Theorem for Cn to prove that there exist linear maps g1, . . . , gn ∶ Cn Ð→C
and constants b1, . . . , bn ∈R such that

f(g1(x), . . . , gn(x)) = b1g1(x)2 + ⋅ ⋅ ⋅ + bngn(x)2.

Uniform continuity and uniform convergence
Exercise A.14. Let f1, f2, . . . be a sequence of continuous functions RÐ→R that are not
uniformly continuous, and that converge pointwise to f ∶ RÐ→R.

(a) Give an example to show that f can be uniformly continuous.
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(b) If the convergence fn Ð→ f is uniform, prove that f cannot be uniformly continuous.

Exercise A.15. Let f1, f2, . . . be a sequence of continuous functions RÐ→R that converges
pointwise to f ∶ RÐ→R.

(a) Give an example to show that f need not be continuous. TODO: this is somewhere in
the notes or exercises or tutorials, we should find it and just refer to it.

(b) Suppose that fn Ð→ f uniformly and that every fn is uniformly continuous. Prove that
f is uniformly continuous.
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(*) Zorn’s Lemma
Exercise B.1. (*) Fix a set Ω and let X be the set of all subsets of Ω. Check that ⊆ is a
partial order on X. It is not a total order if Ω has at least two distinct elements.

Exercise B.2. (*) Let (X,⩽) be a nonempty finite poset. (This just means that X is a
nonempty finite set with a partial order ⩽.) Prove that X has a maximal element.

[Hint: You could, for instance, use induction on the number of elements of X.]

Exercise B.3. (*) Prove Theorem 1.2: any vector space V has a basis.
[Hint: Let X be the set of all linearly independent subsets of V , partially ordered by

inclusion. Prove that X has a maximal element B, and prove that this must also span V .]

Exercise B.4. Let f ∶ X Ð→ Y be a surjective map of sets. Let

P (f) = {(sA,A) ∶ A ⊆ Y, sA ∶ AÐ→X, f ○ sA = idA}.

Write (A, sA) ⩽ (B,sB) if and only if A ⊆ B and sB ∣A = sA.

(a) Prove that (P (f),⩽) is a poset.

(b) Prove every nonempty chain in P (f) has an upper bound in P (f).

(c) Deduce that there exists a map s ∶ Y Ð→X such that f ○ s = idY .

Linear algebra
Exercise B.5. Let RN be the set of arbitrary sequences (x1, x2, . . . ) of elements of R.

This is a vector space under the naturally-defined addition of sequences and multiplication
by a scalar.

Let ej ∈RN be the sequence whose j-th entry is 1, and all the others are 0. Describe the
subspace Span{e1, e2, . . .} of RN. Is the set {e1, e2, . . .} a basis of RN?

Exercise B.6. (*) Let V =R viewed as a vector space over Q.
Let α ∈R. Show that the set T = {αn ∶ n ∈N} is Q-linearly independent if and only if α is

transcendental.
(Note: An element α ∈ R is called algebraic if there exists a monic polynomial f ∈ Q[x]

such that f(α) = 0. An element α ∈R is called transcendental if it is not algebraic.)

Exercise B.7. Let V = F[x] be the vector space of polynomials in one variable with coefficients
in F. Given a scalar α ∈ F, consider the function evα ∶ V Ð→ F given by evaluation at α:

evα(f) = f(α).

Prove that evα ∈ V ∨.
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Exercise B.8. TODO: this really does not need W = V , should just do the general case with
bases B for V and C for W , and dual bases B∨ and C∨.

In the setup of Proposition B.4, suppose W = V so that T ∶ V Ð→ V and T ∨ ∶ V ∨ Ð→ V ∨.
Let M be the matrix representation of T with respect to an ordered basis B of V , and let

M∨ be the matrix representation of T ∨ with respect to the dual basis B∨.
Express M∨ in terms of M .

Exercise B.9. Let v1, . . . , vn ∈ V . Define Γ ∶ V ∨ Ð→ Fn by

Γ(ϕ) =
⎡⎢⎢⎢⎢⎢⎣

ϕ(v1)
⋮

ϕ(vn)

⎤⎥⎥⎥⎥⎥⎦
.

(a) Prove that Γ is a linear transformation.

(b) Prove that Γ is injective if and only if {v1, . . . , vn} spans V .

(c) Prove that Γ is surjective if and only if {v1, . . . , vn} is linearly independent.

Exercise B.10. Let T ∶ V Ð→W be a linear transformation of finite-dimensional vector spaces
over F, and let T ∨ ∶ W ∨ Ð→ V ∨ be the dual transformation as defined in Proposition B.4.

(a) Prove that if T is surjective, then T ∨ is injective.

(b) Prove that if T is injective, then T ∨ is surjective.

(c) Give an example to show that (b) does not always hold if we relax the condition that V
and W are finite-dimensional.

(*) Topological groups
Exercise B.11. (*)

(a) Show that a topological group G is Hausdorff if and only if {e} is a closed subset of G.

(b) Show that if G is a Hausdorff topological group then its centre Z is a closed subgroup.

(c) Show that if f ∶ G Ð→ H is a continuous group homomorphism and H is Hausdorff,
then ker(f) is a closed normal subgroup of G.

Exercise B.12. (*) Let f ∶ GÐ→H be a group homomorphism between topological groups.
Prove that the following are equivalent:

(a) f is continuous;

(b) f is continuous at some element of G;

(c) f is continuous at the identity element eG of G.

Exercise B.13. (*)

(a) Let V be a Q-vector space. Prove that every group homomorphism f ∶ Q Ð→ V is
Q-linear.

(b) What can you say (and prove) about continuous group homomorphisms RÐ→R?
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(c) Suppose that a group homomorphism f ∶ RÐ→R is continuous at some real number.
Prove that f is continuous on R, and conclude that f is R-linear.

(d) Let B be a basis for R as a Q-vector space. (Recall from Exercise B.6 that B is uncount-
able.) Use two distinct irrational elements of B to construct a Q-linear transformation
f ∶ RÐ→R that is not R-linear.

If you would (and why wouldn’t you?), follow the rabbit:

https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation

Exercise B.14. (*) Let G be a topological group and let H be a subgroup of G.

(a) Prove that H is closed if it is open. Does the converse hold?

(b) Prove that H is open if it is closed and has finite index. Does the converse hold?

(c) Suppose G is compact and H is open. Prove that H has finite index.

(d) Is the compactness of G necessary in part (c)?

Exercise B.15. (*) Let S and T be subsets of a topological group G. Define

ST = {st ∶ s ∈ S and t ∈ T}.

(a) Suppose S and T are open. Prove that ST is open.

(b) Suppose S and T are connected. Prove that ST is connected.

(c) Suppose S and T are compact. Prove that ST is compact.

(d) Suppose S is compact and T is closed. Prove that ST is closed.
[Hint: Use Theorem 2.41 after checking that

ST = π2(j−1(m−1(T ))),

where m ∶ G ×GÐ→ G is the multiplication map of G, j is the inclusion of S−1 ×G into
G ×G, and π2 ∶ S−1 ×GÐ→ G is the projection onto the second factor. ]

(e) Assuming without proof the fact that Z + πZ is dense in R, convince yourself that ST
need not be closed even if both S and T are.

Exercise B.16. (*) Let V be a normed vector space. Prove that (V,+) is a topological
group.
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