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1. Introduction

1.1. Infinite-dimensional spaces?
Despite the inevitable ups and downs, linear algebra as seen in a first-year subject is very
satisfying. There is one fundamental construct (the linear combination, built out of the two
operations defining the vector space structure) that gives rise to all the other abstract concepts
(linear transformation, subspace, span, linear independence, etc.). And one of these abstract
concepts (the basis) allows us to identify even the most ill-conceived of vector spaces with one
of the friendly standard spaces Fn, whereby we can use the concreteness of coordinates and
matrices to perform computations that allow us to give explicit answers to many questions
about these spaces.

If these vector spaces are finite-dimensional, that is. Once finite-dimensionality goes
out the window, it takes much of our clear and satisfying linear-algebraic worldview with it.
The purpose of this introduction is to bluntly point out the dangers of the infinite-dimensional
landscape, and to take some tentative steps around it to see what tools we might need to use.
After all, giving up is not an option: infinite-dimensional vector spaces are everywhere, so we
might as well learn how to deal with them.

Let V be a vector space over a field F. As you know, a linear combination is a finite
expression of the form

a1v1 + ⋅ ⋅ ⋅ + anvn where n ∈N, a1, . . . , an ∈ F, v1, . . . , vn ∈ V.

Finally, a subset B of V is a basis if every vector in V can be written uniquely as a finite
linear combination of vectors in B.

First year linear algebra tells us that every finite-dimensional vector space V has a basis1.
What happens if V is not finite-dimensional?

Example 1.1. The space of polynomials in one variable R[x] (sometimes called P(R)
in linear algebra) has basis B = {1, x, x2, . . .}.

Solution. This is really just a restatement of the definition of polynomial: any element f
of R[x] is of the form

f = a0 + a1x + ⋅ ⋅ ⋅ + anxn,

thus a linear combination of elements of B.
If we have

f = a0 + a1x + ⋅ ⋅ ⋅ + anxn = b0 + b1x + ⋅ ⋅ ⋅ + bmxm,

then the second equality is an equality of polynomials, which by definition requires n =m
and ai = bi for all i = 0, . . . , n.

This first example worked out great: the space has bases, and we can actually write down
a basis (more precisely, the standard basis) explicitly. We owe our luck to the fact that, even

1This statement appears to be circular, as “finite-dimensional” is typically defined as “having a finite basis”,
but the circularity can be resolved by provisionally defining “finite-dimensional” as “being the span of
some finite subset” until the existence of bases is established.
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1. Introduction

though the space of polynomials is not finite-dimensional, each element of the space is in
some sense “finitely generated”.

Something we can try is to start with the prototypical finite-dimensional spaces we know,
say Rn, and “take the limit as nÐ→∞”. This leads us to consider the space RN of arbitrary
real sequences (x1, x2, . . . ). We may naively hope that, since {e1, e2, . . . , en} is a basis for Rn,
and these standard bases nest nicely as n increases, we end up with {e1, e2, . . .} being a basis
for RN, but that is not the case because, for instance, the constant sequence (1,1, . . . ) is not
in the span of {e1, e2, . . .}. (See Exercise B.5 for more details.)

For another example, take V =R viewed as a vector space over Q. One can show that the
set S = {√n ∶ n ∈N squarefree} is Q-linearly independent in R, but not a basis. The same is
true of the set T = {πn ∶ n ∈N}. (See Exercise B.6.) In fact, R has no countable basis over
Q. (See Exercise A.9.) It’s a sign that it may be rather difficult to write down an explicit
Q-basis of R.

This is turning into a very depressing motivating section, so here is some good news:

Theorem 1.2. Any vector space V has a basis.

For the proof of this theorem, see Exercise B.3; it requires the (in)famous Zorn’s Lemma
(Lemma B.1).

The result is worth celebrating: we have bases for all vector spaces. . . but the proof gives
absolutely no handle on what a basis looks like or how to compute one explicitly. This severely
reduces the usefulness of the notion of a basis for an arbitrary infinite-dimensional vector
space.

And yet. . . it is hard to ignore the success of Example 1.1, where we saw an explicit, nice
basis for the space of polynomials: {1, x, x2, . . .}. We also know that many functions of one
real variable can be expressed as Taylor series, for instance

ex = 1 + x + x2

2!
+ x3

3!
+ . . .

This suggests that maybe one should drop the finiteness condition from the definition of linear
combination and see where that leads. Consideration of Taylor series also tells us that we
need something more than just the algebraic structure of a vector space if we are to make
sense of “infinite linear combinations”. The notion of convergence of infinite series in real
analysis is based on the Euclidean distance function on the real line: d(x, y) = ∣x − y∣. We
know from first year linear algebra that choosing an inner product on a vector space gives rise
to a distance function, so that’s a possible direction to explore. Before saying more about it
though, note that an inner product also gives a concept of orthogonality, and of more general
angles; and it is unclear whether angles are needed for what we want to do.

1.2. Plan(-ish)
Here is, in rough terms, how we will be spending our time this semester.

The first thing that we will do is axiomatise the essential properties of the Euclidean
distance function. We do this on arbitrary sets (not necessarily vector spaces) and obtain
the notion of a metric space, and see that a surprising amount of results from real analysis
carry through to this more general setting. There are certain respects in which metric spaces
are not that well-behaved. Slightly counterintuitively, we remedy this by generalising even
further to topological spaces, where we abandon the idea of distance between points in
favour of the notion of neighbourhood of a point.

Once we have a grasp on the behaviour of general metric spaces and their topology, we
consider the special case where the underlying set has a vector space structure. These are
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called normed vector spaces (in this setting, it is customary to single out the norm of a
vector rather than the distance between two vectors; the two are equivalent).

Finally, because of their importance in many applications, we specialise further to inner
product spaces. One natural example is the space V = Cts([−π,π],R) of continuous
functions f ∶ [−π,π]Ð→R, endowed with the inner product

⟨f, g⟩ = ∫
π

−π
f(x)g(x)dx.

(A normalising factor is often placed in front of the integral for convenience in applications,
but we’ll stick with this definition.)

The distance function is of course

d(f, g) =
√
⟨f − g, f − g⟩.

This allows us to bring rigorous meaning to statements such as

x =
∞
∑
n=1

2(−1)n+1
n

sin(nx).

In our setting, we have

f(x) = x, fn(x) =
2(−1)n+1

n
sin(nx), sN(x) =

N

∑
n=1

fn(x),

all of them elements of V , and the claim is that d(f, sN)Ð→ 0 as N Ð→∞.
Spaces such as this inner product space V are pretty nice, but in general there will be

infinite series of elements of V that “look like” they should converge, however their limit is
not in V .

We deal with this by restricting to inner product spaces that are complete (every Cauchy
sequence in V converges to an element of V ); these are called Hilbert spaces, and have nice
properties.

Of course, one cannot study mathematical structures without studying the maps between
them. For topological spaces, this will mean continuous functions. For metric spaces, depending
on what we are trying to do, it could be continuous functions, or distance-preserving functions,
or contractions. For normed vector spaces, we will mostly work with continuous linear
transformations; this naturally leads to questions about eigenvalues and eigenvectors, and
ultimately to spectral theory, which is much richer than in the finite-dimensional setting.

1.3. Notations and conventions
Set inclusions are denoted S ⊆ T (nonstrict inclusion: equality is possible) or S ⊊ T (strict
inclusion: equality is ruled out). I will definitely avoid using S ⊂ T (as it is ambiguous), and
will try to avoid S /⊆ T (not ambiguous, but too easily confused with S ⊊ T ). While we’re at
it, the power set of a set X, that is, the set of all subsets of X, is denoted P(X).

The symbols ∣z∣ will always denote the usual absolute value (or modulus) function on C:

∣z∣ =
√
x2 + y2, where z = x + iy.

It, of course, defines a restricted function ∣ ⋅ ∣ ∶ S Ð→R⩾0 for any subset S ⊆C, which is the
same as the real absolute value function when S =R.

For better or worse, the natural numbers

N = {0,1,2,3, . . .}
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1. Introduction

start at 0. The variant starting at 1 is

Z⩾1 = {1,2,3, . . .}.

Unless otherwise specified, F denotes an arbitrary field in Chapter 2, and it denotes either
R or C in Chapter 3.

I am not the right person to ask about foundational questions of logic or set theory: I
neither know enough nor care sufficiently about the topic. It’s of course okay if you care
and (want to) know more about these things. I am happy to spend my mathematical life in
ZFC (Zermelo–Fraenkel set theory plus the Axiom of Choice), and these notes are part of my
life so they are also hanging out in ZFC. In particular, I am very likely to use the Axiom of
Choice without comment (and sometimes without noticing); I may occasionally point it out if
someone brings my attention to it.

Acknowledgements
Thanks go to Thomas Black, Stephanie Carroll, Isaac Doosey-Shaw, Jack Gardiner, Leigh
Greville, Ethan Husband, Peter Karapalidis, Rose-Maree Locsei, Quan Nguyen, Quang Ong,
Hai Ou, Joshua Pearson, Lucas Pedersson, Kashma Pillay, Guozhen Wu, Corey Zelez, and
Chengjing Zhang for corrections and suggestions on various incarnations of these notes.
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2. Metric and topological spaces

2.1. Metrics
Think of Euclidean distance in R:

d(x, y) = ∣x − y∣.

What properties does it have? Well, certainly distances are non-negative, and two points are
at distance zero from each other only if they are equal. The distance from x to y is equal to
the distance from y to x. And we all love the triangle inequality: if you want to get from x to
y, adding an intermediate stopover point t will not make the journey shorter.

We already know of other spaces where such functions exist (Rn comes to mind). So let’s
formalise these properties and see what we get.

Let X be a set. A metric (or distance) on X is a function

d ∶ X ×X Ð→R⩾0

such that:

(a) d(x, y) = d(y, x) for all x, y ∈X;

(b) d(x, y) ⩽ d(x, t) + d(t, y) for all x, y, t ∈X;

(c) d(x, y) = 0 with x, y ∈X if and only if x = y.

The pair (X,d) is called a metric space; when the choice of metric is understood, we may
drop it from the notation and simply write X.

Of course, the simplest example of a metric space is R with the Euclidean distance. But
there are other natural examples:

Example 2.1. Let Γ be a connected undirected simple graph (finitely many vertices,
each pair of which are joined by at most one undirected edge; no loops). Given vertices x
and y, we let d(x, y) denote the minimum length of any path joining x and y.

Then d is a metric on the set of vertices of Γ.

Solution.

(a) Symmetry follows directly from the fact that Γ is undirected.

(b) Let x, y, t ∈ Γ, let p1 be a shortest path (of length d(x, t)) joining x and t, and p2 a
shortest path (of length d(t, y)) joining t and y. Concatenating p1 and p2 we get
a path of length d(x, t) + d(t, y) from x to y, therefore d(x, y) is at most equal to
this length.

(c) Clear (if x = y then the empty path goes from x to y; conversely, if d(x, y) = 0 then
there is an empty path joining x to y, forcing x = y).

Other examples are quite exotic, see for instance the p-adic metric in Exercise 1.10.
Given a metric space, we can obtain other metric spaces by considering subsets:
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2. Metric and topological spaces

Example 2.2. If (X,d) is a metric space, then for any subset S of X, the restriction of
d to S gives a metric on S. (This is called the induced metric.)

Solution. Straightforward (follows immediately from the definitions).

Or we can construct metric spaces as Cartesian products of other metric spaces. There are
many ways of doing this, none of which is particularly canonical.

Example 2.3. Let (X1, dX1) and (X2, dX2) denote two metric spaces. Prove that the
function d1 defined by

d1((x1, x2), (y1, y2)) = dX1(x1, y1) + dX2(x2, y2)

is a metric on the Cartesian product X1 ×X2.
The definition extends in the obvious manner to the Cartesian product of finitely many

metric spaces (X1, dX1), . . . , (Xn, dXn).
(This is sometimes called the Manhattan metric or taxicab metric. In the context of

Rn =R × ⋅ ⋅ ⋅ ×R, it is called the `1 metric.)

Solution. Straightforward.

Example 2.4. Same setup as Example 2.3, but with the function

d∞((x1, x2), (y1, y2)) =max (dX1(x1, y1), dX2(x2, y2)).

The definition extends in the obvious manner to the Cartesian product of finitely many
metric spaces (X1, dX1), . . . , (Xn, dXn).

(This is called the sup norm metric or uniform norm metric. In the context of Rn, it
is called the `∞ metric.)

Solution. Straightforward; proving the triangle inequality uses

max{a + b, c + d} ⩽max{a, c} +max{b, d}.

Example 2.5. Take X1 =X2 =R with the Euclidean metric and convince yourself that
neither d1 from Example 2.3 nor d∞ from Example 2.4 is the Euclidean metric on R2.

Solution. Consider (1,2) and (0,0), then the distances are:

d1((1,2), (0,0)) = 1 + 2 = 3
d∞((1,2), (0,0)) =max{1,2} = 2
d2((1,2), (0,0)) =

√
12 + 22 =

√
5.

Not every metric has to do with lengths and geometry in an obvious way. The p-adic metric
in Exercise 1.10 is an example of something a little different. For another example, let n ∈ Z⩾1,
X = Fn

2 , and let d(x, y) be the number of indices i ∈ {1, . . . , n} such that xi ≠ yi. Then d is a
metric on X; it is called the Hamming metric. See Exercise 1.6 for more details.
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2.2. Open subsets of metric spaces
A metric on a set X gives us a precise notion of distance between elements of the set. We use
familiar geometric language to refer to the set of points within a fixed distance r ∈R⩾0 of a
fixed point c ∈X: the open ball of radius r and centre c is

Br(c) = {x ∈X ∶ d(x, c) < r}.

There is also, of course, a corresponding closed ball

Dr(c) = {x ∈X ∶ d(x, c) ⩽ r}

and a corresponding sphere
Sr(c) = {x ∈X ∶ d(x, c) = r}.

The familiar names are useful for guiding our intuition, but beware of the temptation to
assume things about the shapes of balls in general metric spaces:

Example 2.6. Describe the Euclidean open balls centred at 0 in Z (endowed with the
metric induced from the Euclidean metric on R).

Solution. In addition to the empty set ∅ = B0(0), we have for all n ∈N the set

{−n,−n + 1, . . . ,−1,0,1, . . . , n − 1, n} = Bn+1(0) = Br(0) for any r ∈ (n,n + 1].

For more intuition-challenging examples, see Exercises 1.4 and 1.11.
We are now ready for a simple yet fundamental concept: a subset U ⊆X of a metric space
(X,d) is an open set if, for every u ∈ U , there exists r ∈R>0 such that Br(u) ⊆ U .

Example 2.7. Prove that ∅ and X are open sets.

Solution. The first statement is vacuously true; the second follows directly from the
definition of Br(x).

Example 2.8. Prove that any open ball is an open set.

Solution. Let U = Br(x). If r = 0 then U = ∅, an open set. Otherwise, let u ∈ U and let
t = r − d(u,x). Since d(u,x) < r we have t > 0.

I claim that Bt(u) ⊆ U . Let w ∈ Bt(u), so that d(w,u) < t. Then

d(w,x) ⩽ d(w,u) + d(u,x) < t + r − t = r.

What happens if we combine open sets using set operations?

Proposition 2.9. Let X be a metric space. The union of an arbitrary collection of open sets
is an open set.

Proof. Let I be an arbitrary set and, for each i ∈ I, let Ui ⊆ X be an open set. We want to
prove that

U =⋃
i∈I

Ui

is open. Let u ∈ U , then there exists i ∈ I such that u ∈ Ui. But Ui ⊆X is open, so there exists
an open ball Br(u) ⊆ Ui. Since Ui ⊆ U , we have Br(u) ⊆ U .

11



2. Metric and topological spaces

Intersections are a bit more delicate:

Proposition 2.10. Let X be a metric space. The intersection of a finite collection of open
sets is an open set.

Proof. Let n ∈N and, for i = 1, . . . , n, let Ui ⊆X be an open set. We want to prove that

U =
n

⋂
i=1

Ui

is open. Let u ∈ U , then u ∈ Ui for all i = 1, . . . , n. Since Ui is open, there exists an open
ball Bri(u) ⊆ Ui. Let r = min{r1, . . . , rn}, then Br(u) ⊆ Bri(u) ⊆ Ui for each i = 1, . . . , n.
Therefore Br(u) ⊆ U .

Wondering about the necessity of the word “finite” in the statement of the proposition?
See Tutorial Question 2.2.

2.3. Topological spaces and continuous functions
Let X be a set. Taking a hint from the previous section, we define a topology on X to be a
subset T ⊆ P(X) (in other words, T is a collection of subsets of X) such that

(a) ∅ ∈ T and X ∈ T ;

(b) if {Ui ∶ i ∈ I} is an arbitrary collection of elements of T , then ⋃
i∈I

Ui ∈ T ;

(c) if {U1, . . . , Un} is a finite collection of elements of T , then
n

⋂
j=1

Uj ∈ T .

The elements of T are called open sets in X, and (X,T ) is called a topological space. A closed
set of a topological space (X,T ) is a set whose complement is open.

While we’re at it, here are a few more useful definitions:

• An open neighbourhood of x ∈X is an open set U ⊆X such that x ∈ U .

• A neighbourhood of x ∈X is a set V ⊆X containing an open neighbourhood of x.

The prototypical example (for us) of a topology is the collection of open sets defined on X
by some distance function d (see Proposition 2.24 for details). However, topological spaces
are a very general concept encompassing much more than metric spaces. We will not place
a heavy emphasis on them in this subject, using them mostly to separate those properties
of metric spaces that actually depend on the metric from those that depend only on the
configuration of open subsets.

Example 2.11. Let X be an arbitrary set and let T = {∅,X}. This is called the trivial
topology on X.

Example 2.12. Let X be an arbitrary set and let T = P(X). (Every subset is an open
subset.) This is called the discrete topology on X.

12
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Example 2.13. Let X be an arbitrary set and let

T = {S ∈ P(X) ∶ X ∖ S is finite} ∪ {∅}.

This is called the cofinite topology on X.

Comparing topologies
If T1 and T2 are two topologies on the same set X and T1 ⊆ T2 we say that T1 is coarser than
T2 and T2 is finer than T1. For example, the discrete topology is the finest possible topology
on X, and the trivial topology is the coarsest possible topology on X.

In Tutorial Question 2.3 you will find all (4) possible topologies on a set with two elements.
(This game quickly becomes complicated as the size of the set increases, for instance a set of
three elements has 29 distinct topologies.)

Here is an easy way to produce many topologies on a set:

Example 2.14. Let X be a set and S ⊆ P(X). The topology generated by S is obtained
by letting S′ consist of all finite intersections of elements of S, then letting T consist of
all arbitrary unions of elements of S′.

For instance, the discrete topology on X is generated by the set of singletons (aka
one-point subsets).

The topology generated by S is the coarsest topology T such that S ⊆ T (see Tutorial
Question 2.4).

Continuous functions
The appropriate notion of morphism for topological spaces is that of continuous function: if
f ∶ X Ð→ Y is a function from one topological space to another, we say that f is continuous if,
for any open subset V ⊆ Y , its inverse image f−1(V ) is an open subset of X. The corresponding
notion of isomorphism of topological spaces has a special name: a homeomorphism is a bijective
continuous function f ∶ X Ð→ Y such that f−1 ∶ Y Ð→X is continuous. In this case, X and
Y are said to be homeomorphic topological spaces. It is easy to see (with the help of Tutorial
Question 2.9) that this is an equivalence relation. (As an example, the 29 distinct topologies
on a set with three elements fall into 9 homeomorphism classes.)

We can now state a couple of equivalent criteria for comparing topologies:

Proposition 2.15. Let X be a set and T1,T2 two topologies on X. The following statements
are equivalent:

(a) T2 is coarser than T1 (that is, T2 ⊆ T1);

(b) for any x ∈X and any T2-open neighbourhood U2
x of x, there exists a T1-open neighbour-

hood U1
x of x such that U1

x ⊆ U2
x ;

(c) the function f ∶ (X,T1)Ð→ (X,T2) given by f(x) = x is continuous.

Proof. See Exercise 1.19.

New topological spaces from old
If (X,T ) is a topological space and Y is any subset of X, we define

T ∣Y = {U ∩ Y ∶ U ∈ T } ⊆ P(Y ).

13
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Then T ∣Y is a topology on Y , called the induced (or subspace) topology.

Example 2.16. While the induced topology is a simple and natural construction, the
result can be surprising unless you keep in mind that openness is a relative notion
rather than an absolute one.

For instance, take X =R with its usual Euclidean topology.

• If Y = (0,2) then (1,2) = (1,3)∩Y is open in Y . Of course (1,2) is also open in X
in this case.

• If Y = (0,2] then (1,2] = (1,3) ∩ Y is open in Y , but certainly not open in X.

• If Y is a complicated subset of X, then its open subsets will necessarily look very
different to the open subsets of X. You could take Y to be the Cantor ternary set,
for instance.

If X1 and X2 are topological spaces, the product topology on X1 ×X2 is generated by the set

R = {U1 ×U2 ∶ U1 ⊆X1 open, U2 ⊆X2 open}.

(We might refer to the elements of R as (open) rectangles.)

Example 2.17. Show that R is closed under finite intersections, so that the product
topology consists of arbitrary unions of rectangles.

Solution. By induction, we can reduce to checking that the intersection of two rectangles
is again a rectangle. (Take a moment to appreciate the power and the danger of names.)

Let R = U1 ×U2, R′ = U ′1 ×U ′2 be two rectangles. Then

R ∩R′ = {(x1, x2) ∈X1 ×X2 ∶ x1 ∈ U1, x2 ∈ U2} ∩ {(x1, x2) ∈X1 ×X2 ∶ x1 ∈ U ′1, x2 ∈ U ′2}
= {(x1, x2) ∈X1 ×X2 ∶ x1 ∈ U1 ∩U ′1, x2 ∈ U2 ∩U ′2}
= (U1 ∩U ′1) × (U2 ∩U ′2).

Proposition 2.18. Let X1, X2 be topological spaces and endow X1 ×X2 with the product
topology. Then the two projection maps

π1 ∶ X1 ×X2 Ð→X1, π1(x1, x2) = x1

π2 ∶ X1 ×X2 Ð→X2, π2(x1, x2) = x2

are continuous.
The product topology is the coarsest topology on X1 × X2 such that both π1 and π2 are

continuous.

Proof. Straightforward: if U1 ⊆ X1 is open, then π−11 (U1) = U1 ×X2 is an open rectangle in
X1 ×X2.

For the minimality statement, suppose T is a topology on X1 ×X2 such that π1 and π2 are
continuous. Let U1 ⊆ X1 and U2 ⊆ X2 be arbitrary opens. By continuity, U1 ×X2 = π−11 (U1)
and X1 ×U2 = π−12 (U2) must be in T , therefore so must their intersection

(U1 ×X2) ∩ (X1 ×U2) = U1 ×U2.

We conclude that T contains all rectangles U1×U2, so the coarsest such topology is the topology
generated by the rectangles (see Tutorial Question 2.4), that is the product topology.

14
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Separation property: Hausdorff
Topological spaces are sometimes too general. Life is a little easier given some basic amenities;
here is a simple property that can make things more comfortable: we say that a topological
space X is Hausdorff if given any distinct points x ≠ y of X, there exist open neighbourhoods
U of x and V of y such that U ∩ V = ∅. (We sometimes say that x and y are separated by
opens, and refer to the Hausdorff condition as a separation property; there are other separation
properties, weaker or stronger than Hausdorffness.)

Example 2.19. Consider R with the cofinite topology (see Example 2.13). This is not a
Hausdorff topological space.

Solution. We can do this with any two distinct points of R, but let’s take x = 0 and y = 1
for concreteness.

Suppose the space is Hausdorff, and let U be an open neighbourhood of x and V one
of y such that U ∩ V = ∅.

Then U and V be non-empty open subsets of R (in the cofinite topology). Therefore

U =R ∖ {x1, . . . , xn}
V =R ∖ {y1, . . . , ym},

for some m,n ∈N. Then

U ∩ V =R ∖ {x1, . . . , xn, y1, . . . , ym}.

In particular, U ∩ V is uncountable, and so most definitely non-empty, contradiction.

Interior, closure
Recall that a subset C ⊆ X is closed if X ∖C is an open set. Beware: as opposed to their
English language counterparts, the terms “open” and “closed” do not indicate a dichotomy!
All four possibilities can be realised: you can have (a) sets that are both open and closed,
(b) sets that are open but not closed, (c) sets that are closed but not open, (d) sets that are
neither open nor closed.

Because of the interplay between open and closed sets, collections of closed sets have
properties that are complementary to those of collections of open sets, see Exercise 1.13.

Given a topological space X and a subset A ⊆X, we define

(a) the interior A○ of A to be the union of all open subsets of A, equivalently the largest
open subset of A;

(b) the closure A of A to be the intersection of all closed sets that contain A, equivalently
the smallest closed set that contains A;

(c) the boundary ∂A of A to be ∂A = A ∩X ∖A.

Proposition 2.20. If A is a subset of a topological space X, then x ∈ A if and only if every
open neighbourhood of x intersects A nontrivially.

Proof. We prove the equivalent statement: x ∈ X ∖ A if and only if there exists an open
neighbourhood Ux of x such that Ux ∩A = ∅.

Suppose x ∈ X ∖ A. Letting Ux = X ∖ A, we get an open neighbourhood of x with the
property that Ux ∩A = ∅, so a fortiori Ux ∩A = ∅.

15
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Conversely, given Ux open and disjoint to A, X ∖Ux is closed and contains A, so it contains
the closure A. Hence x ∈X ∖A.
Proposition 2.21. For any subset A of a topological space X we have:

(a) ∂A ∩A○ = ∅;

(b) A = A○ ∪ ∂A;

(c) A○ = A ∖ ∂A.
Proof. See Tutorial Question 2.6.

We say that A is nowhere dense in X if (A)○ = ∅. A simple example of this is Z as a subset
of R, see Exercise 1.32.

We say that A is dense in X if A =X.
Proposition 2.22. If A is a subset of a topological space X, then A is dense in X if and
only if every nonempty open subset of X intersects A nontrivially.
Proof. Suppose A is dense in X and U is a nonempty open subset. Assume, by contradiction,
that A∩U = ∅, then A ⊆ (X ∖U). The latter is a closed set containing A, so by the definition
of the closure we have A ⊆ (X ∖U) ⊊X, contradicting A =X.

In the other direction, suppose A intersects all nonempty open subsets nontrivially. Assume,
by contradiction, that A ≠X, so that U ∶=X ∖A is a nonempty open set. Then it intersects A
nontrivially: there exists a ∈ A such that a ∈ U . But then a ∉ A, contradicting a ∈ A ⊆ A.

Example 2.23. Consider R with its usual topology. Both Q and R ∖Q are dense in R.

Solution. Let (a, b) ⊆R be a finite length interval with a < b. Let n ∈ Z⩾1 be such that
n > 1/(b− a), then nb−na > 1. This means that there exists m ∈ Z such that nb >m > na.
Hence the rational number m/n ∈ (a, b).

Now (a, b) is uncountable and Q is countable, so (a, b) must also contain some irrational
number.
So we have two disjoint sets, each of which is dense in R. The situation is very different if

we ask for the sets to be both dense and open, which we do in Tutorial Question 3.3.

2.4. Properties of topologies induced by metrics
In this section, we revisit some of the concepts introduced above in the special context of
metric spaces.
Proposition 2.24. Every metric space is a topological space.

In other words, if (X,d) is a metric space and T is the set of open subsets of X (defined
as in Section 2.2), then T is a topology on X (called the metric topology on X).

The metric topology is generated by the set of open balls in X.
Proof. Put together Example 2.7, Propositions 2.9 and 2.10, and Tutorial Question 3.6.

Looking at things from the other end, a topological space (X,T ) is said to be metrisable if
there exists a metric d on X such that the resulting collection of open sets is precisely T .

Not every topological space is metrisable! (For a (non)-example, see Tutorial Question 2.3.)
In a metric space, the concept of continuous function has equivalent formulations that are

more familiar from calculus and analysis. For example, the equivalence to the ε–δ definition
is detailed in Tutorial Question 2.8.
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Example 2.25. Let (X,d) be a metric space and fix a point t ∈X. Define f ∶ X Ð→R⩾0
by

f(x) = d(x, t).
Then f is a continuous function.

Solution. Here is a proof that pretends to avoid the ε–δ formalism. By Exercise 1.22 it
suffices to consider opens U ⊆R⩾0 in a set that generates the topology on R⩾0 ⊆R; from
real analysis, or a special case of Tutorial Question 3.6, we can take U = (a, b) ⊆R⩾0 to
be an open interval of finite length. Then

f−1(U) = f−1((a, b))
= {x ∈X ∶ a < d(x, t) < b}
= {x ∈X ∶ a < d(x, t)} ∩ {x ∈X ∶ d(x, t) < b}
= (X ∖Da(t)) ∩Bb(t),

which is open in X as it is the intersection of two open sets. (Here we also used Exercise 1.9
to deduce that Da(t) is a closed set.)

If d1 and d2 are two metrics on the same set X, we say that d1 is coarser (resp. finer) than
d2 if the topology defined by d1 is coarser (resp. finer) than the topology defined by d2. We
say that the metrics d1 and d2 are (topologically) equivalent if d1 is both finer and coarser
than d2, simply put that d1 and d2 define precisely the same topology on X.

To see an important example of this, let’s revisit the product of metric spaces:

Example 2.26. In Exercise 1.4 we considered X = R and X ×X = R2 endowed with
three different metrics:

d1((x1, x2), (y1, y2)) = ∣x1 − y1∣ + ∣x2 − y2∣
d∞((x1, x2), (y1, y2)) =max{∣x1 − y1∣, ∣x2 − y2∣}
d2((x1, x2), (y1, y2)) =

√
∣x1 − y1∣2 + ∣x2 − y2∣2.

These three different metrics give rise to the same topology on R2 (which is the same as
the product topology); to see this, use the criterion from Proposition 2.15.

Example 2.27. Any metric space (X,d) is Hausdorff.

Solution. If X is empty or a singleton, the statement is vacuously true.
Now suppose x ≠ y, so that d(x, y) > 0. Let 2r = d(x, y), U = Br(x), V = Br(y), then

r > 0 so U and V are nonempty opens, x ∈ U , y ∈ V , and U ∩ V = ∅.
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A. Appendix: Prerequisites

A.1. Equivalence relations
An equivalence relation ∼ is a way of identifying elements of a set. More precisely, given a set
A and x, y ∈ A, we will write x ∼ y to signify that “x is equivalent to y”, and we ask for this
to satisfy three properties:

• x ∼ x for all x ∈ A (reflexivity);

• if x ∼ y then y ∼ x (symmetry);

• if x ∼ y and y ∼ z then x ∼ z (transitivity).

The following example should be very familiar:

Example A.1. Fix a natural number n. For k,m ∈ Z, define k ∼m if m − k is divisible
by n. Show that this satisfies the properties of an equivalence relation on Z.

Solution. • Given k ∈ Z, k − k = 0 is divisible by n.

• If k ∼m, then m − k = na for some a ∈ Z, therefore k −m = −na, so m ∼ k.

• If k ∼ m and m ∼ ` then m − k = na and ` −m = nb for some a, b ∈ Z. Therefore
` − k = n(a + b) so k ∼ `.

Suppose we are given an equivalence relation on a set A. For any element x ∈ A, we define
the equivalence class of x as:

[x] = {y ∈ A ∶ x ∼ y}.
Proposition A.2. For any elements x, z ∈ A, their equivalence classes are either identical or
disjoint, in other words:

either [x] = [z] or [x] ∩ [z] = ∅.
Proof. Let x, z ∈ A. There are two possibilities:

• x ∼ z: given y ∈ [x], we have x ∼ y, so y ∼ x, so y ∼ z, so y ∈ [z]. This tells us that
[x] ⊆ [z], and the other inclusion follows the same way from z ∼ x. Therefore [x] = [z].

• x /∼ z: suppose [x]∩ [z] is not empty, and pick some element y in there. Then y ∈ [x] so
y ∼ x, and y ∈ [z] so y ∼ z, implying that x ∼ z, contradiction. Therefore [x] ∩ [z] = ∅.

Example A.3. How many distinct equivalence classes are there for the equivalence
relation on Z defined in Example A.1?

Solution. Given m ∈ Z, let 0 ⩽ r ⩽ n − 1 be the remainder of the division of m by n:
m = qn + r. Then m − r is divisible by n, hence m ∼ r. From the previous part, we know
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that there are at most n equivalence classes, one for each possible value of r. To show
that we have exactly n buddy groups, we need to prove that [r1] ≠ [r2] for any r1 ≠ r2
with 0 ⩽ r1, r2 ⩽ n − 1. We do this by contradiction: if [r1] = [r2] then r1 ∼ r2, so r2 − r1
is a multiple of n. But −(n − 1) ⩽ r2 − r1 ⩽ (n − 1), and the only multiple of n in that
interval is 0, in other words r2 = r1, contradiction.

Suppose we are given an equivalence relation on a set A, and consider the set of equivalence
classes

(A/∼) ∶= {[x] ∶ x ∈ A}.
A/∼ is read as “A mod tilde”, and it is referred to as the quotient of A by the relation ∼.
There is a canonical surjective function (the quotient map)

π ∶ AÐ→ A/∼ given by π(x) = [x].

Example A.4 (Row equivalence of matrices). Fix natural numbers m,n and consider
the set Mm×n of all m× n matrices with real entries. Given matrices X,Y ∈Mm×n, define
X ∼ Y if and only if there is a finite sequence of elementary row operations that starts at
X and ends at Y .

Show that this is an equivalence relation.

Solution. • Let X ∈Mm×n. The identity elementary row operation takes X to X, so
X ∼X.

• Let X,Y ∈Mm×n and suppose X ∼ Y , so there is a sequence ρ1○⋅ ⋅ ⋅○ρk of elementary
row operations that starts at X and ends at Y . Then each ρj is invertible and ρ−1j
is an elementary row operation, so the sequence ρ−1k ○ ⋅ ⋅ ⋅ ○ ρ−11 starts at Y and ends
at X, so Y ∼X.

• Let X,Y,Z ∈ Mm×n and suppose that X ∼ Y and Y ∼ Z. Composing the two
sequences of elementary row operations, we get a finite sequence that starts at X
and ends at Z, so X ∼ Z.

Example A.5. Describe explicitly the quotient of M2×3 by the equivalence relation
from Example A.4, by listing a representative element for each equivalence class.

Describe as precisely as you can all the matrices that belong to the equivalence class

of the matrix X = [1 0 −1
0 0 0

].

Show that the function f ∶ (M2×3/∼ )Ð→N given by f([X]) = rank(X) is well-defined.

A.2. Cardinality
We say that two sets S and T have the same cardinality if there exists a bijective function
f ∶ S Ð→ T .

This defines an equivalence relation (on the set of subsets of any fixed set Ω, see Exercise A.6).
In this subject, the natural numbers

N = {0,1,2,3, . . .}

start at 0.

22



MAST30026 MHS

A set S is finite if it is empty or there exists n ∈N such that S has the same cardinality as
{0, . . . , n}. A set S is infinite if it is not finite.

We will use the term countable to mean what is more precisely called countably infinite,
that is, a set that has the same cardinality as N. A set S is uncountable if it is infinite and
not countable.
Proposition A.6. Any subset S of a countable set T is either finite or countable.

The first uncountable set that most people encounter is the set R of real numbers. It is
easy to see that any interval of length > 0 in R must also be uncountable.

It can be difficult to find a bijective function between two sets (assuming that one exists).
The following result makes it easier to show that two sets have the same cardinality. (The
proof is nontrivial, and uses the Axiom of Choice.)
Theorem A.7 (Schröder–Bernstein). If A and B are sets and f ∶ AÐ→ B and g ∶ B Ð→ A
are injective functions, then A and B have the same cardinality.

A.3. Maps between vector spaces
Unless specified otherwise, we use F to denote an arbitrary field.

For vector spaces V , W over F, we write
Hom(V,W ) = {f ∶ V Ð→W ∶ f is a linear transformation}.

This is a vector space over F, with zero vector given by the constant function 0 ∶ V Ð→W ,
0(v) = 0W for all v ∈ V , and with vector addition and scalar multiplication defined pointwise:

(f1 + f2)(v) = f1(v) + f2(v) and (λf)(v) = λf(v).
An F-algebra is a vector space A over F together with a multiplication map A ×AÐ→ A,
(u, v)z→ uv, satisfying

• (u + v)w = uw + vw for all u, v,w ∈ A;

• u(v +w) = uv + uw for all u, v,w ∈ A;

• (αu)(βv) = (αβ)(uv) for all α,β ∈ F and all u, v ∈ A.
The algebra A is associative if

(uv)w = u(vw) for all u, v,w ∈ A.
The algebra A is unital if there exists an element 1 ∈ A with the property that

1v = v1 = v for all v ∈ A.
For any vector space V over F, End(V ) ∶= Hom(V,V ) is an associative unital F-algebra, see
Exercise A.10.

An important property of a basis for a vector space is the ability to define a function on
that basis and then extend it to a unique linear map. More precisely, let V and W be vector
spaces over F. Fix a basis B of V . For any function g ∶ B Ð→W there exists a unique linear
map f ∶ V Ð→W such that g = f ∣B, constructed in the following manner:

Given v ∈ V , there is a unique expression of the form
v = a1v1 + ⋅ ⋅ ⋅ + anvn, n ∈N, aj ∈ F, vj ∈ B.

Therefore the only option is to set
f(v) = a1g(v1) + ⋅ ⋅ ⋅ + ang(vn).

It is easy to see that f is linear.
We say that f is obtained from g by extending by linearity.
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A.4. Inner products
We take F to be either R or C, and we denote by ⋅ the complex conjugation (which is just
the identity if F =R).

Let V be a vector space over F.
An inner product on V is a function

⟨⋅, ⋅⟩ ∶ V × V Ð→ F

such that

(a) ⟨w, v⟩ = ⟨v,w⟩ for all v,w ∈ V ;

(b) ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ for all u, v,w ∈ V ;

(c) ⟨αv,w⟩ = α ⟨v,w⟩ for all v,w ∈ V , all α ∈ F;

(d) ⟨v, v⟩ ⩾ 0 for all v ∈ V and ⟨v, v⟩ = 0 iff v = 0.

Properties (a), (b), and (c) say that ⟨⋅, ⋅⟩ is linear in the first variable, but conjugate-linear in
the second:

⟨v,αw⟩ = ⟨αw, v⟩ = α⟨w, v⟩ = α ⟨v,w⟩.
(Such a function V × V Ð→ F is called a sesquilinear form.)

Property (d) says that ⟨⋅, ⋅⟩ is positive-definite.
An inner product space is a pair (V, ⟨⋅, ⋅⟩), where V is a vector space over F and ⟨⋅, ⋅⟩ is an

inner product on V .

Example A.8. The prototypical inner product on Cn is

⟨u, v⟩ =
n

∑
k=1

ukvk = vTu,

which on Rn becomes
⟨u, v⟩ =

n

∑
k=1

ukvk = vTu.

All other inner products on Cn are of the form

⟨u, v⟩ = vTAu,

where A is an n × n positive-definite Hermitian matrix, that is

A
T = A and all the eigenvalues of A are real and positive.

Over R, A is a positive-definite1 symmetric matrix.
Define

∥v∥ =
√
⟨v, v⟩.

Proposition A.9 (Cauchy–Schwarz Inequality). Take u, v in an inner product space V .
Then

∣⟨u, v⟩∣ ⩽ ∥u∥ ∥v∥,
where equality holds if and only if u and v are parallel, that is u = λv for some λ ∈ F.

1There is a slightly weaker notion of positive-semidefinite matrix A, where we ask for the eigenvalues to be
real and non-negative. Since we are then allowing 0 to be an eigenvalue, such a matrix may not define an
inner product, because there could be nonzero vectors with length zero.
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Proof. If u = 0 or v = 0, we have the equality 0 = 0. Otherwise, for any t ∈ F we have

0 ⩽ ⟨u − tv, u − tv⟩ = ⟨u,u⟩ − 2Re (t⟨u, v⟩) + t t⟨v, v⟩
= ∥u∥2 − 2Re (t⟨u, v⟩) + ∣t∣2∥v∥2.

In particular, we can take t = ⟨u,v⟩∥v∥2 :

0 ⩽ ∥u∥2 − 2Re(∣⟨u, v⟩∣
2

∥v∥2 ) +
∣⟨u, v⟩∣2
∥v∥2 = ∥u∥2 − ∣⟨u, v⟩∣

2

∥v∥2 ,

so ∣⟨u, v⟩∣2 ⩽ ∥u∥2 ∥v∥2.
Equality holds if and only if 0 = ⟨u − tv, u − tv⟩ if and only if u − tv = 0 if and only if

u = tv.

Let V be a finite-dimensional inner product space. A linear map f ∶ V Ð→ V is self-adjoint
if

⟨f(u), v⟩ = ⟨u, f(v)⟩ for all u, v ∈ V.
A set of vectors S ⊆ V is said to be orthonormal if

⟨u, v⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 if u = v
0 if u ≠ v

for all u, v ∈ S.

Theorem A.10 (Spectral Theorem, finite-dimensional case). Let f ∶ V Ð→ V be a self-adjoint
linear map on a finite-dimensional inner product space V over F. There exists an orthonormal
basis of V made of eigenvectors for f .

In practice, a linear map f ∶ V Ð→ V is often given by a matrix (representation) M .

• If F =R, f is self-adjoint if and only if M is real symmetric (MT =M), and then the
Spectral Theorem implies that M is orthogonally diagonalisable: there exists a diagonal
matrix D with real entries and a real orthogonal matrix Q (that is, QQT = I) such that
QTMQ =D.

• If F =C, f is self-adjoint if and only if M is Hermitian (MT =M), and then the Spectral
Theorem implies that M is unitarily (real-)diagonalisable: there exists a diagonal matrix
D with real entries and a unitary matrix U (that is, UU

T = I) such that U
T
MU =D.

In both cases, D stores the eigenvalues of M and Q or U store normalised eigenvectors of M
(so all of these are obtained by computing first the eigenvalues, then bases for the eigenspaces,
then orthonormalising the bases using Gram–Schmidt).

A.5. Uniform continuity and uniform convergence
Let f ∶ X Ð→R be a function, with domain X ⊆R.

The typical first definition of continuity amounts to: f is continuous on X if and only if

for every x ∈X and every ε > 0, there exists δ > 0 such that:
for all y ∈X, if ∣x − y∣ < δ, then ∣f(x) − f(y)∣ < ε.
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The order of appearance of the variables matters! In particular, since δ appears after both x
and ε, it may well depend on both of these.

For various purposes, a stronger notion of continuity is needed. We say that f is uniformly
continuous on X if and only if

for every ε > 0, there exists δ > 0 such that:
for all x, y ∈X, if ∣x − y∣ < δ, then ∣f(x) − f(y)∣ < ε.

In this version, δ only depends on ε (and thus its choice is uniform over x ∈X, hence the
name).

Example A.11. The function f ∶ R>0 Ð→ R>0 given by f(x) = 1
x is not uniformly

continuous.

Solution. First make sure that you negate the condition in the definition correctly: there
exists ε > 0 such that for all δ > 0 there exist x, y such that ∣x−y∣ < δ and ∣f(x)−f(y)∣ ⩾ ε.

And now, to work: let ε = 1. Take an arbitrary δ > 0. Set x =min{δ,1}. I claim that
y ∶= x/2 satisfies the desired condition. Let’s check:

∣x − y∣ = x

2
⩽ δ

2
< δ.

Also
∣f(x) − f(y)∣ = ∣1

x
− 1

y
∣ = ∣1

x
− 2

x
∣ = 1

x
⩾ 1 = ε.

One source of uniformly continuous functions is given by the fact that if X is a closed,
bounded subset of R, then any continuous function f ∶ X Ð→R is uniformly continuous on
X. We will prove a more general result in the context of metric spaces.

There is a similar pair of the type (more general notion, stronger notion) in the context
of sequences of functions. Suppose we have, for each n ∈ N, a function fn ∶ X Ð→ R with
domain X ⊆ R. Suppose we also have a “target” function f ∶ X Ð→ R. We say that the
sequence (fn) converges pointwise to f on X if and only if

for every x ∈X and every ε > 0, there exists N ∈N such that:
if n ⩾ N, then ∣fn(x) − f(x)∣ < ε.

Note that N may well depend on both ε and x.
On the other hand, we say that the sequence (fn) converges uniformly to f on X if and

only if

for every ε > 0, there exists N ∈N such that:
for every x ∈X, if n ⩾ N, then ∣fn(x) − f(x)∣ < ε.

In this case N depends only on ε (and thus is uniform over x ∈X).

Example A.12. For n ⩾ 1, consider fn ∶ RÐ→R given by

fn(x) =
1

n(1 + x2) .

The sequence (fn) converges uniformly on R to the constant function zero.
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Solution. The key point is to note that 1 + x2 ⩾ 1 for all x ∈ R, hence 0 ⩽ 1/(1 + x2) ⩽ 1
for all x ∈R. Therefore, given ε > 0, we let N ∈N satisfy N > 1/ε (independent of x) and
get, for all n ⩾ N :

∣fn(x) − 0∣ = ∣
1

n(1 + x2)∣ ⩽
1

n
⩽ 1

N
< ε.

Example A.13. For n ⩾ 1, consider fn ∶ RÐ→R given by

fn(x) =
x2 + nx

n
.

The sequence (fn) converges pointwise, but not uniformly on R to the function

f ∶ RÐ→R, f(x) = x.

Solution. We have
∣fn(x) − f(x)∣ = ∣

x2 + nx
n

− x∣ = x2

n
.

For a fixed x ∈R, we can take N > x2/ε to get pointwise convergence at x. But to do so
uniformly over x ∈R we would need N to satisfy N > x2/ε for all x ∈R, which is clearly
impossible.

We will discuss uniform convergence at length and in greater generality. Its main attraction
over pointwise convergence is that a uniform limit function retains many nice properties of
the functions in the sequence (continuity, boundedness, and so on).
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B.1. Zorn’s Lemma
A partially ordered set (poset for short) is a set X together with a partial order ⩽, that is a
relation satisfying

• x ⩽ x for all x ∈X;

• if x ⩽ y and y ⩽ x then x = y;

• if x ⩽ y and y ⩽ z then x ⩽ z.

A poset X such that for any x, y ∈ X we have x ⩽ y or y ⩽ x is called a totally ordered set,
and ⩽ is called a total order.

A chain in a poset (X,⩽) is a subset C ⊆X that is totally ordered with respect to ⩽.
If S ⊆ X is a subset of a poset, then an upper bound for S is an element u ∈ X such that

s ⩽ u for all s ∈ S.
A maximal element of a poset X is an element m of X such that there does not exist any

x ∈X such that x ≠m and m ⩽ x. In other words, for any x ∈X, either x =m, or x ⩽m, or x
and m are not comparable with respect to the partial order ⩽.

The following result is used to deduce the existence of maximal elements in infinite posets:

Lemma B.1 (Zorn’s Lemma). Let X be a nonempty poset such that every nonempty chain
C in X has an upper bound in X. Then X has a maximal element.

B.2. Bilinear maps
If U,V,W are vector spaces over F, a bilinear map β ∶ U × V Ð→W is a function such that

β(au1 + bu2, v) = aβ(u1, v) + bβ(u2, v)
β(u, av1 + bv2) = aβ(u, v1) + bβ(u, v2)

for all u,u1, u2 ∈ U , v, v1, v2 ∈ V , a, b ∈ F.
Note that such β induces maps

βU ∶ U Ð→ Hom(V,W ), uz→ (v z→ β(u, v))
βV ∶ V Ð→ Hom(U,W ), v z→ (uz→ β(u, v)).

It is easy to check that these maps are themselves linear.

B.3. Dual vector space
Let V be a finite dimensional vector space over F. Define

V ∨ = Hom(V,F).

This is a vector space over F, called the dual vector space to V . Its elements are sometimes
called (linear) functionals and denoted with Greek letters such as ϕ.
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B. Appendix: Miscellaneous

Proposition B.2. Suppose B = {v1, . . . , vn} is a basis for V . Define v∨1 , . . . , v∨n ∈ Fun(V,F)
by

v∨i (a1v1 + ⋅ ⋅ ⋅ + anvn) = ai for i = 1, . . . , n.
Then v∨i ∈ V ∨ for i = 1, . . . , n and the set B∨ = {v∨1 , . . . , v∨n} is a basis for V ∨. (It is called the
dual basis to B.)

Proof. We check that v∨i is a linear transformation.
Given v,w ∈ V , we express them in the basis B:

v = a1v1 + ⋅ ⋅ ⋅ + anvn
w = b1v1 + ⋅ ⋅ ⋅ + bnvn,

then
v∨i (v +w) = v∨i (a1v1 + ⋅ ⋅ ⋅ + anvn + b1v1 + ⋅ ⋅ ⋅ + bnvn) = ai + bi = v∨i (v) + v∨i (w).

Similarly, if λ ∈ F we have

v∨i (λv) = v∨i (λa1v1 + ⋅ ⋅ ⋅ + λanvn) = λai = λv∨i (v).

So v∨i ∈ V ∨ for any i = 1, . . . , n.
Next we show that the set B∨ is linearly independent. Suppose we have

λ1v
∨
1 + ⋅ ⋅ ⋅ + λnv

∨
n = 0.

In particular, we can apply this to the basis vector vi ∈ B for any i = 1, . . . , n and get

λi = 0.

So all the coefficients in the above linear relation must be zero, therefore B∨ is linearly
independent.

Finally, we show that the set B∨ spans V ∨. Let ϕ ∈ V ∨; let v ∈ V and express v in the basis
B:

v = a1v1 + ⋅ ⋅ ⋅ + anvn.
Then, since ϕ is a linear transformation, we have

ϕ(v) = a1ϕ(v1) + ⋅ ⋅ ⋅ + anϕ(vn)
= λ1v

∨
1 (v) + ⋅ ⋅ ⋅ + λnv

∨
n(v),

where we let λ1 = ϕ(v1), . . . , λn = ϕ(vn). This shows that ϕ is in the span of the set B∨.

Note that a bilinear map β ∶ V ×W Ð→ F induces linear maps

βW ∶ W Ð→ V ∨, w z→ (w∨ ∶ v z→ β(v,w))
βV ∶ V Ð→W ∨, v z→ (v∨ ∶ w z→ β(v,w)).

For instance, we can take W = V ∨ and define β ∶ V × V ∨ Ð→ F by

β(v,ϕ) = ϕ(v).

The corresponding linear maps are βV ∨ = idV ∨ ∶ V ∨ Ð→ V ∨, and βV ∶ V Ð→ (V ∨)
∨ given by

βV (v)(ϕ) = β(v,ϕ) = ϕ(v).

Proposition B.3. If V is finite-dimensional, then βV ∶ V Ð→ (V ∨)
∨ is invertible.
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Proof. Let B = {v1, . . . , vn} be a basis for V and let B∨ = {v∨1 , . . . , v∨n} be the dual basis for
V ∨ as in Proposition B.2.

To show that βV is injective, suppose u, v ∈ V are such that βV (u) = βV (v), in other words

ϕ(u) = ϕ(v) for all ϕ ∈ V ∨.

Write

u = a1v1 + ⋅ ⋅ ⋅ + anvn
v = b1v1 + ⋅ ⋅ ⋅ + bnvn

then, for i = 1, . . . , n, we have
ai = v∨i (u) = v∨i (v) = bi

Therefore u = v.
We now prove that βV is surjective. (Note that we could get away with simply saying

that Proposition B.2 tells us that V and V ∨, and therefore also (V ∨)∨, have the same
dimension n; so βV , being injective, is also surjective.)

Let T ∶ V ∨ Ð→ F be a linear transformation. Define v ∈ V by

v = T(v∨1 )v1 + ⋅ ⋅ ⋅ + T (v∨n)vn.

I claim that βV (v) = T . For any ϕ ∈ V ∨ we have

βV (v)(ϕ) = ϕ(v) = T (v∨1 )ϕ(v1) + ⋅ ⋅ ⋅ + T (v∨n)ϕ(vn)
= T (ϕ(v1)v∨1 + ⋅ ⋅ ⋅ + ϕ(vn)v∨n)
= T (ϕ),

where we expressed ϕ in terms of the dual basis v∨1 , . . . , v∨n from Proposition B.2.

Proposition B.4. Consider a linear transformation T ∶ V Ð→ W , where W is another
finite-dimensional vector space over F. Define T ∨ ∶ W ∨ Ð→ V ∨ by

T ∨(ϕ) = ϕ ○ T.

Then T ∨ is a linear transformation, called the dual linear transformation to T .

Proof. It is clear that ϕ ○ T ∶ V Ð→ F is linear, being the composition of two linear transfor-
mations.

To show that T ∨ ∶ W ∨ Ð→ V ∨ is linear, take ϕ1, ϕ2 ∈W ∨. For any v ∈ V we have

T ∨(ϕ1 + ϕ2)(v) = (ϕ1 + ϕ2)(T (v)) = ϕ1(T (v)) + ϕ2(T (v)) = T ∨(ϕ1)(v) + T ∨(ϕ2)(v).

Similarly, if ϕ ∈W ∨ and λ ∈ F, then for any v ∈ V we have

T ∨(λϕ)(v) = (λϕ)(T (v)) = λϕ(T (v)) = λT ∨(ϕ)(v).
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