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1. Introduction

1.1. Infinite-dimensional spaces?
Despite the inevitable ups and downs, linear algebra as seen in a first-year subject is very
satisfying. There is one fundamental construct (the linear combination, built out of the two
operations defining the vector space structure) that gives rise to all the other abstract concepts
(linear transformation, subspace, span, linear independence, etc.). And one of these abstract
concepts (the basis) allows us to identify even the most ill-conceived of vector spaces with one
of the friendly standard spaces Fn, whereby we can use the concreteness of coordinates and
matrices to perform computations that allow us to give explicit answers to many questions
about these spaces.

If these vector spaces are finite-dimensional, that is. Once finite-dimensionality goes
out the window, it takes much of our clear and satisfying linear-algebraic worldview with it.
The purpose of this introduction is to bluntly point out the dangers of the infinite-dimensional
landscape, and to take some tentative steps around it to see what tools we might need to use.
After all, giving up is not an option: infinite-dimensional vector spaces are everywhere, so we
might as well learn how to deal with them.

Let V be a vector space over a field F. As you know, a linear combination is a finite
expression of the form

a1v1 + ⋅ ⋅ ⋅ + anvn where n ∈N, a1, . . . , an ∈ F, v1, . . . , vn ∈ V.

Finally, a subset B of V is a basis if every vector in V can be written uniquely as a finite
linear combination of vectors in B.

First year linear algebra tells us that every finite-dimensional vector space V has a basis1.
What happens if V is not finite-dimensional?

Example 1.1. The space of polynomials in one variable R[x] (sometimes called P(R)
in linear algebra) has basis B = {1, x, x2, . . .}.

Solution. This is really just a restatement of the definition of polynomial: any element f
of R[x] is of the form

f = a0 + a1x + ⋅ ⋅ ⋅ + anxn,

thus a linear combination of elements of B.
If we have

f = a0 + a1x + ⋅ ⋅ ⋅ + anxn = b0 + b1x + ⋅ ⋅ ⋅ + bmxm,

then the second equality is an equality of polynomials, which by definition requires n =m
and ai = bi for all i = 0, . . . , n.

This first example worked out great: the space has bases, and we can actually write down
a basis (more precisely, the standard basis) explicitly. We owe our luck to the fact that, even

1This statement appears to be circular, as “finite-dimensional” is typically defined as “having a finite basis”,
but the circularity can be resolved by provisionally defining “finite-dimensional” as “being the span of
some finite subset” until the existence of bases is established.
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1. Introduction

though the space of polynomials is not finite-dimensional, each element of the space is in
some sense “finitely generated”.

Something we can try is to start with the prototypical finite-dimensional spaces we know,
say Rn, and “take the limit as nÐ→∞”. This leads us to consider the space RN of arbitrary
real sequences (x1, x2, . . . ). We may naively hope that, since {e1, e2, . . . , en} is a basis for Rn,
and these standard bases nest nicely as n increases, we end up with {e1, e2, . . .} being a basis
for RN, but that is not the case because, for instance, the constant sequence (1,1, . . . ) is not
in the span of {e1, e2, . . .}. (See Exercise B.5 for more details.)

For another example, take V =R viewed as a vector space over Q. One can show that the
set S = {√n ∶ n ∈N squarefree} is Q-linearly independent in R, but not a basis. The same is
true of the set T = {πn ∶ n ∈N}. (See Exercise B.6.) In fact, R has no countable basis over
Q. (See Exercise A.9.) It’s a sign that it may be rather difficult to write down an explicit
Q-basis of R.

This is turning into a very depressing motivating section, so here is some good news:

Theorem 1.2. Any vector space V has a basis.

For the proof of this theorem, see Exercise B.3; it requires the (in)famous Zorn’s Lemma
(Lemma B.1).

The result is worth celebrating: we have bases for all vector spaces. . . but the proof gives
absolutely no handle on what a basis looks like or how to compute one explicitly. This severely
reduces the usefulness of the notion of a basis for an arbitrary infinite-dimensional vector
space.

And yet. . . it is hard to ignore the success of Example 1.1, where we saw an explicit, nice
basis for the space of polynomials: {1, x, x2, . . .}. We also know that many functions of one
real variable can be expressed as Taylor series, for instance

ex = 1 + x + x2

2!
+ x3

3!
+ . . .

This suggests that maybe one should drop the finiteness condition from the definition of linear
combination and see where that leads. Consideration of Taylor series also tells us that we
need something more than just the algebraic structure of a vector space if we are to make
sense of “infinite linear combinations”. The notion of convergence of infinite series in real
analysis is based on the Euclidean distance function on the real line: d(x, y) = ∣x − y∣. We
know from first year linear algebra that choosing an inner product on a vector space gives rise
to a distance function, so that’s a possible direction to explore. Before saying more about it
though, note that an inner product also gives a concept of orthogonality, and of more general
angles; and it is unclear whether angles are needed for what we want to do.

1.2. Plan(-ish)
Here is, in rough terms, how we will be spending our time this semester.

The first thing that we will do is axiomatise the essential properties of the Euclidean
distance function. We do this on arbitrary sets (not necessarily vector spaces) and obtain
the notion of a metric space, and see that a surprising amount of results from real analysis
carry through to this more general setting. There are certain respects in which metric spaces
are not that well-behaved. Slightly counterintuitively, we remedy this by generalising even
further to topological spaces, where we abandon the idea of distance between points in
favour of the notion of neighbourhood of a point.

Once we have a grasp on the behaviour of general metric spaces and their topology, we
consider the special case where the underlying set has a vector space structure. These are

6
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called normed vector spaces (in this setting, it is customary to single out the norm of a
vector rather than the distance between two vectors; the two are equivalent).

Finally, because of their importance in many applications, we specialise further to inner
product spaces. One natural example is the space V = Cts([−π,π],R) of continuous
functions f ∶ [−π,π] Ð→R, endowed with the inner product

⟨f, g⟩ = ∫
π

−π
f(x)g(x)dx.

(A normalising factor is often placed in front of the integral for convenience in applications,
but we’ll stick with this definition.)

The distance function is of course

d(f, g) =
√
⟨f − g, f − g⟩.

This allows us to bring rigorous meaning to statements such as

x =
∞

∑
n=1

2(−1)n+1
n

sin(nx).

In our setting, we have

f(x) = x, fn(x) =
2(−1)n+1

n
sin(nx), sN(x) =

N

∑
n=1

fn(x),

all of them elements of V , and the claim is that d(f, sN) Ð→ 0 as N Ð→∞.
Spaces such as this inner product space V are pretty nice, but in general there will be

infinite series of elements of V that “look like” they should converge, however their limit is
not in V .

We deal with this by restricting to inner product spaces that are complete (every Cauchy
sequence in V converges to an element of V ); these are called Hilbert spaces, and have nice
properties.

Of course, one cannot study mathematical structures without studying the maps between
them. For topological spaces, this will mean continuous functions. For metric spaces, depending
on what we are trying to do, it could be continuous functions, or distance-preserving functions,
or contractions. For normed vector spaces, we will mostly work with continuous linear
transformations; this naturally leads to questions about eigenvalues and eigenvectors, and
ultimately to spectral theory, which is much richer than in the finite-dimensional setting.

1.3. Notations and conventions
Set inclusions are denoted S ⊆ T (nonstrict inclusion: equality is possible) or S ⊊ T (strict
inclusion: equality is ruled out). I will definitely avoid using S ⊂ T (as it is ambiguous), and
will try to avoid S /⊆ T (not ambiguous, but too easily confused with S ⊊ T ). While we’re at
it, the power set of a set X, that is, the set of all subsets of X, is denoted P(X).

The symbols ∣z∣ will always denote the usual absolute value (or modulus) function on C:

∣z∣ =
√
x2 + y2, where z = x + iy.

It, of course, defines a restricted function ∣ ⋅ ∣ ∶ S Ð→R⩾0 for any subset S ⊆C, which is the
same as the real absolute value function when S =R.

For better or worse, the natural numbers

N = {0,1,2,3, . . .}

7



1. Introduction

start at 0. The variant starting at 1 is

Z⩾1 = {1,2,3, . . .}.

Unless otherwise specified, F denotes an arbitrary field in Chapter 2, and it denotes either
R or C in Chapter 3.

I am not the right person to ask about foundational questions of logic or set theory: I
neither know enough nor care sufficiently about the topic. It’s of course okay if you care
and (want to) know more about these things. I am happy to spend my mathematical life in
ZFC (Zermelo–Fraenkel set theory plus the Axiom of Choice), and these notes are part of my
life so they are also hanging out in ZFC. In particular, I am very likely to use the Axiom of
Choice without comment (and sometimes without noticing); I may occasionally point it out if
someone brings my attention to it.

Acknowledgements
Thanks go to Thomas Black, Stephanie Carroll, Isaac Doosey-Shaw, Jack Gardiner, Leigh
Greville, Ethan Husband, Peter Karapalidis, Rose-Maree Locsei, Quan Nguyen, Quang Ong,
Hai Ou, Joshua Pearson, Lucas Pedersson, Kashma Pillay, Guozhen Wu, Corey Zelez, and
Chengjing Zhang for corrections and suggestions on various incarnations of these notes.
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2. Metric and topological spaces

2.1. Metrics
Think of Euclidean distance in R:

d(x, y) = ∣x − y∣.

What properties does it have? Well, certainly distances are non-negative, and two points are
at distance zero from each other only if they are equal. The distance from x to y is equal to
the distance from y to x. And we all love the triangle inequality: if you want to get from x to
y, adding an intermediate stopover point t will not make the journey shorter.

We already know of other spaces where such functions exist (Rn comes to mind). So let’s
formalise these properties and see what we get.

Let X be a set. A metric (or distance) on X is a function

d ∶ X ×X Ð→R⩾0

such that:

(a) d(x, y) = d(y, x) for all x, y ∈X;

(b) d(x, y) ⩽ d(x, t) + d(t, y) for all x, y, t ∈X;

(c) d(x, y) = 0 with x, y ∈X if and only if x = y.

The pair (X,d) is called a metric space; when the choice of metric is understood, we may
drop it from the notation and simply write X.

Of course, the simplest example of a metric space is R with the Euclidean distance. But
there are other natural examples:

Example 2.1. Let Γ be a connected undirected simple graph (finitely many vertices,
each pair of which are joined by at most one undirected edge; no loops). Given vertices x
and y, we let d(x, y) denote the minimum length of any path joining x and y.

Then d is a metric on the set of vertices of Γ.

Solution.

(a) Symmetry follows directly from the fact that Γ is undirected.

(b) Let x, y, t ∈ Γ, let p1 be a shortest path (of length d(x, t)) joining x and t, and p2 a
shortest path (of length d(t, y)) joining t and y. Concatenating p1 and p2 we get
a path of length d(x, t) + d(t, y) from x to y, therefore d(x, y) is at most equal to
this length.

(c) Clear (if x = y then the empty path goes from x to y; conversely, if d(x, y) = 0 then
there is an empty path joining x to y, forcing x = y).

Other examples are quite exotic, see for instance the p-adic metric in Exercise 1.10.
Given a metric space, we can obtain other metric spaces by considering subsets:

9



2. Metric and topological spaces

Example 2.2. If (X,d) is a metric space, then for any subset S of X, the restriction of
d to S gives a metric on S. (This is called the induced metric.)

Solution. Straightforward (follows immediately from the definitions).

Or we can construct metric spaces as Cartesian products of other metric spaces. There are
many ways of doing this, none of which is particularly canonical.

Example 2.3. Let (X1, dX1) and (X2, dX2) denote two metric spaces. Prove that the
function d1 defined by

d1((x1, x2), (y1, y2)) = dX1(x1, y1) + dX2(x2, y2)

is a metric on the Cartesian product X1 ×X2.
The definition extends in the obvious manner to the Cartesian product of finitely many

metric spaces (X1, dX1), . . . , (Xn, dXn).
(This is sometimes called the Manhattan metric or taxicab metric. In the context of

Rn =R × ⋅ ⋅ ⋅ ×R, it is called the `1 metric.)

Solution. Straightforward.

Example 2.4. Same setup as Example 2.3, but with the function

d∞((x1, x2), (y1, y2)) =max (dX1(x1, y1), dX2(x2, y2)).

The definition extends in the obvious manner to the Cartesian product of finitely many
metric spaces (X1, dX1), . . . , (Xn, dXn).

(This is called the sup norm metric or uniform norm metric. In the context of Rn, it
is called the `∞ metric.)

Solution. Straightforward; proving the triangle inequality uses

max{a + b, c + d} ⩽max{a, c} +max{b, d}.

Example 2.5. Take X1 =X2 =R with the Euclidean metric and convince yourself that
neither d1 from Example 2.3 nor d∞ from Example 2.4 is the Euclidean metric on R2.

Solution. Consider (1,2) and (0,0), then the distances are:

d1((1,2), (0,0)) = 1 + 2 = 3
d∞((1,2), (0,0)) =max{1,2} = 2
d2((1,2), (0,0)) =

√
12 + 22 =

√
5.

Not every metric has to do with lengths and geometry in an obvious way. The p-adic metric
in Exercise 1.10 is an example of something a little different. For another example, let n ∈ Z⩾1,
X = Fn

2 , and let d(x, y) be the number of indices i ∈ {1, . . . , n} such that xi ≠ yi. Then d is a
metric on X; it is called the Hamming metric. See Exercise 1.6 for more details.
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2.2. Open subsets of metric spaces
A metric on a set X gives us a precise notion of distance between elements of the set. We use
familiar geometric language to refer to the set of points within a fixed distance r ∈R⩾0 of a
fixed point c ∈X: the open ball of radius r and centre c is

Br(c) = {x ∈X ∶ d(x, c) < r}.

There is also, of course, a corresponding closed ball

Dr(c) = {x ∈X ∶ d(x, c) ⩽ r}

and a corresponding sphere
Sr(c) = {x ∈X ∶ d(x, c) = r}.

The familiar names are useful for guiding our intuition, but beware of the temptation to
assume things about the shapes of balls in general metric spaces:

Example 2.6. Describe the Euclidean open balls centred at 0 in Z (endowed with the
metric induced from the Euclidean metric on R).

Solution. In addition to the empty set ∅ = B0(0), we have for all n ∈N the set

{−n,−n + 1, . . . ,−1,0,1, . . . , n − 1, n} = Bn+1(0) = Br(0) for any r ∈ (n,n + 1].

For more intuition-challenging examples, see Exercises 1.4 and 1.11.
We are now ready for a simple yet fundamental concept: a subset U ⊆X of a metric space
(X,d) is an open set if, for every u ∈ U , there exists r ∈R>0 such that Br(u) ⊆ U .

Example 2.7. Prove that ∅ and X are open sets.

Solution. The first statement is vacuously true; the second follows directly from the
definition of Br(x).

Example 2.8. Prove that any open ball is an open set.

Solution. Let U = Br(x). If r = 0 then U = ∅, an open set. Otherwise, let u ∈ U and let
t = r − d(u,x). Since d(u,x) < r we have t > 0.

I claim that Bt(u) ⊆ U . Let w ∈ Bt(u), so that d(w,u) < t. Then

d(w,x) ⩽ d(w,u) + d(u,x) < t + r − t = r.

What happens if we combine open sets using set operations?

Proposition 2.9. Let X be a metric space. The union of an arbitrary collection of open sets
is an open set.

Proof. Let I be an arbitrary set and, for each i ∈ I, let Ui ⊆ X be an open set. We want to
prove that

U = ⋃
i∈I

Ui

is open. Let u ∈ U , then there exists i ∈ I such that u ∈ Ui. But Ui ⊆X is open, so there exists
an open ball Br(u) ⊆ Ui. Since Ui ⊆ U , we have Br(u) ⊆ U .

11



2. Metric and topological spaces

Intersections are a bit more delicate:

Proposition 2.10. Let X be a metric space. The intersection of a finite collection of open
sets is an open set.

Proof. Let n ∈N and, for i = 1, . . . , n, let Ui ⊆X be an open set. We want to prove that

U =
n

⋂
i=1

Ui

is open. Let u ∈ U , then u ∈ Ui for all i = 1, . . . , n. Since Ui is open, there exists an open
ball Bri(u) ⊆ Ui. Let r = min{r1, . . . , rn}, then Br(u) ⊆ Bri(u) ⊆ Ui for each i = 1, . . . , n.
Therefore Br(u) ⊆ U .

Wondering about the necessity of the word “finite” in the statement of the proposition?
See Tutorial Question 2.2.

2.3. Topological spaces and continuous functions
Let X be a set. Taking a hint from the previous section, we define a topology on X to be a
subset T ⊆ P(X) (in other words, T is a collection of subsets of X) such that

(a) ∅ ∈ T and X ∈ T ;

(b) if {Ui ∶ i ∈ I} is an arbitrary collection of elements of T , then ⋃
i∈I

Ui ∈ T ;

(c) if {U1, . . . , Un} is a finite collection of elements of T , then
n

⋂
j=1

Uj ∈ T .

The elements of T are called open sets in X, and (X,T ) is called a topological space. A closed
set of a topological space (X,T ) is a set whose complement is open.

While we’re at it, here are a few more useful definitions:

• An open neighbourhood of x ∈X is an open set U ⊆X such that x ∈ U .

• A neighbourhood of x ∈X is a set V ⊆X containing an open neighbourhood of x.

The prototypical example (for us) of a topology is the collection of open sets defined on X
by some distance function d (see Proposition 2.24 for details). However, topological spaces
are a very general concept encompassing much more than metric spaces. We will not place
a heavy emphasis on them in this subject, using them mostly to separate those properties
of metric spaces that actually depend on the metric from those that depend only on the
configuration of open subsets.

Example 2.11. Let X be an arbitrary set and let T = {∅,X}. This is called the trivial
topology on X.

Example 2.12. Let X be an arbitrary set and let T = P(X). (Every subset is an open
subset.) This is called the discrete topology on X.

12



MAST30026 MHS

Example 2.13. Let X be an arbitrary set and let

T = {S ∈ P(X) ∶ X ∖ S is finite} ∪ {∅}.

This is called the cofinite topology on X.

Comparing topologies
If T1 and T2 are two topologies on the same set X and T1 ⊆ T2 we say that T1 is coarser than
T2 and T2 is finer than T1. For example, the discrete topology is the finest possible topology
on X, and the trivial topology is the coarsest possible topology on X.

In Tutorial Question 2.3 you will find all (4) possible topologies on a set with two elements.
(This game quickly becomes complicated as the size of the set increases, for instance a set of
three elements has 29 distinct topologies.)

Here is an easy way to produce many topologies on a set:

Example 2.14. Let X be a set and S ⊆ P(X). The topology generated by S is obtained
by letting S′ consist of all finite intersections of elements of S, then letting T consist of
all arbitrary unions of elements of S′.

For instance, the discrete topology on X is generated by the set of singletons (aka
one-point subsets).

The topology generated by S is the coarsest topology T such that S ⊆ T (see Tutorial
Question 2.4).

Continuous functions
The appropriate notion of morphism for topological spaces is that of continuous function: if
f ∶ X Ð→ Y is a function from one topological space to another, we say that f is continuous if,
for any open subset V ⊆ Y , its inverse image f−1(V ) is an open subset of X. The corresponding
notion of isomorphism of topological spaces has a special name: a homeomorphism is a bijective
continuous function f ∶ X Ð→ Y such that f−1 ∶ Y Ð→X is continuous. In this case, X and
Y are said to be homeomorphic topological spaces. It is easy to see (with the help of Tutorial
Question 2.9) that this is an equivalence relation. (As an example, the 29 distinct topologies
on a set with three elements fall into 9 homeomorphism classes.)

We can now state a couple of equivalent criteria for comparing topologies:

Proposition 2.15. Let X be a set and T1,T2 two topologies on X. The following statements
are equivalent:

(a) T2 is coarser than T1 (that is, T2 ⊆ T1);

(b) for any x ∈X and any T2-open neighbourhood U2
x of x, there exists a T1-open neighbour-

hood U1
x of x such that U1

x ⊆ U2
x ;

(c) the function f ∶ (X,T1) Ð→ (X,T2) given by f(x) = x is continuous.

Proof. See Exercise 1.19.

New topological spaces from old
If (X,T ) is a topological space and Y is any subset of X, we define

T ∣Y = {U ∩ Y ∶ U ∈ T } ⊆ P(Y ).

13
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Then T ∣Y is a topology on Y , called the induced (or subspace) topology.

Example 2.16. While the induced topology is a simple and natural construction, the
result can be surprising unless you keep in mind that openness is a relative notion
rather than an absolute one.

For instance, take X =R with its usual Euclidean topology.

• If Y = (0,2) then (1,2) = (1,3) ∩Y is open in Y . Of course (1,2) is also open in X
in this case.

• If Y = (0,2] then (1,2] = (1,3) ∩ Y is open in Y , but certainly not open in X.

• If Y is a complicated subset of X, then its open subsets will necessarily look very
different to the open subsets of X. You could take Y to be the Cantor ternary set,
for instance.

If X1 and X2 are topological spaces, the product topology on X1 ×X2 is generated by the set

R = {U1 ×U2 ∶ U1 ⊆X1 open, U2 ⊆X2 open}.

(We might refer to the elements of R as (open) rectangles.)

Example 2.17. Show that R is closed under finite intersections, so that the product
topology consists of arbitrary unions of rectangles.

Solution. By induction, we can reduce to checking that the intersection of two rectangles
is again a rectangle. (Take a moment to appreciate the power and the danger of names.)

Let R = U1 ×U2, R′ = U ′1 ×U ′2 be two rectangles. Then

R ∩R′ = {(x1, x2) ∈X1 ×X2 ∶ x1 ∈ U1, x2 ∈ U2} ∩ {(x1, x2) ∈X1 ×X2 ∶ x1 ∈ U ′1, x2 ∈ U ′2}
= {(x1, x2) ∈X1 ×X2 ∶ x1 ∈ U1 ∩U ′1, x2 ∈ U2 ∩U ′2}
= (U1 ∩U ′1) × (U2 ∩U ′2).

Proposition 2.18. Let X1, X2 be topological spaces and endow X1 ×X2 with the product
topology. Then the two projection maps

π1 ∶ X1 ×X2 Ð→X1, π1(x1, x2) = x1

π2 ∶ X1 ×X2 Ð→X2, π2(x1, x2) = x2

are continuous.
The product topology is the coarsest topology on X1 × X2 such that both π1 and π2 are

continuous.

Proof. Straightforward: if U1 ⊆ X1 is open, then π−11 (U1) = U1 ×X2 is an open rectangle in
X1 ×X2.

For the minimality statement, suppose T is a topology on X1 ×X2 such that π1 and π2 are
continuous. Let U1 ⊆ X1 and U2 ⊆ X2 be arbitrary opens. By continuity, U1 ×X2 = π−11 (U1)
and X1 ×U2 = π−12 (U2) must be in T , therefore so must their intersection

(U1 ×X2) ∩ (X1 ×U2) = U1 ×U2.

We conclude that T contains all rectangles U1×U2, so the coarsest such topology is the topology
generated by the rectangles (see Tutorial Question 2.4), that is the product topology.

14
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Separation property: Hausdorff
Topological spaces are sometimes too general. Life is a little easier given some basic amenities;
here is a simple property that can make things more comfortable: we say that a topological
space X is Hausdorff if given any distinct points x ≠ y of X, there exist open neighbourhoods
U of x and V of y such that U ∩ V = ∅. (We sometimes say that x and y are separated by
opens, and refer to the Hausdorff condition as a separation property; there are other separation
properties, weaker or stronger than Hausdorffness.)

Example 2.19. Consider R with the cofinite topology (see Example 2.13). This is not a
Hausdorff topological space.

Solution. We can do this with any two distinct points of R, but let’s take x = 0 and y = 1
for concreteness.

Suppose the space is Hausdorff, and let U be an open neighbourhood of x and V one
of y such that U ∩ V = ∅.

Then U and V be non-empty open subsets of R (in the cofinite topology). Therefore

U =R ∖ {x1, . . . , xn}
V =R ∖ {y1, . . . , ym},

for some m,n ∈N. Then

U ∩ V =R ∖ {x1, . . . , xn, y1, . . . , ym}.

In particular, U ∩ V is uncountable, and so most definitely non-empty, contradiction.

Interior, closure
Recall that a subset C ⊆ X is closed if X ∖C is an open set. Beware: as opposed to their
English language counterparts, the terms “open” and “closed” do not indicate a dichotomy!
All four possibilities can be realised: you can have (a) sets that are both open and closed,
(b) sets that are open but not closed, (c) sets that are closed but not open, (d) sets that are
neither open nor closed.

Because of the interplay between open and closed sets, collections of closed sets have
properties that are complementary to those of collections of open sets, see Exercise 1.13.

Given a topological space X and a subset A ⊆X, we define

(a) the interior A○ of A to be the union of all open subsets of A, equivalently the largest
open subset of A;

(b) the closure A of A to be the intersection of all closed sets that contain A, equivalently
the smallest closed set that contains A;

(c) the boundary ∂A of A to be ∂A = A ∩X ∖A.

Proposition 2.20. If A is a subset of a topological space X, then x ∈ A if and only if every
open neighbourhood of x intersects A nontrivially.

Proof. We prove the equivalent statement: x ∈ X ∖ A if and only if there exists an open
neighbourhood Ux of x such that Ux ∩A = ∅.

Suppose x ∈ X ∖ A. Letting Ux = X ∖ A, we get an open neighbourhood of x with the
property that Ux ∩A = ∅, so a fortiori Ux ∩A = ∅.

15
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Conversely, given Ux open and disjoint to A, X ∖Ux is closed and contains A, so it contains
the closure A. Hence x ∈X ∖A.
Proposition 2.21. For any subset A of a topological space X we have:

(a) ∂A ∩A○ = ∅;

(b) A = A○ ∪ ∂A;

(c) A○ = A ∖ ∂A.
Proof. See Tutorial Question 2.6.

We say that A is nowhere dense in X if (A)○ = ∅. A simple example of this is Z as a subset
of R, see Exercise 1.31.

We say that A is dense in X if A =X.
Proposition 2.22. If A is a subset of a topological space X, then A is dense in X if and
only if every nonempty open subset of X intersects A nontrivially.
Proof. Suppose A is dense in X and U is a nonempty open subset. Assume, by contradiction,
that A∩U = ∅, then A ⊆ (X ∖U). The latter is a closed set containing A, so by the definition
of the closure we have A ⊆ (X ∖U) ⊊X, contradicting A =X.

In the other direction, suppose A intersects all nonempty open subsets nontrivially. Assume,
by contradiction, that A ≠X, so that U ∶=X ∖A is a nonempty open set. Then it intersects A
nontrivially: there exists a ∈ A such that a ∈ U . But then a ∉ A, contradicting a ∈ A ⊆ A.

Example 2.23. Consider R with its usual topology. Both Q and R ∖Q are dense in R.

Solution. Let (a, b) ⊆R be a finite length interval with a < b. Let n ∈ Z⩾1 be such that
n > 1/(b− a), then nb−na > 1. This means that there exists m ∈ Z such that nb >m > na.
Hence the rational number m/n ∈ (a, b).

Now (a, b) is uncountable and Q is countable, so (a, b) must also contain some irrational
number.
So we have two disjoint sets, each of which is dense in R. The situation is very different if

we ask for the sets to be both dense and open, which we do in Tutorial Question 3.3.

2.4. Properties of topologies induced by metrics
In this section, we revisit some of the concepts introduced above in the special context of
metric spaces.
Proposition 2.24. Every metric space is a topological space.

In other words, if (X,d) is a metric space and T is the set of open subsets of X (defined
as in Section 2.2), then T is a topology on X (called the metric topology on X).

The metric topology is generated by the set of open balls in X.
Proof. Put together Example 2.7, Propositions 2.9 and 2.10, and Tutorial Question 3.4.

Looking at things from the other end, a topological space (X,T ) is said to be metrisable if
there exists a metric d on X such that the resulting collection of open sets is precisely T .

Not every topological space is metrisable! (For a (non)-example, see Tutorial Question 2.3.)
In a metric space, the concept of continuous function has equivalent formulations that are

more familiar from calculus and analysis. For example, the equivalence to the ε–δ definition
is detailed in Tutorial Question 2.8.
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Example 2.25. Let (X,d) be a metric space and fix a point t ∈X. Define f ∶ X Ð→R⩾0
by

f(x) = d(x, t).
Then f is a continuous function.

Solution. Here is a proof that pretends to avoid the ε–δ formalism. By Exercise 1.22 it
suffices to consider opens U ⊆R⩾0 in a set that generates the topology on R⩾0 ⊆R; from
real analysis, or a special case of Tutorial Question 3.4, we can take U = (a, b) ⊆R⩾0 to
be an open interval of finite length. Then

f−1(U) = f−1((a, b))
= {x ∈X ∶ a < d(x, t) < b}
= {x ∈X ∶ a < d(x, t)} ∩ {x ∈X ∶ d(x, t) < b}
= (X ∖Da(t)) ∩Bb(t),

which is open in X as it is the intersection of two open sets. (Here we also used Exercise 1.9
to deduce that Da(t) is a closed set.)

If d1 and d2 are two metrics on the same set X, we say that d1 is coarser (resp. finer) than
d2 if the topology defined by d1 is coarser (resp. finer) than the topology defined by d2. We
say that the metrics d1 and d2 are (topologically) equivalent if d1 is both finer and coarser
than d2, simply put that d1 and d2 define precisely the same topology on X.

To see an important example of this, let’s revisit the product of metric spaces:

Example 2.26. In Exercise 1.4 we considered X = R and X ×X = R2 endowed with
three different metrics:

d1((x1, x2), (y1, y2)) = ∣x1 − y1∣ + ∣x2 − y2∣
d∞((x1, x2), (y1, y2)) =max{∣x1 − y1∣, ∣x2 − y2∣}
d2((x1, x2), (y1, y2)) =

√
∣x1 − y1∣2 + ∣x2 − y2∣2.

These three different metrics give rise to the same topology on R2 (which is the same as
the product topology); to see this, use the criterion from Proposition 2.15.

Example 2.27. Any metric space (X,d) is Hausdorff.

Solution. If X is empty or a singleton, the statement is vacuously true.
Now suppose x ≠ y, so that d(x, y) > 0. Let 2r = d(x, y), U = Br(x), V = Br(y), then

r > 0 so U and V are nonempty opens, x ∈ U , y ∈ V , and U ∩ V = ∅.

2.5. Connectedness
We say that a topological space X is disconnected if there exist nonempty open subsets
U,V ⊆X such that

U ∪ V =X and U ∩ V = ∅.
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A nonempty1 topological space X is connected if it is not disconnected.

Example 2.28. In any topological space X, the singletons {x}, x ∈X, are (vacuously)
connected.

The set {0,1} = {0} ∪ {1} with the discrete topology is clearly disconnected.

A subset S of a topological space X is connected if it is connected when considered as a
topological space with the subspace topology. (It is sometimes useful to express this directly
in terms of the topology on X, see Exercise 1.40.)

Connectedness is an intrinsic property (it does not depend on the ambient space). By
contrast, being open is a non-intrinsic property: (0,1) is open in R but not open in R2.

A clopen subset of a topological space is a subset that is both open and closed.

Proposition 2.29. A subset S of a topological space X is clopen if and only if it has empty
boundary: ∂S = ∅.

Proof. In Tutorial Question 2.6 we see that for any subset S of X we have

S = ∂S ⊔ S○ (a disjoint union).

In particular, ∂S = S ∖ S○. But also S○ ⊆ S ⊆ S.
Therefore S is clopen if and only if S = S = S○ if and only if ∂S = ∅.

The relevance of clopen subsets to connectedness is given by

Proposition 2.30. A topological space X is disconnected if and only if X has a non-empty
proper clopen subset.

Proof. If X is disconnected, then there exist non-empty open subsets U and V such that

U ∪ V =X, U ∩ V = ∅.

Then U =X ∖ V is both open and closed, and it is nonempty and proper.
Conversely, suppose U is a non-empty proper clopen subset of X. Let V =X ∖U , then V

is non-empty and open and
U ∪ V =X, U ∩ V = ∅.

In practice, a very useful criterion for connectedness is

Proposition 2.31. Let X be a topological space. The following are equivalent:

(a) X is connected.

(b) For every discrete space D, if f ∶ X Ð→D is a continuous function, then f is constant.

(c) For the discrete space {0,1}, if f ∶ X Ð→ {0,1} is a continuous function, then f is
constant.

Proof. (a) ⇒ (b): Suppose there exist a discrete space D and a non-constant continuous
function f ∶ X Ð→ D. Let d ∈ im(f) and let U ∶= f−1(d). Then U is non-empty (since
d ∈ im(f)), proper (since f is non-constant), clopen (since {d} is clopen in the discrete
topology on D), hence X is disconnected.

(b) ⇒ (c): Clear.
1The empty topological space ∅ is considered neither connected nor disconnected. (A bit like: 1 is considered

neither prime nor composite.)
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(c) ⇒ (a): Suppose X is disconnected and let U,V be non-empty open subsets of X such
that

U ∪ V =X, U ∩ V = ∅.
Define f ∶ X Ð→ {0,1} by

f(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ∈ U
1 if x ∈ V.

This is well-defined since every x ∈X is in U or in V , but not in both. It is also continuous
since f−1({0}) = U is open and f−1({1}) = V is open. Finally, f is non-constant since both U
and V are non-empty.

Often, proofs of (dis)connectedness are simpler and more elegant when using this criterion.
For instance:

Proposition 2.32. If f ∶ X Ð→ Y is a continuous surjective function between topological
spaces and X is connected, then Y is connected.

Proof. Let g ∶ Y Ð→ {0,1} be a continuous map. Then g○f ∶ X Ð→ Y Ð→ {0,1} is continuous,
therefore is constant (since X is connected), hence g must be constant. (Otherwise g would
be surjective, so g ○ f would be a composition of surjective functions, hence not constant.)

We conclude by Proposition 2.31.

Proposition 2.33. The space R (with the Euclidean topology) is connected.

Proof. Suppose U is a non-empty clopen subset of R. We claim that U =R.
Take any x ∈ U and define

S ∶= {r ∈R>0 ∶ (x − r, x + r) ⊆ U}.

S is non-empty since U is non-empty and open. If we can show that S = (0,∞), then U =R
and we are done.

We proceed by contradiction. Suppose S is bounded above. Then s = supS exists2.
We must have x+ s ∈ U . Otherwise, since U is closed, R∖U is open, so x+ s ∈R∖U means

that there exists δ > 0 such that (x + s − δ, x + s + δ) ⊂R ∖U , so s − δ ∉ S, contradicting the
fact that s = supS (more precisely, that s is the lowest upper bound of S).

By a similar argument, x − s ∈ U . Since U is open, there exist ε+, ε− > 0 such that

(x + s − ε+, x + s + ε+) ⊆ U, (x − s − ε−, x − s + ε−) ⊆ U.

Let ε =min{ε+, ε−}, then s + ε ∈ S, contradicting the fact that s = supS (more precisely, that
s is an upper bound for S).

We are familiar with the notion of intervals in R; they are precisely the subsets appearing
on the following list:

• ∅;

• for a ⩽ b: [a, b];

• for a < b: (a, b) and (a, b] and [a, b);
2Recall that given a subset S ⊆R, s ∈R is a supremum of S if it is an upper bound for S (that is, x ⩽ s for

all x ∈ S), and if m ∈R is any upper bound for S then s ⩽m.
R has the property that every nonempty bounded above subset has a unique supremum. There is also a
dual notion of infimum.
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• for any a ∈R: (−∞, a) and (−∞, a] and (a,∞) and [a,∞);

• R.

A different way of describing intervals is sometimes handy:
Given a subset S of R, consider its infimum inf S and supremum supS. If S is not bounded

below, let’s agree temporarily that inf S = −∞; if S is not bounded above, that supS = ∞.
With this convention, S is an interval if and only if: for any x ∈R with inf S < x < supS, we
have x ∈ S. (You should convince yourself that this is reasonable.)

Proposition 2.34. The connected subsets of R are the non-empty intervals.

Proof. Let S ⊆R be a nonempty subset that is not an interval. Then there exists x ∈R ∖ S
such that inf(S) < x < sup(S) (where the infimum and supremum can be infinite as in
the above convention). In that case U ∶= S ∩ (−∞, x) and V ∶= S ∩ (x,∞) show that S is
disconnected.

Conversely, suppose S is an interval in R. Then (Exercise 1.29) there exists a surjective
continuous function f ∶ RÐ→ S, hence S is connected because R is connected.

Corollary 2.35 (Intermediate Value Theorem). Let f ∶ X Ð→R be a continuous function,
with X a connected topological space. For any x, y ∈X and any r ∈R such that f(x) < r < f(y),
there exists ξ ∈X such that f(ξ) = r.

Proof. The image f(X) is a connected subset of R, hence an interval, from which the
conclusion follows.

We say that a topological space X is totally disconnected if X has at least two distinct
elements and the only connected subsets of X are the singletons.

2.6. Compactness
Let X be a topological space. An open cover of X is a collection {Ui ∶ i ∈ I} of open subsets
Ui ⊆X such that

X = ⋃
i∈I

Ui.

We say that X is a compact topological space if every open cover {Ui ∶ i ∈ I} has some finite
subcover, that is there exist n ∈ N and i1, . . . , in ∈ I such that

X = Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .

More generally, given a subset K ⊆X, we say that K is a compact subset if K is a compact
space with respect to the induced topology. An equivalent formulation is given by

Proposition 2.36. A subset K of a topological space X is compact if and only if, for any
collection {Ui ∶ i ∈ I} of open subsets of X such that

K ⊆ ⋃
i∈I

Ui,

there exist n ∈N and i1, . . . , in ∈ I such that

K ⊆ Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .

Proof. See Exercise 1.52.
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Proposition 2.37. If X is a Hausdorff topological space and K ⊆ X is a compact subset,
then K is closed.

Proof. We show that X ∖K is open. Let x ∈ X ∖K. For each k ∈ K, since k ≠ x we get by
Hausdorffness that there exist open neighbourhoods Uk of k and Vk of x such that Uk ∩Vk = ∅.
Putting it together we obtain an open cover

K ⊆ ⋃
k∈K

Uk,

which by compactness has some finite subcover

K ⊆ Uk1 ∪ ⋅ ⋅ ⋅ ∪Ukn =∶ U.

Consider
V ∶= Vk1 ∩ ⋅ ⋅ ⋅ ∩ Vkn ,

which is an open neighbourhood of x. We have U ∩ V = ∅, therefore V ⊆X ∖U ⊆X ∖K is an
open neighbourhood of x contained in X ∖K. By Exercise 1.14, X ∖K is open.

Proposition 2.38. If X is a compact topological space and K ⊆X is a closed subset, then K
is compact.

Proof. Consider an open cover of K:

K ⊆ ⋃
i∈I

Ui.

We can turn this into an open cover of X:

X = (X ∖K) ∪K ⊆ (X ∖K) ∪⋃
i∈I

Ui.

As X is compact, there is a finite subcover

X ⊆ (X ∖K) ∪Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .

As K ⊆X but K ∩ (X ∖K) = ∅, we must have

K ⊆ Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin ,

hence we have found a finite subcover of the original open cover.

Proposition 2.39. If f ∶ X Ð→ Y is a continuous function between topological spaces and X
is compact, then f(X) is compact.

Proof. Consider an arbitrary open cover of f(X):

f(X) ⊆ ⋃
i∈I

Vi, Vi ⊆ Y open.

Then
X ⊆ ⋃

i∈I

f−1(Vi),

which is an open cover of X as f is continuous. By the compactness of X there is a finite
subcover

X ⊆ f−1(Vi1) ∪ ⋅ ⋅ ⋅ ∪ f−1(Vin),
therefore

f(X) ⊆ Vi1 ∪ ⋅ ⋅ ⋅ ∪ Vin .
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A map f ∶ X Ð→ Y between topological spaces is

• closed if for any closed subset C ⊆X, the image f(C) ⊆ Y is closed;

• proper if for any compact subset K ⊆ Y , the inverse image f−1(K) ⊆X is compact.

Proposition 2.40. Let f ∶ X Ð→ Y be a closed map between topological spaces such that
f−1(y) ⊆X is compact for all y ∈ Y . Then f is proper.

Proof. Take a compact subset K ⊆ Y and consider the inverse image f−1(K). Take an
arbitrary open cover

f−1(K) ⊆ ⋃
i∈I

Ui.

Fix for the moment k ∈K, then certainly

f−1(k) ⊆ f−1(K) ⊆ ⋃
i∈I

Ui,

but f−1(k) is compact by assumption, so there is a finite subcover

f−1(k) ⊆ ⋃
i∈Ik

Ui =∶ Ṽk,

where Ik ⊆ I is a finite subset.
Since Ṽk is open in X, its complement X ∖ Ṽk is closed in X, so f(X ∖ Ṽk) is closed in Y

(because f is a closed map). Letting Vk = Y ∖ f(X ∖ Ṽk), we get an open neighbourhood Vk of
k in Y such that f−1(Vk) ⊆ Ṽk.

Now we vary k ∈K and get an open cover

K ⊆ ⋃
k∈K

Vk,

which by the compactness of K has a finite subcover

K ⊆ Vk1 ∪ ⋅ ⋅ ⋅ ∪ Vkn .

Then

f−1(K) ⊆ f−1(Vk1) ∪ ⋅ ⋅ ⋅ ∪ f−1(Vkn)
⊆ Ṽk1 ∪ ⋅ ⋅ ⋅ ∪ Ṽkn

= ⋃
i∈Ik1

Ui ∪ ⋅ ⋅ ⋅ ∪ ⋃
i∈Ikn

Ui

= ⋃
i∈Ik1∪⋅⋅⋅∪Ikn

Ui,

which is a finite subcover of the original

f−1(K) ⊆ ⋃
i∈I

Ui.

Theorem 2.41. Let X1, X2 be topological spaces.

(a) If X1 is compact then the map π2 ∶ X1 ×X2 Ð→X2 is closed and proper.

(b) If X1 and X2 are compact topological spaces, then their product X1 ×X2 is compact.

Proof.
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(a) To show that π2 is closed, let C ⊆X1 ×X2 be a closed subset. Let U =X2 ∖ π2(C) and
let u ∈ U . Then u ∉ π2(C); so for any x ∈ X1, we have that (x,u) ∈ (X1 ×X2) ∖C. As
the latter set is open, there is an open neighbourhood of (x,u) that is an open rectangle
V 1
x × V 2

x with the property that V 1
x × V 2

x ∩C = ∅. Then {V 1
x ∶ x ∈X1} is an open cover

of X1, which is compact, so there is a finite cover

V 1
x1
∪ ⋅ ⋅ ⋅ ∪ V 1

xn
=X1.

Setting
V = V 2

x1
∩ ⋅ ⋅ ⋅ ∩ V 2

xn
,

we get an open neighbourhood V ⊆X2 of u such that

X1 × V ∩C = (V 1
x1
∪ ⋅ ⋅ ⋅ ∪ V 1

xn
) × (V 2

x1
∩ ⋅ ⋅ ⋅ ∩ V 2

xn
) ∩C = ∅.

This means that V ⊆X2 ∖ π2(C) = U , so that U is open.
The fact that π2 is proper now follows from Proposition 2.40, since for any x2 ∈ X2

we have π−12 (x2) = X1 × {x2}, which is homeomorphic to X1 by Exercise 1.24, hence
compact.

(b) Follows directly from part (a) since X1 ×X2 = π−12 (X2).

2.7. Sequences in metric spaces
Let (X,d) be a metric space.

A sequence in X is a function NÐ→X, commonly denoted as (xn), meaning that nz→ xn.
We say that (xn) converges to a limit x ∈X if for any ε ∈R>0 there exists N ∈N such that

xn ∈ Bε(x) for all n ⩾ N.

The next result describes the relationship between limits and sets that are open or closed.

Proposition 2.42. Let (X,d) be a metric space and let (xn) be a sequence that converges to
x ∈X.

(a) If U ⊆ X is an open subset such that x ∈ U , then there exists N ∈ N such that xn ∈ U
for all n ⩾ N .
(We sometimes refer to this situation as: xn ∈ U for sufficiently large n.)

(b) If A ⊆X is an arbitrary subset such that xn ∈ A for all n ∈N, then x ∈ A.
Conversely, given any y ∈ A there exists a sequence (yn) in A that converges to y.

(c) A is closed if and only if for every sequence (xn) Ð→ x ∈X with xn ∈ A, we have x ∈ A.

Proof.

(a) As x ∈ U and U is open, there exists ε > 0 such that Bε(x) ⊆ U . But as (xn) Ð→ x,
there exists N ∈N such that xn ∈ Bε(x) ⊆ U for all n ⩾ N .

(b) Let U ⊆X be an open neighbourhood of x. By part (a), there exists N ∈N such that
xn ∈ U for all n ⩾ N . In particular, U intersects A nontrivially. By Proposition 2.20, we
conclude that x ∈ A.
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For the converse statement: let y ∈ A. Let y0 ∈ A be arbitrary, then for any n ∈ Z⩾1
consider the open neighbourhood B1/n(y) of y. It must intersect A nontrivially, so let
yn ∈ B1/n(y) ∩A.

The result is a sequence (yn) of elements of A that converges to y. (For any ε > 0, take
N ∈N such that 1/N < ε, etc.)

(c) Follows immediately from (b).

Suppose (xn) and (yn) are two sequences in a metric space (X,d). We say that

(xn) ∼ (yn) if (d(xn, yn)) Ð→ 0 as nÐ→∞.

By Exercise 1.53, this is an equivalence relation on the set of sequences in (X,d).

Proposition 2.43. Let (xn) and (yn) be equivalent sequences in a metric space (X,d) and
let x ∈X. Then (xn) converges to x if and only if (yn) converges to x.

Proof. As equivalence is symmetric, it suffices to prove that if (xn) Ð→ x then (yn) Ð→ x.
Let ε ∈R>0. Let N1 ∈N be such that d(xn, yn) < ε/2 for all n ⩾ N1, and let N2 ∈N be such

that d(xn, x) < ε/2 for all n ⩾ N2. Setting N =max{N1,N2}, for all n ⩾ N we have

d(yn, x) ⩽ d(yn, xn) + d(xn, x) < ε.

Recall (Tutorial Question 2.8) that for metric spaces we have an ε-δ description of continuity.
There is also a sequential criterion for continuity:

Theorem 2.44. Let f ∶ X Ð→ Y be a function between metric spaces and let x ∈X. Then f
is continuous at x if and only if for all sequences (xn) Ð→ x, the sequence (f(xn)) Ð→ f(x).

Proof. Suppose f is continuous; let (xn) be a sequence converging to x in X and let y = f(x).
Let ε ∈R>0. There exists δ ∈R>0 such that if x′ ∈ Bδ(x) then f(x′) ∈ Bε(y). On the other

hand, since (xn) converges to x, given the above δ, there exists N ∈N such that xn ∈ Bδ(x)
for all n ⩾ N . We conclude that f(xn) ∈ Bε(y) for all n ⩾ N , so that (f(xn)) converges to y.

Conversely, suppose the statement about convergence of sequences holds. We use a proof
by contradiction to show that f must be continuous at x.

Suppose there exists ε ∈ R>0 such that for all δ ∈ R>0, f(Bδ(x)) ∖ Bε(f(x)) ≠ ∅. In
particular, for any n ∈ Z⩾1 we can take δ = 1

n and find some element xn ∈ B1/n(x) such that
f(xn) ∉ Bε(f(x)). This gives us a sequence (xn) that converges to x, but (f(xn)) does not
converge to f(x).

There is a notion of map between metric spaces that is stricter than continuity, in that
it preserves the full metric structure: we say that a function f ∶ (X,dX) Ð→ (Y, dY ) is an
isometry if

dY (f(x1), f(x2)) = dX(x1, x2) for all x1, x2 ∈X.

Note that an isometry must be injective, as well as continuous.
If a bijective isometry f ∶ X Ð→ Y exists we say that X and Y are isometric. (You should

check that the inverse of a bijective isometry is also an isometry.)
Whether continuous functions or isometries are the right tool depends on whether you are

concerned only with topological properties, or with the metric structure. There are other
useful flavours of maps that we will see soon.
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2.8. Cauchy sequences
Here is something that you know from real analysis and follows easily from the definition of
sequential convergence:

Proposition 2.45. Let (X,d) be a metric space and suppose (xn) Ð→ x ∈ X. Then, given
ε > 0, there exists N ∈N such that d(xn, xm) < ε for all n,m ⩾ N .

Proof. Since (xn) Ð→ x, there exists N ∈N such that d(xn, x) < ε/2 for all n ⩾ N . Therefore,
for all n,m ⩾ N we have

d(xn, xm) ⩽ d(xn, x) + d(x,xm) <
ε

2
+ ε

2
= ε.

A sequence (xn) that satisfies the conclusion of Proposition 2.45 is said to be Cauchy.
A natural question is whether the converse of Proposition 2.45 holds: does every Cauchy

sequence converge? In an arbitrary metric space, the answer is no. We say that a metric
space X is complete if every Cauchy sequence converges to an element of X.

Example 2.46. (I hope) we know from real analysis that R is a complete metric space.
However, Q is not complete, as you can see in Exercise 1.62.

Proposition 2.47. If X is a complete metric space and S ⊆ X, then S is complete if and
only if S is closed.

Proof. Suppose S is complete and let x ∈ S. Then there exists a sequence (sn) in S such that
(sn) Ð→ x ∈X; by Proposition 2.45 we know that (sn) is Cauchy, so by the completeness of
S we have x ∈ S. Therefore S = S.

Conversely, suppose S is closed in X. Let (sn) be a Cauchy sequence in S, then (sn) is a
Cauchy sequence in X, which is complete, so (sn) Ð→ x ∈ X. By Proposition 2.42 we have
x ∈ S = S since S is closed.

Proposition 2.48. If (xn) and (yn) are Cauchy sequences in a metric space (X,d), then
(d(xn, yn)) is a Cauchy sequence in R.

Proof. Inequality chase, see Exercise 1.56.

The equivalence relation on sequences preserves the Cauchy property:

Proposition 2.49. Let (xn) and (yn) be equivalent sequences in a metric space (X,d). Then
(xn) is Cauchy if and only if (yn) is Cauchy.

Proof. Another inequality chase, see Exercise 1.57.

However, continuous functions do not necessarily preserve the Cauchy property:

Example 2.50. Take X = Y = R>0 with the induced metric from R, and f ∶ X Ð→ Y
given by f(x) = 1

x . The function f is continuous on X. Take the sequence (xn) with
xn = 1

n for all n ∈ N. Then (xn) is Cauchy, but (f(xn)) = (n) is most certainly not
Cauchy.

If you want your functions to preserve the Cauchy property, you need a stronger condition
than continuity: a function f ∶ X Ð→ Y between metric spaces is uniformly continuous if for
all ε > 0 there exists δ > 0 such that for all x ∈X we have f(Bδ(x)) ⊆ Bε(f(x)).
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The last part of the definition is equivalent to: for all x,x′ ∈X we have

dX(x,x′) < δ ⇒ dY (f(x), f(x′)) < ε.

(You may have to read the definition more than once, and compare it symbol by symbol
with the definition of continuity, to see what the difference is: here δ depends only on the
given ε, not on x ∈X. Hence its choice is uniform over X.)

Example 2.51. Any isometry is uniformly continuous. This is immediate from the
definitions (can take δ = ε).

Proposition 2.52. Any uniformly continuous function maps Cauchy sequences to Cauchy
sequences.

Proof. Let f ∶ X Ð→ Y be uniformly continuous and let (xn) be a Cauchy sequence in X.
For all n ∈N, set yn = f(xn).

Let ε > 0. As f is uniformly continuous, there exists δ > 0 such that for all x,x′ ∈ X, if
dX(x,x′) < δ then dY (f(x), f(x′)) < ε.

But (xn) is Cauchy in X, so given this δ there exists N ∈N such that dX(xn, xm) < δ for
all n,m ⩾ N . Therefore dY (yn, ym) < ε for all n,m ⩾ N .

Proposition 2.53. Let f ∶ X Ð→ Y be a continuous function between metric spaces. If X is
compact, then f is uniformly continuous.

Proof. Let ε > 0.
Given x ∈ X, there exists δ(x) > 0 such that f(Bδ(x)(x)) ⊆ Bε/2(f(x)). We get an open

cover of X:
X = ⋃

x∈X

Bδ(x)/2(x),

which therefore has a finite subcover

X =
N

⋃
n=1

Bδ(xn)/2(xn).

Let δ =min{δ(xn)/2 ∶ n = 1, . . . ,N}.
Suppose s, t ∈X are such that dX(s, t) < δ. We have s ∈ Bδ(xn)/2(xn) for some n ∈ {1, . . . ,N}.

I claim that t ∈ Bδ(xn)(xn):

dX(t, xn) ⩽ dX(t, s) + dX(s, xn) < δ +
δ(xn)
2
⩽ δ(xn).

Therefore f(s), f(t) ∈ Bε/2(f(xn)), hence dY (f(s), f(t)) < ε.

2.9. Completions
Any metric space can be embedded into a complete metric space. To make this precise, we
say that a complete metric space (X̂, d̂ ) is a completion of a metric space (X,d) if there
exists an isometry ι ∶ X Ð→ X̂ such that ι(X) is a dense subset of X̂. (In particular, this
implies that (ι(X), d̂ ) is isometric to (X,d).)
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Proposition 2.54. Let (X̂, d̂), ι ∶ X Ð→ X̂ be a completion of (X,d). Let x̂, ŷ ∈ X̂ and let
(xn), (yn) be sequences in X such that

x̂ = lim
nÐ→∞

ι(xn) and ŷ = lim
nÐ→∞

ι(yn).

Then
d̂(x̂, ŷ) = lim

nÐ→∞
d(xn, yn).

Proof. Consider X̂ × X̂ with the sup metric, then since (ι(xn)) Ð→ x̂ and (ι(yn)) Ð→ ŷ, we
have (ι(xn), ι(yn)) Ð→ (x̂, ŷ) ∈ X̂ × X̂, see Tutorial Question 4.9. Since

d(xn, yn) = d̂(ι(xn), ι(yn)) for all n ∈N,

we have TODO: make it clear that we are using the continuity of d̂, and have a reference for
this

lim
nÐ→∞

d(xn, yn) = lim
nÐ→∞

d̂(ι(xn), ι(yn)) = d̂ ( lim
nÐ→∞

(ι(xn), ι(yn))) = d̂(x̂, ŷ).

Theorem 2.55. Any metric space (X,d) has a completion.

We will see later (Corollary 2.57) that any two completions of (X,d) are isometric.

Proof. X̂ as a set: Given (X,d), consider the set C of all Cauchy sequences, equipped
with the equivalence relation defined above Proposition 2.43. Let X̂ be the resulting set of
equivalence classes [(xn)].
X̂ as a metric space: Proposition 2.54 hints that we should define d̂ ∶ X̂ × X̂ Ð→R⩾0 by:

d̂ ([(xn)], [(yn)]) = lim
nÐ→∞

d(xn, yn).

The limit exists as the sequence (d(xn, yn)) is Cauchy in R (Proposition 2.48) and R is
complete; moreover d̂ is well-defined, see Exercise 1.65. It is easy to see that d̂ is a metric on
X̂.

The isometry ι: For any x ∈X, let ι(x) = [(x)] be the equivalence class of the constant
sequence (x,x, . . . ). We have for all x, y ∈X:

d̂ (ι(x), ι(y)) = lim
nÐ→∞

d(x, y) = d(x, y),

so ι is an isometry.
ι(X) is dense in X̂: Let [(xn)] ∈ X̂ and let ε > 0; we will show that there exists x ∈ X

such that d̂ (ι(x), [(xn)]) < ε. As (xn) is Cauchy, there exists N ∈N such that d(xm, xn) < ε/2
for all m,n ⩾ N . Letting x = xN , we have d(x,xn) < ε/2 for all n ⩾ N , so taking limits:

d̂ (ι(x), (xn)) = lim
nÐ→∞

d(x,xn) ⩽
ε

2
< ε.

The metric space X̂ is complete: Suppose (an) is a Cauchy sequence in X̂. As ι(X) is
dense in X̂, for each n ∈N there exists xn ∈X such that d̂(ι(xn), an) < 1

n . We get a sequence
(ι(xn)) ∼ (an). As (an) is Cauchy in X̂, by Proposition 2.49 so is the sequence (ι(xn)) in
ι(X) ⊆ X̂, and hence so is the sequence (xn) in X as ι(X) is isometric to X. So we have an
element x̂ ∶= [(xn)] ∈ X̂.

I claim that (an) converges to x̂. Let ε > 0. We want to show that there exists N ∈N such
that for all n ⩾ N we have

d̂(an, x̂) = lim
mÐ→∞

d(an(m), xm) < ε.
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Here an ∈ X̂, so it is represented by a Cauchy sequence (an(m)) where the varying quantity
is m ∈N.

For any n ∈N, we have by the triangle inequality

d(an(m), xm) ⩽ d(an(m), xn) + d(xn, xm),

so taking limits:

d̂(an, x̂) = lim
mÐ→∞

d(an(m), xm)

⩽ lim
mÐ→∞

d(an(m), xn) + lim
mÐ→∞

d(xn, xm)

= d̂(an, ι(xn)) + lim
mÐ→∞

d(xn, xm) for all n ∈N.

As (xn) is Cauchy, there exists N1 ∈ N such that d(xn, xm) < ε/2 for all n,m ⩾ N1. Take
N2 ∈N such that 1/N2 < ε/2 and N =max{N1,N2}, then for all n ⩾ N we have

d̂(an, x̂) ⩽ d̂(an, ι(xn)) + lim
mÐ→∞

d(xn, xm) <
1

n
+ ε

2
< ε.

If g ∶ X Ð→ Y is a function of some kind between metric spaces and X̂, Ŷ are completions
of X, Y , we may ask whether g can be extended to a function of a similar kind ĝ ∶ X̂ Ð→ Ŷ .
Since X is not actually a subset of X̂ (and similarly for Y ), what we mean here is that we
identify X with its isometric copy ιX(X) ⊆ X̂, and we identify Y with its isometric copy
ιY (Y ) ⊆ Ŷ . In other words, we say that a function ĝ ∶ X̂ Ð→ Ŷ is an extension of g ∶ X Ð→ Y
if

ĝ(ιX(x)) = ιY (g(x)) for all x ∈X,

or, put more elegantly, if the following diagram commutes:

Y

X

g

Ŷ

X̂
ιX

ĝ

ιY

A reasonable first attempt would be to see if any continuous function g ∶ X Ð→ Y extends
to a continuous function ĝ ∶ X̂ Ð→ Ŷ . It turns out that such a continuous extension may
not exist (Exercise 1.66), but when it does, it is unique (this follows from the more general
result of Exercise 1.58.)

We are about to see, however, that any uniformly continuous function (resp. isometry)
g ∶ X Ð→ Y extends uniquely to a uniformly continuous function (resp. isometry)
ĝ ∶ X̂ Ð→ Ŷ .

Proposition 2.56. Let Z be a metric space and W a complete metric space. Let D ⊆ Z be a
dense subset and f ∶ D Ð→W a uniformly continuous function.

(a) The function f has a unique uniformly continuous extension to
Z, that is there exists a unique uniformly continuous function

f̂ ∶ Z Ð→W such that f̂(x) = f(x) for all x ∈D.

(b) If, in addition, f is an isometry, then so is the extension f̂ .

D ⊆ Z

W

f
f̂

Proof.
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(a) The first task is to construct the function f̂ ∶ Z Ð→W . Let z ∈ Z. Since D is dense
in Z, there exists a sequence (xn) in D such that (xn) Ð→ z. In particular, (xn) is
Cauchy in D. Since f ∶ D Ð→W is uniformly continuous, (f(xn)) is Cauchy in W . As
W is complete, (f(xn)) has a limit w ∈W .

Define f̂(z) = w.
Is this well-defined? We did make one choice in the construction, namely a sequence
(xn) in D that converges to z. Any other valid choice is a sequence (x′n) in D with the
same limit z, so (x′n) ∼ (xn). As f is uniformly continuous, we have (f(x′n)) ∼ (f(xn)),
which implies that (f(x′n)) Ð→ w ∈W .

Is f̂ an extension of f? If x ∈ D and we work through the above construction, we
see that we can take xn = x for all n ∈ N, so f(xn) = f(x) for all n ∈ N, and finally
f̂(x) = w = f(x). In other words, f̂(x) = f(x) for x ∈D, as claimed.
Next we prove uniform continuity of f̂ . Let ε > 0. Since f ∶ D Ð→ W is uni-
formly continuous, there exists δ > 0 such that for all x,x′ ∈ D, if dZ(x,x′) < δ, then
dW (f(x), f(x′)) < ε/2. Now suppose that z, z′ ∈ Z satisfy dZ(z, z′) < δ/3. Let (xn)
be a sequence as in the definition of f̂(z) above, and similarly with (x′n) and f̂(z′).
As (xn) Ð→ z, there exists N ∈ N such that dZ(xn, z) < δ/3 for all n ⩾ N . Similarly,
as (x′n) Ð→ z′, there exists N ′ ∈ N such that dZ(x′n, z′) < δ/3 for all n ⩾ N ′. Letting
M =max{N,N ′} we get for all n ⩾M :

dZ(xn, x
′
n) ⩽ dZ(xn, z) + dZ(z, z′) + dZ(z′, x′n) < δ.

Therefore dW (f(xn), f(x′n)) < ε/2 for all n ⩾M .
As f̂(z) = lim f(xn) and f̂(z′) = lim f(x′n), we conclude that

dW (f̂(z), f̂(z′)) ⩽
ε

2
< ε.

The uniqueness of f̂ follows from Exercise 1.58, which says that there is at most one
continuous extension.

(b) If f is an isometry, we use the same line of argument, only simpler. Let (xn) Ð→ z,
(x′n) Ð→ z′ with xn, x′n ∈D. Then

dW (f̂(z), f̂(z′)) = dW ( lim
nÐ→∞

f̂(xn), lim
nÐ→∞

f̂(x′n))
= lim

nÐ→∞
dW (f(xn), f(x′n)) = lim

nÐ→∞
dZ(xn, x

′
n) = dZ(z, z′).

This has the following consequence:

Corollary 2.57. Let X be a metric space.

(a) Let Y be a metric space and fix completions (X̂, ιX) of X and (Ŷ , ιY ) of Y . Any
uniformly continuous function (resp. isometry) g ∶ X Ð→ Y has a unique uniformly
continuous (resp. isometry) extension ĝ ∶ X̂ Ð→ Ŷ .

(b) Any two completions of X are isometric.

Proof.

(a) Let D = ιX(X) ⊆ X̂, and apply Proposition 2.56 to the function f ∶= ιY ○g○ι−1X ∶ D Ð→ Ŷ :
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Y

X ιX(X) ⊆

g

Ŷ

X̂
ιX
≃

f
ĝ ∶= f̂

ιY

Then ĝ is the function f̂ given by Proposition 2.56.
It is worth describing ĝ ∶ X̂ Ð→ Ŷ more directly: given x̂ ∈ X̂, let ιX(xn) be a sequence
in the dense subset ιX(X) that converges to x̂, then set

(2.1) ĝ(x̂) = lim
nÐ→∞

ιY (g(xn)).

(b) Let (X̂1, d̂1) and (X̂2, d̂2) be two completions.

We have isometries ι1 ∶ X Ð→ ι1(X) ⊆ X̂1 and ι2 ∶ X Ð→ ι2(X) ⊆ X̂2. Consider the
composition g ∶= ι2 ○ ι−11 ∶ ι1(X) Ð→ ι2(X). It is an isometry, so by part (a) it extends
uniquely to an isometry ĝ ∶ X̂1 Ð→ X̂2:

X

ι2(X)

ι1(X)
ι1
≃
ι2
≃

⊆

⊆

g

X̂1

X̂2

ĝ

We check that ĝ is bijective. It is automatically injective since an isometry. For
surjectivity, let x̂ ∈ X̂2 and let (xn) be a sequence in X such that (ι2(xn)) Ð→ x̂. Let
x̂n = ι1(xn). Since (ι2(xn)) converges, it is Cauchy. Since ι−12 ∶ ι2(X) Ð→ X is an
isometry, (xn) is Cauchy in X. Since ι1 is an isometry, (x̂n) is Cauchy in X̂1. As the
latter is complete, (x̂n) Ð→ x̂ ′ ∈ X̂1. Therefore

ĝ(x̂ ′) = ĝ ( lim
nÐ→∞

x̂n) = lim
nÐ→∞

ĝ(x̂n) = lim
nÐ→∞

g(ι1(xn)) = lim
nÐ→∞

ι2(xn) = x̂.

2.10. Banach Fixed Point Theorem
Let (X,dX) and (Y, dY ) be metric spaces. A contraction is a function f ∶ X Ð→ Y for which
there exists a constant C ∈ [0,1) such that

dY (f(x1), f(x2)) ⩽ C dX(x1, x2) for all x1, x2 ∈X.

It is easy to see (Tutorial Question 6.1) that contractions are uniformly continuous.
A fixed point of a function f ∶ X Ð→ Y is an element x ∈X such that f(x) = x.

Proposition 2.58. Let f ∶ X Ð→X be a contraction from a metric space to itself. Then f
has at most one fixed point.
Proof. If x,x′ are such that x = f(x) and x′ = f(x′), then

d(x,x′) = d(f(x), f(x′)) ⩽ C d(x,x′).
If x ≠ x′ then d(x,x′) > 0 and

C d(x,x′) < d(x,x′) since 0 ⩽ C < 1,
leading to a contradiction.
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We get a very useful result for complete metric spaces:

Theorem 2.59 (Banach Fixed Point Theorem). Let (X,d) be a nonempty complete metric
space. Let f ∶ X Ð→X be a contraction. Then f has a unique fixed point, that is an element
x ∈ X such that f(x) = x. Moreover, for any choice of x0 ∈ X, the sequence (xn) defined
recursively by xn+1 = f(xn) for n ∈N converges to the fixed point x.

Proof. The uniqueness statement follows from Proposition 2.58.
The proof of existence uses the hint in the last statement. Let x0 ∈ X and consider the

sequence (xn) = (f ○n(x0)). For any m ⩾ 1 we have

d(xm+1, xm) = d(f(xm), f(xm−1)) ⩽ C d(xm, xm−1).

Applying this repeatedly with decreasing m, we get

d(xm+1, xm) ⩽ Cm d(x1, x0).

If we now go up from m + 1 and apply this in conjunction with the triangle inequality, we get
for all n >m:

d(xn, xm) ⩽ (Cn−1 +Cn−2 + ⋅ ⋅ ⋅ +Cm)d(x1, x0)

⩽ Cm 1 −Cn−m

1 −C d(x1, x0)

⩽ Cm d(x1, x0)
1 −C .

As 0 ⩽ C < 1, we know that Cm Ð→ 0 as mÐ→∞, so we conclude that the sequence (xn) is
Cauchy. As X is complete, (xn) Ð→ x ∈ X. But we can say more about this limit x, using
the continuity of f :

f(x) = f ( lim
nÐ→∞

xn) = lim
nÐ→∞

f(xn) = lim
nÐ→∞

xn+1 = x.

So x is indeed a fixed point of f .

Recall the following result from real analysis:

Theorem 2.60 (Mean Value Theorem). Let f ∶ [a, b] Ð→R be continuous. If f is differentiable
on (a, b), then there exists ξ ∈ (a, b) such that

f ′(ξ) = f(b) − f(a)
b − a .

This turns out to be very useful in checking that a given function is a contraction:

Example 2.61. Verify that the function f ∶ [1,2] Ð→R defined by

f(x) = − 1

12
x3 + x + 1

4

has a unique fixed point, and find this point.

Solution. First we show that f is a contraction. We have

f ′(x) = −x
2

4
+ 1,
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and since 1 ⩽ x ⩽ 2 it is easy to deduce that

0 ⩽ f ′(x) ⩽ 3

4
,

in particular ∣f ′(x)∣ ⩽ 3/4 for all x ∈ [1,2].
Now let x1, x2 ∈ [1,2]. Apply the Mean Value Theorem to f restricted to the interval
[x1, x2], and deduce that there exists ξ ∈ (x1, x2) ⊆ [1,2] such that

∣f(x2) − f(x1)∣ = ∣f ′(ξ)∣ ∣x2 − x1∣ ⩽
3

4
∣x2 − x1∣,

in other words f is a contraction with constant 3/4.
In order to apply the Banach Fixed Point Theorem we need to know that f is a

self-map, that is, that the image of f is contained in [1,2]. The global minimum and
maximum of f occur either at the boundaries of the interval [1,2], or at some stationary
point in the interval. The only zero of f ′(x) = −x2

4 + 1 in [1,2] is x = 2, so we only need
to evaluate f at 1 and 2:

f(1) = 7

6
∈ [1,2], f(2) = 19

12
∈ [1,2],

so indeed f([1,2]) ⊆ [1,2].
The Banach Fixed Point Theorem tells us that f has a unique fixed point, which we

can find directly by solving

x = f(x) = − 1

12
x3 + x + 1

4
⇒ x3 = 3⇒ x = 3

√
3.

Note that this gives us a recursively-defined sequence of rational numbers that converges
to 3
√
3: take x0 = 1 and apply f iteratively, xn+1 = f(xn).

2.11. (Total) Boundedness
Let (X,d) be a metric space.

The diameter of a nonempty3 subset S ⊆X is by definition

diam(S) ∶= sup{d(x, y) ∶ x, y ∈ S}.

If this is a (finite) real number we say that S is bounded. This is equivalent to saying that S
is contained in some closed ball with finite radius (see Exercise 1.70). Otherwise we say that
S is unbounded.

Example 2.62. Let S ⊆R be a bounded set. Show that for any ε > 0, there exist N ∈N
and open balls B1, . . . ,BN , all of radius ε, such that

S ⊆
N

⋃
n=1

Bn.

Solution. As S is bounded, it is contained in some closed ball, which in R is some interval
[x, y]. So it suffices to prove that the conclusion holds for the interval [x, y], which is

3Surprisingly, what the diameter of ∅ should be appears to be a controversial topic. I will steer clear of it.
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straightforward: given ε > 0, let N ∈N be such that N ⩾ y−x
ε , then

S ⊆ [x, y] ⊆
N

⋃
n=1

[x + (n − 1)ε, x + nε] ⊆
N

⋃
n=1

Bε(x + (2n − 1)ε/2).

The property in the last example is called total boundedness: a subset S ⊆X of a metric
space is totally bounded if for all ε > 0, there exist N ∈N and x1, . . . , xN ∈X such that

S ⊆
N

⋃
n=1

Bε(xn).

If this makes you think of compact sets, it is not a coincidence: it is easy to see that any
compact subset K ⊆X of a metric space is totally bounded (given ε > 0, cover K with open
balls of radius ε centred at each point of K and use compactness).

As you can see in Tutorial Question 7.1, any totally bounded set is bounded; Example 2.62
says that the converse is true if X =R. See Exercise 1.75 for the fact that the product of two
totally bounded sets is totally bounded, and Exercise 1.76 for the consequence that in Rm,
every bounded set is totally bounded.

Proposition 2.63. Let f ∶ X Ð→R be a continuous function, where X is a compact metric
space. Then the image f(X) is bounded, and the bounds are attained: there exist xmin, xmax ∈X
such that

f(xmin) ⩽ f(x) ⩽ f(xmax) for all x ∈X.

Proof. By Proposition 2.39, f(X) is a compact subset of R. Therefore f(X) is totally
bounded, hence bounded. So f(X) has both infimum and supremum, which are boundary
points. But f(X) is also closed by Proposition 2.37, therefore it contains its boundary points
and hence the infimum and supremum.

Proposition 2.64. If f ∶ X Ð→ Y is a uniformly continuous function between metric spaces
and S ⊆X is totally bounded, then f(S) ⊆ Y is totally bounded.

Proof. Let ε > 0. As f is uniformly continuous, there exists δ > 0 such that for all x ∈X we
have

f(Bδ(x)) ⊆ Bε(f(x)).
As S is totally bounded, there are open balls Bδ(x1), . . . ,Bδ(xN) such that

S ⊆
N

⋃
j=1

Bδ(xj),

so applying f on both sides we get

f(S) ⊆ f (
N

⋃
j=1

Bδ(xj)) =
N

⋃
j=1

f(Bδ(xj)) ⊆
N

⋃
j=1

Bε(f(xj)).

Proposition 2.65. A subset S ⊆X of a metric space is totally bounded if and only if every
sequence in S has a Cauchy subsequence.

Proof. In one direction, suppose S is totally bounded and let (sn) be a sequence in S.
Take a finite cover of S by open balls of radius 1. At least one of these open balls B1(x1)

contains infinitely many terms of (sn); let (s(1)n ) = (sn) ∩B1(x1).
Take a finite cover of S by open balls of radius 1/2. As least one of these balls B1/2(x2)

contains infinitely many terms of (s(1)n ); let (s(2)n ) = (s(1)n ) ∩B1/2(x2).
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Continuing in this manner, we get a list of successive subsequences (s(j)n ) ⊆ B1/j(xj):

(sn) ∶ s1, s2, s3, s4, . . . . . . ∈ S
(s(1)n ) ∶ s

(1)
1 , s

(1)
2 , s

(1)
3 , s

(1)
4 , . . . . . . ∈ B1(x1)

(s(2)n ) ∶ s
(2)
1 , s

(2)
2 , s

(2)
3 , s

(2)
4 , . . . . . . ∈ B1/2(x2)

(s(3)n ) ∶ s
(3)
1 , s

(3)
2 , s

(3)
3 , s

(3)
4 , . . . . . . ∈ B1/3(x3)

⋮ ⋮
(s(j)n ) ∶ s

(j)
1 , s

(j)
2 , s

(j)
3 , s

(j)
4 , . . . s

(j)
j , . . . ∈ B1/j(xj)

⋮ ⋮

From this list we extract the diagonal4, giving rise to a subsequence (s(n)n ) of (sn). I claim

that (s(n)n ) is a Cauchy sequence.
Given ε > 0, let N ∈N be such that 2/N ⩽ ε. For i ⩾ j ⩾ N we have

s
(j)
j , s

(i)
i ∈ (s

(j)
n ) ⊆ (s(N)n ) ⊆ B1/N(xN) ⊆ Bε/2(xN),

hence
d (s(j)j , s

(i)
i ) ⩽ d (s

(j)
j , xN) + d (xN , s

(i)
i ) < ε.

In the other direction, suppose that every sequence in S has a Cauchy subsequence. We
proceed by contradiction: assume that S is not totally bounded. Then there exists ε > 0 so
that no finite collection of open balls of radius ε can cover S.

Choose an arbitrary s1 ∈ S. By assumption, we cannot have S ⊆ Bε(s1). So there exists
s2 ∈ S ∖Bε(s1). Again by assumption, we cannot have S ⊆ Bε(s1) ∪Bε(s2). So there exists
s3 ∈ S ∖ (Bε(s1) ∪Bε(s2)).

Continuing in this manner, we obtain a sequence (sn) in S such that d(sn, sm) ⩾ ε for all
n,m ∈N, so that (sn) has no Cauchy subsequence, contradiction.

2.12. Compactness in metric spaces
The following is an amalgamation of various theorems attributed to Heine–Borel, Bolzano–
Weierstrass, and very possibly others.

Theorem 2.66. Let K be a subset of a metric space X. The following are equivalent:

(a) K is compact.

(b) K is complete and totally bounded.

(c) K is sequentially compact, that is every sequence in K has a subsequence that converges
to an element of K.

Before proving this theorem, we need the following notion: given a subset K of X and an
open cover

K ⊆ ⋃
i∈I

Ui,

4It was pointed out to me that the argument should work for other choices than the diagonal in the table.
The restrictions are: (a) we need to get a subsequence of the original sequence (to ensure this, we should
be moving to the right at each step); (b) we need to end up with a Cauchy sequence (for which we should
be moving down at each step).
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a Lebesgue number of this cover is a real number δ > 0 such that for any subset A ⊆K with
diam(A) < δ, there exists i ∈ I such that A ⊆ Ui.

It is the case that any open cover of a sequentially compact subset K ⊆X has a Lebesgue
number, see Exercise 1.77.

Proof of Theorem 2.66. (a)⇒(b): Suppose K is compact. We have already seen that K is
totally bounded. Let ι ∶ K Ð→ K̂ be a completion of K. Then ι(K) is a compact subset of
K̂, hence closed by Proposition 2.37. But ι(K) is also dense in K̂, so ι(K) = K̂ and K is
complete.

(b)⇒(c): Suppose K is complete and totally bounded and let (xn) be a sequence in
K. Since K is totally bounded, (xn) has a Cauchy subsequence by Proposition 2.65, which
converges in K, since K is complete.

(c)⇒(a): Suppose K is sequentially compact and consider an open cover

K ⊆ ⋃
i∈I

Ui.

By Exercise 1.77 this cover has a Lebesgue number δ > 0. By Proposition 2.65, K is totally
bounded, so it has a finite cover by open balls of radius δ/2:

K ⊆ B1 ∪ ⋅ ⋅ ⋅ ∪Bn.

For each j = 1, . . . , n we have diam(K ∩Bj) < δ so there exists ij ∈ I such that K ∩Bj ⊆ Uij .
Overall we get a finite subcover

K ⊆ Ui1 ∪ ⋅ ⋅ ⋅ ∪Uin .

2.13. Spaces of bounded continuous functions
Let X be a set and Y a metric space.

A function f ∶ X Ð→ Y is bounded if there exists y ∈ Y and M ∈R such that

dY (y, f(x)) ⩽M for all x ∈X.

Equivalently, the direct image f(X) is a bounded subset of Y , see Exercise 1.74.
Let B(X,Y ) denote the set of all bounded functions X Ð→ Y . For f, g ∈ B(X,Y ) define

d∞(f, g) = sup
x∈X
{dY (f(x), g(x))}.

Proposition 2.67. The function d∞ is a metric on B(X,Y ), called the uniform metric.

Proof. First we check that d∞ takes values in R⩾0: if f, g ∈ B(X,Y ), there exist yf , yg ∈ Y
and Mf ,Mg ∈R such that

dY (yf , f(x)) ⩽Mf and dY (yg, g(x)) ⩽Mg for all x ∈X.

Letting M = dY (yf , yg) we see that for all x ∈X we have

dY (f(x), g(x)) ⩽ dY (f(x), yf) + dY (yf , yg) + dY (yg, g(x)) ⩽Mf +M +Mg.

As Mf +M +Mg is a finite upper bound for the set in the definition of d∞, we conclude that
the supremum is finite as well.

The symmetry of d∞ follows directly from the symmetry of dY .
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For the triangle inequality, let h ∈ B(X,Y ) and note that for all x ∈X we have

dY (f(x), g(x)) ⩽ dY (f(x), h(x)) + dY (h(x), g(x)).

By the upper bound property of the supremum we get that for all x ∈X

dY (f(x), g(x)) ⩽ d∞(f, h) + d∞(h, g).

By the minimality of the supremum we get

d∞(f, g) ⩽ d∞(f, h) + d∞(h, g).

For the non-degeneracy of d∞, note that if d∞(f, g) = 0 then

sup
x∈X
{dY (f(x), g(x))} = 0,

so by the non-negativity of dY we get that dY (f(x), g(x)) = 0 for all x ∈ X. Therefore
f(x) = g(x) for all x ∈X, hence f = g.

We say that a sequence (fn) in B(X,Y ) converges pointwise to a function f ∶ X Ð→ Y if,
for every x ∈X, the sequence (fn(x)) in Y converges to f(x) ∈ Y :

given x ∈X and ε > 0, there exists N = N(x, ε) ∈N s.t. dY (fn(x), f(x)) < ε for all n ⩾ N .

In this situation, we call the function f the pointwise limit of the sequence (fn).

Example 2.68. The pointwise limit of a sequence of bounded functions need not be
bounded.

For instance, take fn ∶ R⩾0 Ð→R given by

fn(x) =
⎧⎪⎪⎨⎪⎪⎩

x if x ⩽ n
0 otherwise.

Then fn is bounded as ∣fn(x)∣ ⩽ n for all x ∈ R⩾0, but the pointwise limit is f(x) = x,
which is not bounded on R⩾0.

We say that a sequence (fn) in B(X,Y ) converges uniformly to a function f ∶ X Ð→ Y if:

given ε > 0, there exists N = N(ε) ∈N s.t. dY (fn(x), f(x)) < ε for all n ⩾ N and all x ∈X.

In this situation, we call the function f the uniform limit of the sequence (fn).
Proposition 2.69. Let X be a set and Y a metric space.

(a) The uniform limit f of a sequence (fn) of bounded functions X Ð→ Y is bounded.

(b) A sequence (fn) in B(X,Y ) converges uniformly to f ∈ B(X,Y ) if and only if (fn) Ð→ f
with respect to the uniform metric d∞ on B(X,Y ).

Proof.
(a) Let ε = 1 and consider the corresponding N ∈N. Since fN is bounded, there exist y ∈ Y

and M ∈R such that

dY (y, fN(x)) ⩽M for all x ∈X.

Therefore, for all x ∈X we have

dY (y, f(x)) ⩽ dY (y, fN(x)) + dY (fN(x), f(x)) ⩽M + 1,

which shows that f is bounded.
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(b) See Tutorial Question 7.6.

Proposition 2.70. Given a set X and a metric space Y , if Y is complete then the metric
space B(X,Y ) (with the uniform metric d∞) is complete.

Proof. Let (fn) be a Cauchy sequence in B(X,Y ). For any x ∈ X, consider the evaluation
function evx ∶ B(X,Y ) Ð→ Y given by evx(h) = h(x). It is easy to see that evx is uniformly
continuous (see Exercise 1.82). Therefore the sequence (fn(x)) is Cauchy in Y , which is
complete, so we define f(x) ∈ Y to be the limit of this sequence.

We now prove that (fn) converges to f uniformly. Given ε > 0, take N ∈N such that

dY (fn(t), fm(t)) <
ε

2
for all m,n ⩾ N, t ∈X.

Let n ⩾ N . Given x ∈X, let m(x) ⩾ N be such that dY (fm(x)(x), f(x)) < ε/2, then

dY (fn(x), f(x)) ⩽ dY (fn(x), fm(x)(x)) + dY (fm(x)(x), f(x)) < ε.

The conclusion is that dY (fn(x), f(x)) < ε for all n ⩾ N , so (fn) Ð→ f .
As we have shown that f is the uniform limit of the sequence of bounded functions (fn), f

is bounded by Proposition 2.69.

Suppose now that both X and Y are metric spaces. Let C0(X,Y ) denote the subset of
B(X,Y ) consisting of all bounded continuous functions X Ð→ Y .

Proposition 2.71. Given metric spaces X and Y , C0(X,Y ) is a closed subset of B(X,Y )
with the uniform metric d∞. In other words, the uniform limit of a sequence of bounded
continuous functions is a bounded continuous function.

Proof. Let (fn) Ð→ f with respect to the uniform norm, where fn ∈ C0(X,Y ) for all n ∈N.
Fix x0 ∈X. Given ε > 0, there exists N ∈N such that if n ⩾ N then

dY (fn(x), f(x)) < ε/3 for all x ∈X.

Let δ > 0 be such that

dY (fN(x0), fN(x)) < ε/3 for all x ∈X such that dX(x0, x) < δ.

We then have that for any x ∈X such that dX(x0, x) < δ:

dY (f(x0), f(x)) ⩽ dY (f(x0), fN(x0)) + dY (fN(x0), fN(x)) + dY (fN(x), f(x)) < ε.

The pointwise limit of a sequence of bounded continuous functions need not be continuous,
see Tutorial Question 7.7.

2.14. Function spaces: approximation by polynomials
There are a lot of bounded continuous functions X Ð→R even for relatively simple X, e.g.
closed intervals in R. But:

Theorem 2.72 (Weierstrass Approximation Theorem). Given a < b, let A be the subset of
C0([a, b],R) consisting of polynomial functions. Then A is dense in C0([a, b],R).

We will obtain this as a corollary of a more general result. We need some preliminaries.
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Lemma 2.73. There is a sequence (pn) in xR[x] such that (pn) Ð→ ∣x∣ uniformly on [−1,1].

Sketch of proof. Let p1(x) = 0 and

pn+1(x) = pn(x) −
pn(x)2 − x2

2
= pn(x) −

(pn(x) − ∣x∣)(pn(x) + ∣x∣)
2

for n ⩾ 1.

One can use induction to prove that, for all x ∈ [−1,1] and all n ⩾ 1:

(a) 0 ⩽ pn(x) ⩽ ∣x∣;

(b) pn(x) ⩽ pn+1(x);

(c) ∣x∣ − pn+1(x) ⩽ ∣x∣ (1 − ∣x∣2 )
n
.

(See Exercise 1.85.)
A little calculus (Exercise 1.86) tells us that for any n ⩾ 1

∣x∣ (1 − ∣x∣
2
)
n

< 2

n + 1 for all x ∈ [−1,1],

which then implies that (pn) Ð→ ∣x∣ uniformly on [−1,1].

Corollary 2.74. For any a > 0, there is a sequence (qn) in xR[x] such that (qn) Ð→ ∣x∣
uniformly on [−a, a].

Proof. See Exercise 1.87.

For any metric space X, the set C0(X,R) is an R-algebra. (The multiplication of functions
is done pointwise, just like the addition.)

Proposition 2.75. Let X be a metric space and let C be a closed subalgebra of C0(X,R).
Then

(a) if g ∈ C then ∣g∣ ∈ C;

(b) if g1, g2 ∈ C then max{g1, g2},min{g1, g2} ∈ C.

Proof.

(a) Let a > 0 be an upper bound for ∣g∣. For any n ∈ N, we have by Corollary 2.74 a
polynomial qn(y) ∈ yR[y] such that

∣qn(y) − ∣y∣∣ <
1

n
for all y ∈ [−a, a].

Let hn = qn(g), then hn ∈ C since the latter is an algebra; therefore applying the above
inequality with y = g(x) we have

∣hn(x) − ∣g(x)∣∣ = ∣qn(g(x)) − ∣g(x)∣∣ <
1

n
for all x ∈X,

in other words
∥hn − ∣g∣∥L∞ <

1

n
,

which shows that (hn) Ð→ ∣g∣ in C, which is closed, so ∣g∣ ∈ C.
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(b) The claim follows directly from the relations

2max{g1, g2} = g1 + g2 + ∣g1 − g2∣
2min{g1, g2} = g1 + g2 − ∣g1 − g2∣.

Let A be a subalgebra of C0(X,R).

• We say that A separates points of X if for any x1, x2 ∈X with x1 ≠ x2, there exists f ∈ A
such that f(x1) ≠ f(x2).

• We say that A is non-vanishing on X if for any x ∈ X there exists f ∈ A such that
f(x) ≠ 0.

Lemma 2.76. Let X be a metric space with at least two points. A subalgebra A of C0(X,R)
separates points of X and is non-vanishing on X if and only if, for every (x1, y1), (x2, y2) ∈
X ×R with x1 ≠ x2, there exists h ∈ A such that

h(x1) = y1 and h(x2) = y2.

Proof. See Exercise 1.88.

Theorem 2.77 (Stone–Weierstrass). Let X be a nonempty compact metric space and let A
be a subalgebra of C0(X,R). If A separates points of X and is non-vanishing on X, then it
is dense in C0(X,R) (with respect to the uniform norm).

Proof. The corner case where X is a singleton is easily dispatched: then C0(X,R) =R and
A =R (since nonzero).

So we may assume that X has at least two distinct elements (and we can therefore apply
Lemma 2.76).

Let C denote the closure of A in C0(X,R). We will show that C is dense in C0(X,R): let
f ∈ C0(X,R) and let ε > 0.

Fix x′ ∈X.
For every x ∈X:

• If x ≠ x′ then by Lemma 2.76, there exists hx ∈ A such that

hx(x) = f(x) and hx(x′) = f(x′).

• If x = x′, let t ∈X, t ≠ x′ and choose hx′ ∈ A such that

hx′(t) = f(t) and hx′(x′) = f(x′).

Let Ux be an open neighbourhood of x such that

hx(x′′) > f(x′′) − ε for all x′′ ∈ Ux.

The sets {Ux ∶ x ∈X} form an open cover of the compact space X, so there exist x1, . . . , xm

such that
X ⊆ Ux1 ∪ ⋅ ⋅ ⋅ ∪Uxm .

Let gx′ =max{hx1 , . . . , hxm}, an element of C by Proposition 2.75.
Then gx′(x′) = f(x′) and

gx′(x′′) > f(x′′) − ε for all x′′ ∈X.
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We have such a function gx′ ∈ C for each x′ ∈X.
Let Vx′ be an open neighbourhood of x′ such that

gx′(x′′) < f(x′′) + ε for all x′′ ∈ Vx′ .

The sets {Vx′ ∶ x′ ∈X} form an open cover of the compact space X, so there exist x′1, . . . , x
′
n

such that
X ⊆ Vx′1

∪ ⋅ ⋅ ⋅ ∪ Vx′n .

We let g =min{gx′1 , . . . , gx′n} so that g ∈ C and

f(x′′) − ε < g(x′′) < f(x′′) + ε for all x′′ ∈X,

so we conclude that
∥f − g∥L∞ < ε.

We now specialise to

Proof of Theorem 2.72. We take A to be the subset of C0([a, b],R) consisting of polynomial
functions. It is clear that A is an algebra. Also:

• A is non-vanishing on [a, b] since the constant polynomial 1 is nowhere zero.

• A separates points of [a, b]: if x1 ≠ x2 ∈ [a, b], the polynomial f(x) = x satisfies
f(x1) = x1 ≠ x2 = f(x2).

It follows from the Stone–Weierstrass Theorem that A is dense.

2.15. Intersection of dense open sets
Recall that the intersection of two open dense subsets is open and dense (Tutorial Question 3.3),
hence the same is true for the intersection of any finite collection of open dense subsets.
What happens if we drop the finiteness assumption? In general we cannot expect anything
good:

Example 2.78. Note that for every x ∈R, Ux ∶=R ∖ {x} is dense and open in R.
Therefore the intersection of an uncountable collection of dense open subsets need not

be dense: this is clear, as ⋂x∈RUx = ∅, which is certainly not dense in R.

But if we stick to complete metric spaces and to countable collections, we are in good shape
again:

Theorem 2.79 (Baire Category Theorem). Let (X,d) be a complete metric space. Let
{Un ∶ n ∈N} be a (countable) collection of dense open subsets of X. Then

D ∶= ⋂
n∈N

Un is dense in X.

Proof. We use the criterion in Tutorial Question 3.2. Let W be a nonempty open set. We
want to show that D ∩W ≠ ∅.

Since U1 is dense, W ∩U1 is a nonempty open set. Let x1 ∈W ∩U1 and let 0 < 2r1 < 2 be
such that

Dr1(x1) ⊆ B2r1(x1) ⊆W ∩U1.
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Since U2 is dense, Br1(x1) ∩ U2 is a nonempty open set. Let x2 ∈ Br1(x1) ∩ U2 and let
0 < r2 < 1

2 be such that
Dr2(x2) ⊆ Br1(x1) ∩U2.

We continue in this manner; for each n ⩾ 2, Un is dense, so Brn−1(xn−1) ∩Un is nonempty and
open. Let xn ∈ Brn−1(xn−1) ∩Un and let 0 < rn < 1

n be such that

Drn(xn) ⊆ Brn−1(xn−1) ∩Un.

We obtain a sequence (xn). It is Cauchy by construction: if n ⩾ m then xn ∈ Brm(xm) ⊆
B1/m(xm). Since X is complete, (xn) Ð→ x ∈X.

For each m ∈N, (xn)n⩾m is a convergent sequence of elements of the closed set Drm(xm),
hence its limit x ∈ Drm(xm) ⊆W ∩ Um. Therefore x ∈W and x ∈ Um for all m ∈N, in other
words x ∈W ∩D.

There are variants of this result that are stated differently. Here is a form that we will use
in the context of Banach spaces in the next chapter:

Corollary 2.80. Let (X,d) be a nonempty complete metric space. If

X = ⋃
n∈N

Cn with each Cn a closed subset of X,

then there exists n ∈N such that C○n ≠ ∅.

Proof. See Tutorial Question 8.5.
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3. Normed and Hilbert spaces
After a long detour into the world of sets with a distance function (that is, metric spaces), or
more generally with a notion of neighbourhoods of points (that is, topological spaces), we
return to the setting of vector spaces and investigate some consequences of endowing these
with a notion of distance. This can done in many ways, but we will be interested in pursuing
distance functions that are compatible with the vector space structure (just as we tend to
study functions between vector spaces that are compatible with the vector space structure, in
other words, linear transformations). Such considerations (and a look back at the properties
of Euclidean distance in Rn, which we are hoping to emulate and generalise) lead us to the
notion of norm defined below, and the associated distance function.

Notation

In this chapter, F will denote one of the fields R, C, each endowed with its Euclidean metric.
The function α z→ ∣α∣ is the real or complex absolute value, as appropriate. The function
α z→ α is the complex conjugation, which restricts to the identity function if F =R.

Given subsets S,T of a vector space V over F and α ∈ F, we write

S + T = {s + t ∶ s ∈ S, t ∈ T},
αS = {αs ∶ s ∈ S}.

3.1. Norms
Let V be a vector space over F. A norm on V is a function

∥ ⋅ ∥ ∶ V Ð→R⩾0

such that

(a) ∥v +w∥ ⩽ ∥v∥ + ∥w∥ for all v,w ∈ V ;

(b) ∥αv∥ = ∣α∣ ∥v∥ for all v ∈ V , α ∈ F;

(c) ∥v∥ = 0 if and only if v = 0.

The pair (V, ∥ ⋅ ∥) is called a normed space.
If W is a subspace of a normed space (V, ∥ ⋅ ∥), we always endow W with the restriction of
∥ ⋅ ∥ to W , which is a norm on W .

Proposition 3.1. Let (V, ∥ ⋅ ∥) be a normed space. Define d ∶ V × V Ð→R⩾0 by

d(v,w) = ∥v −w∥.

Then d is a metric on V , and satisfies the following additional properties:

(d) d(v + u,w + u) = d(v,w) for all u, v,w ∈ V ;
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(e) d(αv,αw) = ∣α∣d(v,w) for all v,w ∈ V , α ∈ F.

So every normed space is a metric space.

Proof.

(a) d(w, v) = ∥w − v∥ = ∥(−1)(v −w)∥ = ∣ − 1∣ ∥v −w∥ = d(v,w);

(b) d(v, u) + d(u,w) = ∥v − u∥ + ∥u −w∥ ⩾ ∥v − u + u −w∥ = ∥v −w∥ = d(v,w);

(c) d(v,w) = 0 iff ∥v −w∥ = 0 iff v −w = 0 iff v = w;

(d) d(v + u,w + u) = ∥v + u −w − u∥ = ∥v −w∥ = d(v,w);

(e) d(αv,αw) = ∥αv − αw∥ = ∣α∣ ∥v −w∥ = ∣α∣d(v,w).

Suppose ∥ ⋅ ∥1 and ∥ ⋅ ∥2 are norms on a vector space V . We say that they are equivalent if
there exist m,M > 0 such that

m∥v∥1 ⩽ ∥v∥2 ⩽M∥v∥1 for all v ∈ V.

Equivalent norms on V give rise to the same topology on V , see Exercise 2.2.
There are various ways of putting a norm on the product of two normed spaces, but many

of these ways are topologically equivalent:

Proposition 3.2. Let (V, ∥ ⋅ ∥V ) and (W, ∥ ⋅ ∥W ) be normed vector spaces. The following
functions give norms on the vector space V ×W :

∥ ⋅ ∥1 ∶ V ×W Ð→R⩾0 ∥(v,w)∥1 = ∥v∥V + ∥w∥W
∥ ⋅ ∥∞ ∶ V ×W Ð→R⩾0 ∥(v,w)∥∞ =max{∥v∥V , ∥w∥W}.

Moreover, any norm ∥ ⋅ ∥ on V ×W such that

∥(v,w)∥∞ ⩽ ∥(v,w)∥ ⩽ ∥(v,w)∥1 for all (v,w) ∈ V ×W

gives rise to the product topology on V ×W .

Proof. We prove that ∥ ⋅ ∥1 is a norm and leave ∥ ⋅ ∥∞ as an exercise. The other claim follows
immediately from the definition of the metric given by a norm, and by Exercise 1.38.

We have

∥(v1,w1) + (v2,w2)∥1 = ∥v1 + v2∥V + ∥w1 +w2∥W
⩽ ∥v1∥V + ∥v2∥V + ∥w1∥W + ∥w2∥W
= ∥(v1,w1)∥1 + ∥(v2,w2)∥1.

Next for all α in the field of scalars F:

∥α(v,w)∥1 = ∥αv∥V + ∥αw∥W = ∣α∣ ∥v∥V + ∣α∣ ∥w∥W = ∣α∣ ∥(v,w)∥1.

Finally

∥(v,w)∥1 = 0 ⇐⇒ ∥v∥V + ∥w∥W = 0
⇐⇒ ∥v∥V = 0 and ∥w∥W = 0
⇐⇒ v = 0,w = 0 ⇐⇒ (v,w) = (0,0).
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It is easy to see that the norm V Ð→ R⩾0, v z→ ∥v∥, is a uniformly continuous function
with respect to the metric defined by the norm on V , and the Euclidean metric on R⩾0, see
Exercise 2.1.

Proposition 3.3. Any normed space (V, ∥ ⋅ ∥) is a topological vector space, that is a vector
space such that

(a) vector addition a ∶ V × V Ð→ V , a(v,w) = v +w, is a continuous function;

(b) scalar multiplication s ∶ F × V Ð→ V , s(α, v) = αv, is a continuous function.

(Continuity is defined with respect to the product topologies on V × V and on F × V .)

Proof.

(a) Let (v0,w0) ∈ V × V be arbitrary. We want to show that a is continuous at (v0,w0).
Let x = a(v0,w0) = v0 +w0 and let ε > 0. We will find an open rectangle R = Bδ1(v0) ×
Bδ2(w0) ⊆ V × V such that a(R) ⊆ Bε(x).
Let δ1 = δ2 = ε/2. If (v,w) ∈ R then ∥v − v0∥ < ε/2 and ∥w −w0∥ < ε/2, so that

∥a(v,w)−a(v0,w0)∥ = ∥(v+w)−(v0+w0)∥ = ∥(v−v0)+(w−w0)∥ ⩽ ∥v−v0∥+∥w−w0∥ < ε.

(b) Let (α0, v0) ∈ F × V be arbitrary. We want to show that s is continuous at (α0, v0). Let
x = s(α0, v0) = α0v0 and let ε > 0. We will find an open rectangle R = Bδ1(α0)×Bδ2(v0) ⊆
F × V such that s(R) ⊆ Bε(x).

• If ∥v0∥ = 0, let δ1 = 1 and δ2 = ε/(1 + ∣α0∣).
• If ∥v0∥ > 0, let δ1 = ε/(2∥v0∥) and δ2 = ε/(2(δ1 + ∣α0∣)).

If (α, v) ∈ R then ∣α − α0∣ < δ1 and ∥v − v0∥ < δ2. In particular, ∥v∥ < ∥v0∥ + δ2. We have

∥s(α, v) − s(α0, v0)∥ = ∥αv − α0v0∥
= ∥(α − α0)v − α0(v0 − v)∥
⩽ ∣α − α0∣ ∥v∥ + ∣α0∣ ∥v0 − v∥
< δ1(∥v0∥ + δ2) + ∣α0∣δ2
= δ1∥v0∥ + δ2(δ1 + ∣α0∣) < ε.

Corollary 3.4. If (V, ∥ ⋅ ∥) is a normed space, (vn), (wn) are sequences converging in V , and
α ∈ F is a scalar, then

(a) lim
nÐ→∞

(vn +wn) = lim
nÐ→∞

vn + lim
nÐ→∞

wn;

(b) lim
nÐ→∞

(αvn) = α lim
nÐ→∞

vn;

(c) lim
nÐ→∞

∥vn∥ = ∥ lim
nÐ→∞

vn∥ .

Corollary 3.5. Let (V, ∥ ⋅ ∥) be a normed space and let W ⊆ V be a subspace. Then its closure
W is also a subspace.

Proof. Suppose u, v ∈W , then there exist sequences (un) and (vn) in W such that (un) Ð→ u
and (vn) Ð→ v. Therefore un + vn ∈W for all n, and by Corollary 3.4 we have

u + v = lim(un) + lim(vn) = lim(un + vn) ∈W.

Similarly for scalar multiplication.
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Proposition 3.6. Let {v1, . . . , vn} be a linearly independent subset of a normed space (V, ∥ ⋅∥).
Then there exists m > 0 such that

∥α1v1 + ⋅ ⋅ ⋅ + αnvn∥ ⩾m(∣α1∣ + ⋅ ⋅ ⋅ + ∣αn∣) for all α1, . . . , αn ∈ F.

Proof. Let A = ∣α1∣ + ⋅ ⋅ ⋅ + ∣αn∣.
If A = 0, then the inequality is trivially true.
So suppose A > 0. Then, dividing by A, we have reduced to proving that there exists m > 0

such that

∥β1v1 + ⋅ ⋅ ⋅ + βnvn∥ ⩾m for all β1, . . . , βn ∈ F such that ∣β1∣ + ⋅ ⋅ ⋅ + ∣βn∣ = 1.

To do this, consider the set

K = {(β1, . . . , βn) ∈ Fn ∶ ∣β1∣ + ⋅ ⋅ ⋅ + ∣βn∣ = 1}.

It is closed and bounded in Fn (which is Cn or Rn), so K is compact.
Now look at the function F ∶ K Ð→R given by

F (β1, . . . , βn) = ∥β1v1 + ⋅ ⋅ ⋅ + βnvn∥.

This is a composition of continuous functions, hence is itself continuous. Since K is compact,
F attains its minimum m on K. A priori we know that m ⩾ 0. But if m = 0, then for some
β1, . . . , βn ∈K we have

∥β1v1 + ⋅ ⋅ ⋅ + βnvn∥ = 0⇒ β1v1 + ⋅ ⋅ ⋅ + βnvn = 0,

contradicting the linear independence of the vectors.
Hence m > 0 and we are done.

We are now in a good position to prove that

Theorem 3.7. Any two norms on a finite-dimensional vector space V are equivalent.

Proof. Let v1, . . . , vn be a basis of V . Consider the norm on V defined by

∥α1v1 + ⋅ ⋅ ⋅ + αnvn∥1 = ∣α1∣ + ⋅ ⋅ ⋅ + ∣αn∣.

We want to prove that any norm ∥ ⋅ ∥ on V is equivalent to ∥ ⋅ ∥1.
Let M =max{∥v1∥, . . . , ∥vn∥}. Then

∥α1v1 + ⋅ ⋅ ⋅ + αnvn∥ ⩽ ∣α1∣ ∥v1∥ + ⋅ ⋅ ⋅ + ∣αn∣ ∥vn∥ ⩽M(∣α1∣ + ⋅ ⋅ ⋅ + ∣αn∣).

From Proposition 3.6 we also have m > 0 such that

m(∣α1∣ + ⋅ ⋅ ⋅ + ∣αn∣) ⩽ ∥α1v1 + ⋅ ⋅ ⋅ + αnvn∥,

We conclude that the norms ∥ ⋅ ∥ and ∥ ⋅ ∥1 are equivalent.
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3.2. Inner products
Let V be a vector space over F. Recall from linear algebra (see Section A.4 for a summary)
that an inner product on V is a function

⟨⋅, ⋅⟩ ∶ V × V Ð→ F

that is linear in the first variable, conjugate-linear in the second variable, and positive-definite.

Proposition 3.8. If (V, ⟨⋅, ⋅⟩) is an inner product space, then the function ∥ ⋅ ∥ ∶ V Ð→R⩾0
defined by

∥v∥ =
√
⟨v, v⟩

is a norm on V .

Proof. For any v ∈ V , α ∈ F we have

∥αv∥ =
√
⟨αv,αv⟩ =

√
αα⟨v, v⟩ = ∣α∣ ∥v∥.

Note also that
∥v∥ = 0 ⇐⇒

√
⟨v, v⟩ = 0 ⇐⇒ ⟨v, v⟩ = 0 ⇐⇒ v = 0.

Finally, by the Cauchy–Schwarz Inequality we have

Re⟨v,w⟩ ⩽ ∣⟨v,w⟩∣ ⩽ ∥v∥ ∥w∥.

Therefore

∥v +w∥2 = ⟨v +w, v +w⟩
= ⟨v, v⟩ + ⟨v,w⟩ + ⟨w, v⟩ + ⟨w,w⟩
= ∥v∥2 + 2Re⟨v,w⟩ + ∥w∥2

⩽ ∥v∥2 + 2∥v∥ ∥w∥ + ∥w∥2

= (∥v∥ + ∥w∥)2,

which means that the triangle inequality holds for ∥ ⋅ ∥.

Obviously then:

Corollary 3.9. Any inner product space is a normed space, and a metric space.

An inner product gives rise to a norm. Given a norm, how can we determine whether it
comes from an inner product? It turns out that there’s a fun way to check:

Proposition 3.10 (Parallelogram Law). If (V, ⟨⋅, ⋅⟩) is an inner product space, then its norm
satisfies

∥v +w∥2 + ∥v −w∥2 = 2(∥v∥2 + ∥w∥2) for all v,w ∈ V.

Proof. Recall from the proof of Proposition 3.8 that

∥v +w∥2 = ∥v∥2 + 2Re⟨v,w⟩ + ∥w∥2.

Then
∥v −w∥2 = ∥v∥2 − 2Re⟨v,w⟩ + ∥w∥2,

and adding the two equalities gives the identity in the statement.

Given a norm, you can use the Polarisation Identity (see Exercise 2.5) to see if it comes
from an inner product. There is also a converse to the Parallelogram Law, see Exercise 2.6
for the ridiculously fun proof.
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3.3. Banach and Hilbert spaces
If a normed space (V, ∥ ⋅ ∥) is complete as a metric space, we say that it is a Banach space.

A Hilbert space is a complete inner product space.
The first examples appear in a familiar context:

Proposition 3.11. Any finite-dimensional normed space (V, ∥ ⋅ ∥) is Banach.

Proof. We need to show that V is complete. Let v1, . . . , vn be a basis of V .
By Proposition 3.6 we know that without loss of generality we can take the norm to be

given by
∥α1v1 + ⋅ ⋅ ⋅ + αnvn∥ = ∣α1∣ + ⋅ ⋅ ⋅ + ∣αn∣ for all α1, . . . , αn ∈ F.

Consider a Cauchy sequence in V , and express each term as a linear combination of the
chosen basis:

(u(m)) = (α(m)1 v1 + ⋅ ⋅ ⋅ + α(m)n vn).

The Cauchyness means that for any ε > 0 there exists M ∈N such that for all m,k ⩾M we
have ∥u(m) − u(k)∥ < ε, in other words

ε > ∥u(m) − u(k)∥ = ∣α(m)1 − α(k)1 ∣ + ⋅ ⋅ ⋅ + ∣α
(m)
n − α(k)n ∣.

This means that for each j = 1, . . . , n, (α(m)j ) is a Cauchy sequence in F. As F is complete,
(α(m)j ) Ð→ βj ∈ F.

We now let u = β1v1 + ⋅ ⋅ ⋅ + βnvn and show that (u(m)) Ð→ u ∈ V . Let ε > 0. For j = 1, . . . , n,
there exists Mj ∈N such that ∣α(m)j −βj ∣ < ε/n for all m ⩾Mj . Let M =max{Mj ∶ j = 1, . . . , n},
then for all m ⩾M we have

∥u(m) − u∥ = ∣α(m)1 − β1∣ + ⋅ ⋅ ⋅ + ∣α(m)n − βn∣ < ε.

Corollary 3.12. Any finite-dimensional inner product space (in particular, Fn for any n ∈N)
is a Hilbert space.

For an infinite-dimensional Banach space example, take X to be an infinite set and consider
the vector space of bounded functions on X:

B(X,F) = {f ∶ X Ð→ F ∶ there exists c such that ∣f(x)∣ ⩽ c for all x ∈X}.

Then we have

Proposition 3.13. The set B(X,F) is a Banach space with respect to the uniform norm
given by

∥f∥L∞ = sup
x∈X
∣f(x)∣.

If X is a metric space, then the subset C0(X,F) of bounded continuous functions X Ð→ F is
a Banach subspace of B(X,F).

Proof. That B(X,F) is a vector subspace of the F-vector space of all functions X Ð→ F is
straightforward. It is similarly clear that ∥ ⋅ ∥L∞ gives a norm on B(X,F), and that this norm
is associated to the uniform distance d∞ on B(X,F) considered in Section 2.13.

It then follows from Proposition 2.70 that B(X,F) is complete, hence a Banach space.
Similarly, the statement about C0(X,F) follows from Proposition 2.71.
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A sequence (an) in a normed space (V, ∥ ⋅ ∥) defines a series in V

∞

∑
n=1

an,

which is a shorthand notation for the sequence of partial sums (xm), where

xm = a1 + ⋅ ⋅ ⋅ + am =
m

∑
n=1

an.

The series converges if there exists x ∈ V such that (xm) Ð→ x, that is

∥x −
m

∑
n=1

an∥
V

Ð→ 0 as mÐ→∞.

The limit x is called the sum of the series.
The series converges absolutely if the series of real numbers

∞

∑
n=1

∥an∥V

converges, that is there exists r ∈R⩾0 such that

(r −
m

∑
n=1

∥an∥V ) Ð→ 0 as mÐ→∞.

Proposition 3.14. Let (V, ∥ ⋅ ∥) be a normed space. V is a Banach space if and only if every
absolutely convergent series in V is convergent.

Proof. In one direction, suppose V is Banach and
∞

∑
n=1

∥an∥V = r ∈R⩾0.

Write
xm =

m

∑
n=1

an.

Let ε > 0, then there exists M ∈N such that

∣
m

∑
n=1

∥an∥V − r∣ <
ε

2
for all m ⩾M.

Then for all m ⩾ k ⩾M we have

∥xm − xk∥V = ∥
m

∑
n=k+1

an∥
V

⩽
m

∑
n=k+1

∥an∥V =
m

∑
n=1

∥an∥V −
k

∑
n=1

∥an∥V

= ∣(
m

∑
n=1

∥an∥V − r) + (r −
k

∑
n=1

∥an∥V )∣ ⩽ ∣
m

∑
n=1

∥an∥V − r∣ + ∣
k

∑
n=1

∥an∥V − r∣

< ε

2
+ ε

2
= ε.

So (xm) is a Cauchy sequence in V , therefore it converges in V , meaning that the series
∞

∑
n=1

an
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converges in V .
In the other direction, suppose that every series that converges absolutely also converges in

V , and let (an) be a Cauchy sequence in V . For each ε > 0 there exists N(ε) ∈N such that
for all n ⩾ N we have ∥an − aN∥V < ε.

Taking ε = 1
2 ,

1
22 , . . . we get

n1 ⩾ 1 such that ∥an − an1
∥
V
< 1

2
for all n ⩾ n1,

n2 > n1 such that ∥an − an2
∥
V
< 1

22
for all n ⩾ n2,

⋮

nk > nk−1 such that ∥an − ank
∥
V
< 1

2k
for all n ⩾ nk,

⋮

In particular, for all k ∈N we have

∥ank+1
− ank

∥
V
< 1

2k
,

so that
∞

∑
k=1

∥ank+1
− ank

∥
V
⩽
∞

∑
k=1

1

2k
= 1,

which implies that the series
∞

∑
k=1

(ank+1
− ank

) absolutely converges,

which by our assumption implies that the series
∞

∑
k=1

(ank+1
− ank

) converges.

Therefore the sequence of partial sums (ank
−an1
) (observe the telescoping behaviour) converges

as k Ð→∞, so the subsequence (ank
) of (an) converges, which by means that (an) converges.

(Since any Cauchy sequence with a convergent subsequence is itself convergent.)

Proposition 3.15. A normed space V is separable (as a metric space, i.e. has a countable
dense subset) if and only if

V = SpanF(S) for a countable subset S ⊆ V.

You should start by looking at the special case where V is finite-dimensional, see Tutorial
Question 9.6.)

Proof. In one direction, if V is separable, then there is a countable subset D such that
V =D ⊆ SpanF(D) ⊆ V .

For the converse, suppose V = SpanF(S) with S countable. Let

K =
⎧⎪⎪⎨⎪⎪⎩

Q if F =R
Q[i] if F =C

and let D = SpanK(S).

Then D is countable (as S and K are countable).
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We claim that D is dense in SpanF(S). Take an arbitrary element of SpanF(S):

v = α1v1 + ⋅ ⋅ ⋅ + αnvn, vi ∈ S,αi ∈ F.

Letting W = SpanF{v1, . . . , vn}, we have a finite-dimensional normed vector space over F, so by
Tutorial Question 9.6, given ε > 0 there exists v′ ∈ SpanK(S) such that ∥v−v′∥V = ∥v−v′∥W < ε.

Since D is dense in SpanF(S) and SpanF(S) is dense in V , we conclude that D is dense in
V , hence V is separable.

A Schauder basis of a normed space V is a sequence (en) of unit vectors of V such that
for every v ∈ V there exists a unique sequence of coefficients (αn) in F with

v =
∞

∑
n=1

αnen,

which should be read as meaning that the series on the right hand side converges to v ∈ V .
If V has a Schauder basis, then

V = Span{e1, e2, . . .},

so in particular V is separable1.

3.4. Bounded linear transformations
Let V and W be normed spaces.

A linear transformation f ∶ V Ð→W is said to be bounded (or Lipschitz2) if there exists
c > 0 such that

∥f(v)∥W ⩽ c ∥v∥V for all v ∈ V.

Proposition 3.16. A linear transformation f ∶ V Ð→W between normed spaces is continuous
if and only if it is bounded if and only if it is uniformly continuous.

Proof. (bounded ⇒ uniformly continuous ⇒ continuous): Suppose f is bounded with
constant c > 0. Given ε > 0, let δ = ε/c. If v1, v2 ∈ V are such that ∥v1 − v2∥V < δ, then

∥f(v1) − f(v2)∥W = ∥f(v1 − v2)∥W ⩽ c∥v1 − v2∥V < cδ = ε.

Therefore f is uniformly continuous, hence continuous.
(continuous ⇒ bounded): Suppose f is not bounded. Let n ∈N. There exists vn ∈ V

such that
∥f(vn)∥W ⩾ n ∥vn∥V .

Let αn = 1/∥f(vn)∥W and un = αnvn, then

∥un∥V = ∣αn∣ ∥vn∥V =
∥vn∥V
∥f(vn)∥W

⩽ 1

n
,

which implies that the sequence (un) Ð→ 0 ∈ V .
But

∥f(un)∥W = ∣αn∣ ∥f(vn)∥W = 1,
so the sequence (f(un)) does not converge to f(0) = 0 in W , hence f is not continuous.

1Note that not every separable normed space has a Schauder basis, but this is a nontrivial result.
2We will follow the overwhelmingly popular convention in the literature that such maps be called “bounded”,

despite the fact that this clashes, for non-compact V , with the notion of bounded function we discussed in
Section 2.13. The two concepts are related but not the same.
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We will write L(V,W ) for the set of bounded (aka continuous, aka uniformly continuous)
linear transformations between the normed spaces V and W . In the special case V =W we
simply write L(V ) = L(V,V ).

Consider the following function ∥ ⋅ ∥ ∶ L(V,W ) Ð→R⩾0:

∥f∥ = sup
v≠0

∥f(v)∥W
∥v∥V

.

As f ∈ L(V,W ), there exists c > 0 such that

∥f(v)∥W
∥v∥V

⩽ c for all v ≠ 0,

so that there is a finite supremum ∥f∥.
We also note the obvious fact that

∥f(v)∥W ⩽ ∥f∥ ∥v∥V for all v ∈ V,

and that the linearity of f allows us to rewrite

∥f∥ = sup
∥v∥V =1

∥f(v)∥W .

Theorem 3.17. Let V and W be normed spaces.

(a) The set L(V,W ) is a normed space with norm given by

∥f∥ = sup
v≠0

∥f(v)∥W
∥v∥V

= sup
∥v∥V =1

∥f(v)∥W .

(b) Consider the map N ∶ L(V,W ) Ð→ B(V ∖ {0},W ) given by N(f) = F , where

F ∶ V ∖ {0} Ð→W, F (v) ∶= 1

∥v∥V
f(v).

Then N is an isometry, and its image is a closed subset of B(V ∖ {0},W ).

(c) If W is a Banach space then L(V,W ) is also Banach.

Proof.

(a) As L(V,W ) is a subset of Hom(V,W ) and the latter is a vector space, we check that
L(V,W ) is a subspace.
We have

∥f + g∥ = sup
∥v∥V =1

∥f(v) + g(v)∥W

⩽ sup
∥v∥V =1

(∥f(v)∥W + ∥g(v)∥W )

⩽ sup
∥v∥V =1

∥f(v)∥W + sup
∥v∥V =1

∥g(v)∥W

= ∥f∥ + ∥g∥,

so that if both f and g are in L(V,W ), so is f + g.
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Similarly:
∥αf∥ = sup

∥v∥V =1

∥αf(v)∥W = sup
∥v∥V =1

∣α∣ ∥f(v)∥W = ∣α∣ ∥f∥,

so that if f is in L(V,W ) and α ∈ F, then αf is in L(V,W ).
In addition to showing that L(V,W ) is a vector space, these identities also give two of
the three norm axioms, leaving to check that ∥f∥ = 0 if and only if ∥f(v)∥W = 0 for all
v ∈ V if and only if f(v) = 0 for all v ∈ V if and only if f = 0.

(b) Let f ∈ L(V,W ) and let F = N(f). First note that if f is bounded with constant c > 0,
then dW (F (v),0) ⩽ c for all v ∈ V ∖ {0}, so F is bounded.
Next we see that if g ∈ L(V,W ) and G = N(g), then

d∞(F,G) = sup
v∈V ∖{0}

{dW (F (v),G(v))}

= sup
v∈V ∖{0}

{dW (
1

∥v∥V
f(v), 1

∥v∥V
g(v))}

= sup
v∈V ∖{0}

{ 1

∥v∥V
∥f(v) − g(v)∥W}

= ∥f − g∥,

so N is indeed an isometry.
Let F be in the closure of the image of N and let (Fn) be a sequence with Fn = N(fn)
such that (Fn) Ð→ F with respect to the uniform metric.
Define f ∶ V Ð→W by setting

f(0) = 0 and f(v) = ∥v∥V F (v) for v ∈ V ∖ {0}.

If we can show that f ∈ L(V,W ), then we are done, as clearly N(f) = F .
For linearity (ignoring corner cases where some vectors might be zero):

f(λ1v1 + λ2v2) = ∥λ1v1 + λ2v2∥V F (λ1v1 + λ2v2)
= ∥λ1v1 + λ2v2∥V lim

nÐ→∞
Fn(λ1v1 + λ2v2)

= lim
nÐ→∞

(∥λ1v1 + λ2v2∥V Fn(λ1v1 + λ2v2))
= lim

nÐ→∞
fn(λ1v1 + λ2v2)

= lim
nÐ→∞

(λ1fn(v1) + λ2fn(v2))
= λ1 lim

nÐ→∞
fn(v1) + λ2 lim

nÐ→∞
fn(v2)

= λ1∥v1∥V lim
nÐ→∞

Fn(v1) + λ2∥v2∥V lim
nÐ→∞

Fn(v2)
= λ1∥v1∥V Fn(v1) + λ2∥v2∥V Fn(v2)
= λ1f(v1) + λ2f(v2).

So f is linear. The fact that f is bounded follows immediately from the fact that
F = N(f) is bounded.

(c) This follows from part (b), since W being Banach implies that B(V ∖{0},W ) is complete
by Proposition 2.70, so the image of N is complete as it is closed (Proposition 2.47), so
L(V,W ) is complete since it is isometric to the image of N .
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Let’s record an important consequence of Theorem 3.17:

Corollary 3.18. For any normed space V , the dual space V ∨ = L(V,F) is a Banach space
with norm

∥ϕ∥ = sup
v≠0

∣ϕ(v)∣
∥v∥V

.

We’ll come back to the topic of dual spaces.
To prove that L(V,W ) is a normed space, we had to consider the interplay between the

addition of functions and the norms on V and W , and similarly for the operation of multiplying
a function by a scalar. There is another operation on functions that has been conspicuously
missing from this discussion: composition. We look at this now.

Recall (or see Section A.3) that an algebra is a vector space A with a vector multiplication
map A ×AÐ→ A, (u, v) z→ uv.

For example, given a vector space V over F, the set of all F-linear transformations V Ð→ V
is an associative unital F-algebra, where multiplication is given by composition and the unit
is 1 = idV .

Proposition 3.19. If f ∶ U Ð→ V and g ∶ V Ð→W are continuous linear transformations
between normed spaces, then g ○ f ∶ U Ð→W is continuous and linear, and

∥g ○ f∥ ⩽ ∥g∥ ∥f∥.

In particular, for any normed space V , the normed space L(V ) is closed under composition,
hence is an associative unital F-algebra.

Proof. We know already that the composition of linear maps is linear, and that the composition
of continuous maps is continuous.

As for the norms, for any u ∈ U we have

∥(g ○ f)(u)∥W = ∥g(f(u))∥W ⩽ ∥g∥ ∥f(u)∥V ⩽ ∥g∥ ∥f∥ ∥u∥U ,

so that for all u ≠ 0 we have
∥(g ○ f)(u)∥W
∥u∥U

⩽ ∥g∥ ∥f∥,

and we can conclude by taking supremum.
If U =W = V we get the F-algebra L(V ) with multiplication given by composition, and

with unit element 1 = idV , clearly both linear and continuous.

3.5. Convexity and inequalities
A subset S of a vector space V over F is convex if for all v,w ∈ S and all a, b ∈R⩾0 such that
a + b = 1, we have av + bw ∈ S. (In other words, for any two points in S, the line segment
joining the two points is entirely contained in S.)

Example 3.20. Any subspace W of V is convex.

Solution. Suppose v,w ∈W , a, b ∈ R⩾0 such that a + b = 1. Then av + bw is an F-linear
combination of elements of W . Since W is a subspace, av + bw ∈W .
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Another simple example is: any interval I ⊆R is convex, see Exercise 2.20.
If V is a vector space over F and S ⊆ V is a convex set, we say that a function f ∶ S Ð→R

is convex if for all v,w ∈ S and all a, b ∈R⩾0 such that a + b = 1, we have

f(av + bw) ⩽ af(v) + bf(w).

For instance, if (V, ∥ ⋅ ∥) is a normed space, then the norm ∥ ⋅ ∥ ∶ V Ð→ R⩾0 is a convex
function, see Exercise 2.21.

More interestingly, the notion of convex function is closely related to the concept of concavity
in single-variable calculus:

Proposition 3.21. Let I ⊆ R be an interval and let f ∶ I Ð→ R be a twice-differentiable
function.

Then f is convex if and only if f ′′(x) ⩾ 0 for all x ∈ I.

Proof. See Exercise 2.22.

Lemma 3.22. Let x, y ⩾ 0, p ⩾ 1, a, b ⩾ 0 such that a + b = 1. Then

(ax + by)p ⩽ axp + byp.

Proof. Given that p ⩾ 1, the function f ∶ (0,∞) Ð→ R given by f(x) = xp is convex by
Proposition 3.21, since f ′′(x) = p(p − 1)xp−2 ⩾ 0 for all x > 0.

The claimed inequality follows from the convexity property.

3.6. Sequence spaces
The set of all sequences FN = {(an) ∶ an ∈ F for all n ∈N} is of course a vector space over F
with the usual addition and scalar multiplication.

We consider a family of subsets of FN, parametrised by a real number p ⩾ 1:

`p = {(an) ∈ FN ∶
∞

∑
n=1

∣an∣p < ∞} ,

the elements of which are called p-summable sequences. (If p = 1 we simply call them summable,
and if p = 2, square-summable.) We consider the function ∥ ⋅ ∥`p ∶ `p Ð→R⩾0 defined by

∥(an)∥`p = (
∞

∑
n=1

∣an∣p)
1/p

.

There is also an exceptional case p = ∞ given by bounded sequences

`∞ = {(an) ∈ FN ∶ sup(∣an∣) < ∞}
= {(an) ∈ FN ∶ there exists M such that ∣an∣ ⩽M for all n ∈N} ,

with function ∥ ⋅ ∥`∞ ∶ `∞ Ð→R⩾0 given by

∥(an)∥`∞ = sup(∣an∣).

The upshot is that all these subsets of FN are normed spaces, as we now see.

Lemma 3.23. Suppose p ⩾ 1. The function f ∶ `p Ð→R⩾0 given by

f(x) = ∥x∥p`p =
∞

∑
n=1

∣xn∣p

is convex.
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Proof. Let x = (xn), y = (yn) ∈ `p, and let a, b ⩾ 0 be such that a + b = 1. Then
∞

∑
n=1

∣axn + byn∣p ⩽
∞

∑
n=1

(a∣xn∣ + b∣yn∣)
p ⩽ a

∞

∑
n=1

∣xn∣p + b
∞

∑
n=1

∣yn∣p,

where we applied first the triangle inequality for the absolute value, and second the inequality
from Lemma 3.22. Therefore

f(ax + by) = ∥ax + by∥p ⩽ a∥x∥p + b∥y∥p = af(x) + bf(y).

In order to finish the proof that f is a convex function, we also need to show that `p is a
convex subset of the vector space FN. But this is built into the inequality we proved above,
which shows that if x, y ∈ `p and a, b ⩾ 0 are such that a + b = 1, then ax + by ∈ `p.

Proposition 3.24 (Minkowski’s Inequality). Let p ⩾ 1 and let u = (un), v = (vn) ∈ `p. Then

∥u + v∥`p ⩽ ∥u∥`p + ∥v∥`p .

Proof. Fix p and write ∥ ⋅ ∥ instead of ∥ ⋅ ∥`p to simplify notation.
Given u, v ∈ `p, define

x = 1

∥u∥ u, y = 1

∥v∥ v, a = ∥u∥
∥u∥ + ∥v∥ , b = ∥v∥

∥u∥ + ∥v∥ ,

then we have by Lemma 3.23

( ∥u + v∥∥u∥ + ∥v∥)
p

= ∥ax + by∥p ⩽ a + b = 1.

Note that Minkowski’s Inequality also holds for p = ∞, see Tutorial Question 10.3.

Corollary 3.25. For 1 ⩽ p ⩽ ∞, the set `p is a vector subspace of FN, and ∥ ⋅ ∥`p is a norm
on `p.

Proof. It is clear from the definition of `p that it contains the constant zero sequence 0, and
that it is closed under scalar multiplication. By Minkowski’s Inequality it is also closed under
vector addition, so it is a subspace.

Minkowski’s Inequality also gives us the triangle inequality for ∥⋅∥`p , as well as the behaviour
under scalar multiplication. Finally, if (an) is such that there exists n ∈N with ∣an∣ > 0, then
∥(an)∥`p ⩾ ∣an∣ > 0. So ∥(an)∥`p = 0 if and only if (an) = 0.

The normed spaces `p have some desirable properties; notably they are Banach, as we will
soon see.

For now let us establish:

Proposition 3.26. For any 1 ⩽ p < ∞, the sequence space `p has Schauder basis {e1, e2, . . .},
where

en = (0, . . . ,0,1,0, . . . ) with the 1 in the n-th spot.

In particular, `p is separable.

Proof. This is an essentially trivial exercise in checking the definition.
Take an arbitrary element v = (vn) ∈ `p, then

∞

∑
n=1

∣vn∣p
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converges with sum ∥v∥p.
I claim that the series

∞

∑
n=1

vnen

converges to v with respect to the `p-norm:

∥v −
m

∑
n=1

vnen∥
p

`p

= ∥(0, . . . ,0, vm+1, vm+2, vm+3, . . . )∥
p

`p
=

∞

∑
n=m+1

∣vn∣p,

and the latter converges to 0 as mÐ→∞.
The uniqueness of the sequence of coefficients follows from the fact that

(v1, v2, . . . ) =
∞

∑
n=1

vnen = v =
∞

∑
n=1

unen = (u1, u2, . . . )

implies vn = un for all n ∈N.

Note however that `∞ is not separable, see Exercise 2.33.

3.7. Dual normed spaces and completeness of
sequence spaces

You may want to have a look at Sections B.2 and B.3 and read the discussion of bilinear maps
and dual spaces. We will only touch on some basic points here, focussing on the new aspects
coming from the norm.

If U,V,W are vector spaces over F, a bilinear map β ∶ U × V Ð→W is a function such that

β(au1 + bu2, v) = aβ(u1, v) + bβ(u2, v)
β(u, av1 + bv2) = aβ(u, v1) + bβ(u, v2)

for all u,u1, u2 ∈ U , v, v1, v2 ∈ V , a, b ∈ F.
For instance, given n ∈N, there is a bilinear map β ∶ Fn ×Fn Ð→ F given by

β(u, v) =
n

∑
k=1

ukvk.

As described in Section B.3, this defines a linear map Fn Ð→ (Fn)∨, u z→ u∨, given by
u∨(v) = β(u, v).

We’d like to do the same with (subspaces of) FN: define a bilinear map β ∶ FN ×FN Ð→ F
by the formula

β(u, v) =
∞

∑
n=1

unvn.

Of course this would feel more comfortable if we knew that the series ∑unvn actually
converges! And of course that does not happen for arbitrary u, v ∈ FN, but we can establish
some situations where it does work, as follows.

If p ⩾ 1, we say that the real number q satisfying

1

p
+ 1

q
= 1

is the Hölder conjugate of p. It is easy to see that q ⩾ 1. Note that this includes the degenerate
pair p = 1, q = ∞.
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Proposition 3.27 (Hölder’s Inequality). Suppose p and q are Hölder conjugate and let
u = (un) ∈ `p, v = (vn) ∈ `q. Then

∞

∑
n=1

∣unvn∣ ⩽ ∥u∥`p∥v∥`q .

Proof. We prove the non-degenerate case p, q ∈R>1 and leave the (simpler) degenerate one
to Tutorial Question 10.4.

Let x = (xn) ∈ `p, y = (yn) ∈ `q. For each n ∈N we have

∣xnyn∣ = (∣xn∣p)
1/p(∣yn∣q)

1/q ⩽ 1

p
∣xn∣p +

1

q
∣yn∣q,

by an application of Exercise 2.23, namely satb ⩽ as + bt where a + b = 1.
Therefore

∞

∑
n=1

∣xnyn∣ ⩽
∞

∑
n=1

(1
p
∣xn∣p +

1

q
∣yn∣q) =

1

p
∥x∥p`p +

1

q
∥y∥q`q .

Now start with u ∈ `p, v ∈ `q and set

x = 1

∥u∥`p
u, y = 1

∥v∥`q
v,

so that we obtain
∞

∑
n=1

∣unvn∣

∥u∥`p∥v∥`q
⩽ 1

p
+ 1

q
= 1.

Before we give the main result of this section, we should extend the notion of continuous
linear map to the setting of bilinear maps.

If U,V,W are normed spaces, a bilinear map β ∶ U × V Ð→ W is bounded if there exists
c > 0 such that

∥β(u, v)∥W ⩽ c ∥u∥U ∥v∥V for all u ∈ U, v ∈ V.

Proposition 3.28. If U,V,W are normed spaces, a bilinear map β ∶ U × V Ð→W is bounded
if and only if it is continuous.

Proof. Somewhat tedious, following the example of Proposition 3.16. See Exercise 2.36.

Beware: in contrast to the linear case, continuous bilinear maps are almost never uniformly
continuous. See Exercise 2.37.

Theorem 3.29. If p, q are Hölder conjugates, then β ∶ `p × `q Ð→ F given by

β(u, v) =
∞

∑
n=1

unvn

is a continuous bilinear map.
Moreover, if p, q > 1, the resulting continuous linear map

uz→ u∨ ∶ `p Ð→ (`q)∨

is a bijective isometry `p ≅ (`q)∨.
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Proof. By Hölder’s Inequality, the series defining β(u, v) converges absolutely. It is then
straightforward to check that β is bilinear.

Conveniently, Hölder’s Inequality also tells us that β is a bounded bilinear form, hence
continuous.

Now we know that u∨ ∈ (`q)∨, but we can (and will) say something more precise.
We start by proving the surjectivity of uz→ u∨.
Let ϕ ∈ (`q)∨ and let v ∈ `q. Let {e1, e2, . . .} be the Schauder basis for `q discussed

in Proposition 3.26. We have

ϕ(v) = ϕ(
∞

∑
n=1

vnen) =
∞

∑
n=1

vnϕ(en) and ∥en∥`q = 1 for all n ∈N.

Define un = ϕ(en) and u = (un). If we show that u ∈ `p then we have ϕ(v) = u∨(v) and we’re
done.

For any m ∈N, consider (ignore all the un’s that are zero, as they do not contribute to the
sums):

x =
m

∑
n=1

∣un∣p
un

en = (
∣u1∣p
u1

, . . . ,
∣um∣p
um

,0,0, . . .) ,

so that

∥x∥`q = (
m

∑
n=1

(∣un∣p−1)
q)

1/q

= (
m

∑
n=1

∣un∣p)
1/q

.

With this in mind, we have
m

∑
n=1

∣un∣p = ∣
m

∑
n=1

∣un∣p
un

un∣ = ∣
m

∑
n=1

ϕ(∣un∣p
un

en)∣

= ∣ϕ(x)∣ ⩽ ∥ϕ∥ ∥x∥`q = ∥ϕ∥(
m

∑
n=1

∣un∣p)
1/q

.

Therefore

(
m

∑
n=1

∣un∣p)
1/p

= (
m

∑
n=1

∣un∣p)
1−1/q

⩽ ∥ϕ∥.

As this holds for all m ∈N, we conclude that the series converges, so u ∈ `p. We also proved
that ∥u∥`p ⩽ ∥ϕ∥ = ∥u∨∥.

Let v ≠ 0. By Hölder’s Inequality

∣u∨(v)∣
∥v∥`q

⩽ ∥u∥`p ,

so taking supremum we get ∥u∨∥ ⩽ ∥u∥`p .
As we established both inequalities, we conclude that u z→ u∨ is a surjective isometry

(hence also injective) from `p to (`q)∨.

Corollary 3.30. If p > 1 then `p is a Banach space.

Proof. Follows as `p ≅ (`q)∨ and all dual normed spaces are Banach.

Proposition 3.31. The sequence space `2 of square-summable sequences is a Hilbert space.

Proof. Consider the function ⟨⋅, ⋅⟩ ∶ `2 × `2 Ð→ F given by

⟨a, b⟩ =
∞

∑
n=1

anbn.
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We use the Cauchy–Schwarz Inequality (Proposition A.9) to see that this converges. For any
m ∈N, (a1, . . . , am), (b1, . . . , bm) ∈ Fm so by Cauchy–Schwarz we have

∣
m

∑
n=1

anbn∣ ⩽ (
m

∑
n=1

anan)
1/2

(
m

∑
n=1

bnbn)
1/2

= (
m

∑
n=1

∣an∣2)
1/2

(
m

∑
n=1

∣bn∣2)
1/2

.

Taking limits as mÐ→∞, the right hand side becomes ∥a∥`2∥b∥`2 , which is finite since a, b ∈ `2.
The inner product properties are clear. So is the fact that the norm defined by this inner

product is exactly the `2-norm, so we get a Hilbert space by Corollary 3.30.

The rest of the `p spaces are not Hilbert spaces, see Exercise 2.30.

3.8. Orthogonality and projections
For the next few sections, we will explore some special properties of inner product spaces.

Given a normed space V , a projection is a continuous linear map π ∈ L(V ) such that π2 = π.

Proposition 3.32. Let π ∈ L(V ) be a projection.

(a) The map idV −π is also a projection.

(b) im(π) = ker(idV −π) and im(idV −π) = ker(π). In particular, the image of a projection
is a closed subspace.

(c) We have
V = im(π) ⊕ ker(π).

Solution. (a) Since both idV and π are continuous and linear, so is idV −π. Also, we have

( idV −π) ○ ( idV −π) = idV −π − π + π ○ π = idV −π.

(b) If v ∈ im(π) then v = π(w) so that

( idV −π)(v) = v − π(v) = π(w) − π2(w) = π(w) − π(w) = 0,

so v ∈ ker ( idV −π).
Conversely, if v ∈ ker ( idV −π) then v − π(v) = 0 so v = π(v) ∈ im(π).
The other identity follows by applying the first identity to the projection idV −π.
Since the image of π is the kernel of idV −π, it is a closed subspace, as the kernel of any
linear continuous map is a closed subspace.

(c) We need to prove that V = im(π) + ker(π) and that im(π) ∩ ker(π) = {0}.
Given v ∈ V , we have

v = π(v) + ( idV −π)(v) ∈ im(π) + ker(π).

If
w ∈ im(π) ∩ ker(π) = ker ( idV −π) ∩ ker(π),

then
w = π(w) + ( idV −π)(w) = 0 + 0 = 0.
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Example 3.33. Take V =R2 with the Euclidean norm. The matrix

A = (1 0
1 0
)

satisfies A2 = A, so it defines a projection. It is easy to see that im(A) is the diagonal
y = x in R2, and ker(A) is the y-axis.

The complementary projection is given by the matrix

I −A = ( 0 0
−1 1

) ,

where im(I −A) is the y-axis and ker(I −A) is the diagonal y = x.

Given a subset S of an inner product space V , we define the orthogonal complement of S by

S⊥ = {v ∈ V ∶ ⟨v, s⟩ = 0 for all s ∈ S}.

Proposition 3.34. For any subset S ⊆ V , S⊥ is a closed subspace of V .

Proof. That S⊥ is a vector subspace of V follows easily from the linearity of ⟨⋅, ⋅⟩ in the first
variable.

That S⊥ is closed in V follows from the continuity of ⟨⋅, ⋅⟩ in the first variable.

If V is an inner product space, an orthogonal projection is a projection π such that
ker(π) = ( im(π))⊥, so that we have (by Proposition 3.32)

V = im(π) ⊕ ( im(π))⊥.

Recall from Tutorial Question 5.6 that for any subset Y ⊆ X of a metric space, we can
define a function dY ∶ X Ð→R⩾0 that gives the distance to the set Y :

dY (x) = inf
y∈Y

d(x, y).

Theorem 3.35 (Hilbert Projection Theorem, Part I). Let H be a Hilbert space and Y a
closed convex subset of H. For any x ∈H, there exists a unique ymin ∈ Y that realises the
distance between x and Y :

dY (x) = d(x, ymin) = ∥x − ymin∥.

In other words, ymin is the unique point of Y that is as close as possible to x.

Proof. Let
D = dY (x) = inf

y∈Y
d(x, y).

Take a sequence (yn) in Y such that

(∥x − yn∥) = (d(x, yn)) Ð→D.

I claim that the sequence (yn) is Cauchy.
Let ε > 0. Note that

(∥x − yn∥2) Ð→D2,
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so there exists N ∈N such that

∣∥x − yn∥2 −D2∣ ⩽ ε

4
for all n ⩾ N.

Let m,n ⩾ N . By the Parallelogram Law:

∥(yn − x) + (ym − x)∥
2 + ∥(yn − x) − (ym − x)∥

2 = 2∥yn − x∥2 + 2∥ym − x∥2,

so that

∥yn − ym∥2 = 2∥yn − x∥2 + 2∥ym − x∥2 − ∥(yn + ym) − 2x∥
2

= 2∥yn − x∥2 + 2∥ym − x∥2 − 4∥
yn + ym

2
− x∥

2

.

At this point we notice that since yn, ym ∈ Y and Y is convex, (1/2)yn + (1/2)ym ∈ Y ; we can
then continue with

2∥yn − x∥2 + 2∥ym − x∥2 − 4∥
yn + ym

2
− x∥

2

⩽ 2∥yn − x∥2 + 2∥ym − x∥2 − 4D2

= 2(∥yn − x∥2 −D2) + 2(∥ym − x∥2 −D2)
< ε.

So (yn) is Cauchy in Y , which is complete (being a closed subset of the Hilbert space H).
Therefore (yn) converges in Y to some point that we will call ymin. Since the distance function
is continuous, we have

d(x, ymin) = lim
nÐ→∞

d(x, yn) =D = dY (x).

It remains to prove the uniqueness of ymin. Suppose y′ ∈ Y satisfies d(x, y′) = D. By the
Parallelogram Law

∥(ymin − x) + (y′ − x)∥
2 + ∥(ymin − x) − (y′ − x)∥

2 = 2∥ymin − x∥2 + 2∥y′ − x∥2,

so that

∥ymin − y′∥2 = 2∥ymin − x∥2 + 2∥y′ − x∥2 − ∥(ymin + y′) − 2x∥2 ⩽ 2D2 + 2D2 − 4D2 = 0,

which implies y′ = ymin.

Theorem 3.36 (Hilbert Projection Theorem, Part II). Let H be a Hilbert space and W a
closed vector subspace of H. Let x ∈H and let ymin be the unique point of W that realises
the distance between x and W , as given by the Hilbert Projection Theorem, Part I. For any
y ∈W , we have

y = ymin if and only if x − y ∈W ⊥.

The map π ∶ H Ð→ H given by π(x) = ymin is an orthogonal projection with image W . In
particular, we have a decomposition

H =W ⊕W ⊥.

Proof. First we prove that x − ymin ∈W ⊥.
Let w ∈ W be a unit vector, so ∥w∥ = 1. Letting α = ⟨x − ymin,w⟩, we want to show that

α = 0.
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Set v = x − (ymin + αw), then

⟨v,w⟩ = ⟨x − ymin − αw,w⟩
= ⟨x − ymin,w⟩ − α⟨w,w⟩
= α − α = 0,

so v ⊥ w. Therefore

∥x − ymin∥
2 = ∥v + αw∥2 = ∥v∥2 + ∣α∣2 ∥w∥2 = ∥v∥2 + ∣α∣2 ⩾ ∥v∥2,

in other words
∥x − ymin∥ ⩾ ∥x − (ymin + αw)∥.

By the minimality and uniqueness of ymin, we must have ymin = ymin + αw, so α = 0.
Next we show that if y ∈W and x − y ∈W ⊥ then y = ymin.
We have

x − y ∈W ⊥⇒ ⟨x − y,w⟩ = 0 for all w ∈W
⇒ ⟨x − y,w − y⟩ = 0 for all w ∈W
⇒ ∥x −w∥2 = ∥x − y∥2 + ∥w − y∥2 for all w ∈W
⇒ ∥x −w∥2 ⩾ ∥x − y∥2 for all w ∈W,

implying that y ∈W is closest to x; by the uniqueness of ymin, we conclude that y = ymin.
We now move on to the function π. As we have just seen, for each x ∈H, π(x) is the

unique element of W with the property that x − π(x) ∈W ⊥.
We check that π is linear.
If x1, x2 ∈H, we have π(x1) + π(x2) ∈W and

(x1 + x2) − (π(x1) + π(x2)) = (x1 − π(x1)) + (x2 − π(x2)) ∈W ⊥,

so π(x1) + π(x2) = π(x1 + x2).
Similarly, if x ∈H and α ∈ F we have απ(x) ∈W and

αx − απ(x) = α(x − π(x)) ∈W ⊥,

so απ(x) = π(αx).
We check that π is bounded, hence continuous.
For any x ∈H, we have π(x) ∈W and x − π(x) ∈W ⊥, so (x − π(x)) ⊥ π(x) and

∥x∥2 = ∥(x − π(x)) + π(x)∥2 = ∥x − π(x)∥2 + ∥π(x)∥2 ⩾ ∥π(x)∥2,

so ∥π(x)∥ ⩽ ∥x∥.
We check that π is a projection with image W .
Certainly imπ ⊆ W . If y ∈ W then π(y) = y (closest point to y is y itself), so in fact

imπ =W . Hence for all x ∈H we get π2(x) = π(π(x)) = π(x), so π2 = π.
Finally, we check that π is an orthogonal projection.
We want to show that W ⊥ = kerπ. But x ∈ W ⊥ if and only if x − 0 ∈ W ⊥ if and only if

π(x) = 0 if and only if x ∈ kerπ.

Corollary 3.37. Let H be a Hilbert space.

(a) If W is a closed linear subspace of H, then (W ⊥)⊥ =W .
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(b) If V is a linear subspace of H, then (V ⊥)⊥ = V .

(c) If S is a subset of H, then (S⊥)⊥ = Span(S).

Proof.

(a) By Exercise 2.42 we have W ⊆ (W ⊥)⊥.

Now let x ∈ (W ⊥)⊥. By the Hilbert Projection Theorem Part II, we can decompose

H =W ⊕W ⊥.

So we have x = y + z with y ∈W and z ∈W ⊥. Then

0 = ⟨x, z⟩ = ⟨y + z, z⟩ = ⟨y, z⟩ + ⟨z, z⟩ = 0 + ∥z∥2,

implying that z = 0 and x = y ∈W .

(b) See Tutorial Question 11.1.

(c) See Tutorial Question 11.1.
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A.1. Equivalence relations
An equivalence relation ∼ is a way of identifying elements of a set. More precisely, given a set
A and x, y ∈ A, we will write x ∼ y to signify that “x is equivalent to y”, and we ask for this
to satisfy three properties:

• x ∼ x for all x ∈ A (reflexivity);

• if x ∼ y then y ∼ x (symmetry);

• if x ∼ y and y ∼ z then x ∼ z (transitivity).

The following example should be very familiar:

Example A.1. Fix a natural number n. For k,m ∈ Z, define k ∼m if m − k is divisible
by n. Show that this satisfies the properties of an equivalence relation on Z.

Solution. • Given k ∈ Z, k − k = 0 is divisible by n.

• If k ∼m, then m − k = na for some a ∈ Z, therefore k −m = −na, so m ∼ k.

• If k ∼ m and m ∼ ` then m − k = na and ` −m = nb for some a, b ∈ Z. Therefore
` − k = n(a + b) so k ∼ `.

Suppose we are given an equivalence relation on a set A. For any element x ∈ A, we define
the equivalence class of x as:

[x] = {y ∈ A ∶ x ∼ y}.
Proposition A.2. For any elements x, z ∈ A, their equivalence classes are either identical or
disjoint, in other words:

either [x] = [z] or [x] ∩ [z] = ∅.
Proof. Let x, z ∈ A. There are two possibilities:

• x ∼ z: given y ∈ [x], we have x ∼ y, so y ∼ x, so y ∼ z, so y ∈ [z]. This tells us that
[x] ⊆ [z], and the other inclusion follows the same way from z ∼ x. Therefore [x] = [z].

• x /∼ z: suppose [x] ∩ [z] is not empty, and pick some element y in there. Then y ∈ [x] so
y ∼ x, and y ∈ [z] so y ∼ z, implying that x ∼ z, contradiction. Therefore [x] ∩ [z] = ∅.

Example A.3. How many distinct equivalence classes are there for the equivalence
relation on Z defined in Example A.1?

Solution. Given m ∈ Z, let 0 ⩽ r ⩽ n − 1 be the remainder of the division of m by n:
m = qn + r. Then m − r is divisible by n, hence m ∼ r. From the previous part, we know
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that there are at most n equivalence classes, one for each possible value of r. To show
that we have exactly n buddy groups, we need to prove that [r1] ≠ [r2] for any r1 ≠ r2
with 0 ⩽ r1, r2 ⩽ n − 1. We do this by contradiction: if [r1] = [r2] then r1 ∼ r2, so r2 − r1
is a multiple of n. But −(n − 1) ⩽ r2 − r1 ⩽ (n − 1), and the only multiple of n in that
interval is 0, in other words r2 = r1, contradiction.

Suppose we are given an equivalence relation on a set A, and consider the set of equivalence
classes

(A/∼) ∶= {[x] ∶ x ∈ A}.
A/ ∼ is read as “A mod tilde”, and it is referred to as the quotient of A by the relation ∼.
There is a canonical surjective function (the quotient map)

π ∶ AÐ→ A/∼ given by π(x) = [x].

Example A.4 (Row equivalence of matrices). Fix natural numbers m,n and consider
the set Mm×n of all m× n matrices with real entries. Given matrices X,Y ∈Mm×n, define
X ∼ Y if and only if there is a finite sequence of elementary row operations that starts at
X and ends at Y .

Show that this is an equivalence relation.

Solution. • Let X ∈Mm×n. The identity elementary row operation takes X to X, so
X ∼X.

• Let X,Y ∈Mm×n and suppose X ∼ Y , so there is a sequence ρ1○⋅ ⋅ ⋅○ρk of elementary
row operations that starts at X and ends at Y . Then each ρj is invertible and ρ−1j
is an elementary row operation, so the sequence ρ−1k ○ ⋅ ⋅ ⋅ ○ ρ−11 starts at Y and ends
at X, so Y ∼X.

• Let X,Y,Z ∈ Mm×n and suppose that X ∼ Y and Y ∼ Z. Composing the two
sequences of elementary row operations, we get a finite sequence that starts at X
and ends at Z, so X ∼ Z.

Example A.5. Describe explicitly the quotient of M2×3 by the equivalence relation
from Example A.4, by listing a representative element for each equivalence class.

Describe as precisely as you can all the matrices that belong to the equivalence class

of the matrix X = [1 0 −1
0 0 0

].

Show that the function f ∶ (M2×3/∼ ) Ð→N given by f([X]) = rank(X) is well-defined.

A.2. Cardinality
We say that two sets S and T have the same cardinality if there exists a bijective function
f ∶ S Ð→ T .

This defines an equivalence relation (on the set of subsets of any fixed set Ω, see Exercise A.6).
In this subject, the natural numbers

N = {0,1,2,3, . . .}

start at 0.
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A set S is finite if it is empty or there exists n ∈N such that S has the same cardinality as
{0, . . . , n}. A set S is infinite if it is not finite.

We will use the term countable to mean what is more precisely called countably infinite,
that is, a set that has the same cardinality as N. A set S is uncountable if it is infinite and
not countable.
Proposition A.6. Any subset S of a countable set T is either finite or countable.

The first uncountable set that most people encounter is the set R of real numbers. It is
easy to see that any interval of length > 0 in R must also be uncountable.

It can be difficult to find a bijective function between two sets (assuming that one exists).
The following result makes it easier to show that two sets have the same cardinality. (The
proof is nontrivial, and uses the Axiom of Choice.)
Theorem A.7 (Schröder–Bernstein). If A and B are sets and f ∶ AÐ→ B and g ∶ B Ð→ A
are injective functions, then A and B have the same cardinality.

A.3. Maps between vector spaces
Unless specified otherwise, we use F to denote an arbitrary field.

For vector spaces V , W over F, we write
Hom(V,W ) = {f ∶ V Ð→W ∶ f is a linear transformation}.

This is a vector space over F, with zero vector given by the constant function 0 ∶ V Ð→W ,
0(v) = 0W for all v ∈ V , and with vector addition and scalar multiplication defined pointwise:

(f1 + f2)(v) = f1(v) + f2(v) and (λf)(v) = λf(v).
An F-algebra is a vector space A over F together with a multiplication map A ×AÐ→ A,
(u, v) z→ uv, satisfying

• (u + v)w = uw + vw for all u, v,w ∈ A;

• u(v +w) = uv + uw for all u, v,w ∈ A;

• (αu)(βv) = (αβ)(uv) for all α,β ∈ F and all u, v ∈ A.
The algebra A is associative if

(uv)w = u(vw) for all u, v,w ∈ A.
The algebra A is unital if there exists an element 1 ∈ A with the property that

1v = v1 = v for all v ∈ A.
For any vector space V over F, End(V ) ∶= Hom(V,V ) is an associative unital F-algebra, see
Exercise A.10.

An important property of a basis for a vector space is the ability to define a function on
that basis and then extend it to a unique linear map. More precisely, let V and W be vector
spaces over F. Fix a basis B of V . For any function g ∶ B Ð→W there exists a unique linear
map f ∶ V Ð→W such that g = f ∣B, constructed in the following manner:

Given v ∈ V , there is a unique expression of the form
v = a1v1 + ⋅ ⋅ ⋅ + anvn, n ∈N, aj ∈ F, vj ∈ B.

Therefore the only option is to set
f(v) = a1g(v1) + ⋅ ⋅ ⋅ + ang(vn).

It is easy to see that f is linear.
We say that f is obtained from g by extending by linearity.
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A.4. Inner products
We take F to be either R or C, and we denote by ⋅ the complex conjugation (which is just
the identity if F =R).

Let V be a vector space over F.
An inner product on V is a function

⟨⋅, ⋅⟩ ∶ V × V Ð→ F

such that

(a) ⟨w, v⟩ = ⟨v,w⟩ for all v,w ∈ V ;

(b) ⟨u + v,w⟩ = ⟨u,w⟩ + ⟨v,w⟩ for all u, v,w ∈ V ;

(c) ⟨αv,w⟩ = α ⟨v,w⟩ for all v,w ∈ V , all α ∈ F;

(d) ⟨v, v⟩ ⩾ 0 for all v ∈ V and ⟨v, v⟩ = 0 iff v = 0.

Properties (a), (b), and (c) say that ⟨⋅, ⋅⟩ is linear in the first variable, but conjugate-linear in
the second:

⟨v,αw⟩ = ⟨αw, v⟩ = α⟨w, v⟩ = α ⟨v,w⟩.
(Such a function V × V Ð→ F is called a sesquilinear form.)

Property (d) says that ⟨⋅, ⋅⟩ is positive-definite.
An inner product space is a pair (V, ⟨⋅, ⋅⟩), where V is a vector space over F and ⟨⋅, ⋅⟩ is an

inner product on V .

Example A.8. The prototypical inner product on Cn is

⟨u, v⟩ =
n

∑
k=1

ukvk = vTu,

which on Rn becomes
⟨u, v⟩ =

n

∑
k=1

ukvk = vTu.

All other inner products on Cn are of the form

⟨u, v⟩ = vTAu,

where A is an n × n positive-definite Hermitian matrix, that is

A
T = A and all the eigenvalues of A are real and positive.

Over R, A is a positive-definite1 symmetric matrix.
Define

∥v∥ =
√
⟨v, v⟩.

Proposition A.9 (Cauchy–Schwarz Inequality). Take u, v in an inner product space V .
Then

∣⟨u, v⟩∣ ⩽ ∥u∥ ∥v∥,
where equality holds if and only if u and v are parallel, that is u = λv for some λ ∈ F.

1There is a slightly weaker notion of positive-semidefinite matrix A, where we ask for the eigenvalues to be
real and non-negative. Since we are then allowing 0 to be an eigenvalue, such a matrix may not define an
inner product, because there could be nonzero vectors with length zero.
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Proof. If u = 0 or v = 0, we have the equality 0 = 0. Otherwise, for any t ∈ F we have

0 ⩽ ⟨u − tv, u − tv⟩ = ⟨u,u⟩ − 2Re (t⟨u, v⟩) + t t⟨v, v⟩
= ∥u∥2 − 2Re (t⟨u, v⟩) + ∣t∣2∥v∥2.

In particular, we can take t = ⟨u,v⟩
∥v∥2 :

0 ⩽ ∥u∥2 − 2Re(∣⟨u, v⟩∣
2

∥v∥2 ) +
∣⟨u, v⟩∣2
∥v∥2 = ∥u∥2 − ∣⟨u, v⟩∣

2

∥v∥2 ,

so ∣⟨u, v⟩∣2 ⩽ ∥u∥2 ∥v∥2.
Equality holds if and only if 0 = ⟨u − tv, u − tv⟩ if and only if u − tv = 0 if and only if

u = tv.

Let V be a finite-dimensional inner product space. A linear map f ∶ V Ð→ V is self-adjoint
if

⟨f(u), v⟩ = ⟨u, f(v)⟩ for all u, v ∈ V.
A set of vectors S ⊆ V is said to be orthonormal if

⟨u, v⟩ =
⎧⎪⎪⎨⎪⎪⎩

1 if u = v
0 if u ≠ v

for all u, v ∈ S.

Theorem A.10 (Spectral Theorem, finite-dimensional case). Let f ∶ V Ð→ V be a self-adjoint
linear map on a finite-dimensional inner product space V over F. There exists an orthonormal
basis of V made of eigenvectors for f .

In practice, a linear map f ∶ V Ð→ V is often given by a matrix (representation) M .

• If F =R, f is self-adjoint if and only if M is real symmetric (MT =M), and then the
Spectral Theorem implies that M is orthogonally diagonalisable: there exists a diagonal
matrix D with real entries and a real orthogonal matrix Q (that is, QQT = I) such that
QTMQ =D.

• If F =C, f is self-adjoint if and only if M is Hermitian (MT =M), and then the Spectral
Theorem implies that M is unitarily (real-)diagonalisable: there exists a diagonal matrix
D with real entries and a unitary matrix U (that is, UU

T = I) such that U
T
MU =D.

In both cases, D stores the eigenvalues of M and Q or U store normalised eigenvectors of M
(so all of these are obtained by computing first the eigenvalues, then bases for the eigenspaces,
then orthonormalising the bases using Gram–Schmidt).

A.5. Uniform continuity and uniform convergence
Let f ∶ X Ð→R be a function, with domain X ⊆R.

The typical first definition of continuity amounts to: f is continuous on X if and only if

for every x ∈X and every ε > 0, there exists δ > 0 such that:
for all y ∈X, if ∣x − y∣ < δ, then ∣f(x) − f(y)∣ < ε.
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The order of appearance of the variables matters! In particular, since δ appears after both x
and ε, it may well depend on both of these.

For various purposes, a stronger notion of continuity is needed. We say that f is uniformly
continuous on X if and only if

for every ε > 0, there exists δ > 0 such that:
for all x, y ∈X, if ∣x − y∣ < δ, then ∣f(x) − f(y)∣ < ε.

In this version, δ only depends on ε (and thus its choice is uniform over x ∈X, hence the
name).

Example A.11. The function f ∶ R>0 Ð→ R>0 given by f(x) = 1
x is not uniformly

continuous.

Solution. First make sure that you negate the condition in the definition correctly: there
exists ε > 0 such that for all δ > 0 there exist x, y such that ∣x−y∣ < δ and ∣f(x)−f(y)∣ ⩾ ε.

And now, to work: let ε = 1. Take an arbitrary δ > 0. Set x =min{δ,1}. I claim that
y ∶= x/2 satisfies the desired condition. Let’s check:

∣x − y∣ = x

2
⩽ δ

2
< δ.

Also
∣f(x) − f(y)∣ = ∣1

x
− 1

y
∣ = ∣1

x
− 2

x
∣ = 1

x
⩾ 1 = ε.

One source of uniformly continuous functions is given by the fact that if X is a closed,
bounded subset of R, then any continuous function f ∶ X Ð→R is uniformly continuous on
X. We will prove a more general result in the context of metric spaces.

There is a similar pair of the type (more general notion, stronger notion) in the context
of sequences of functions. Suppose we have, for each n ∈ N, a function fn ∶ X Ð→ R with
domain X ⊆ R. Suppose we also have a “target” function f ∶ X Ð→ R. We say that the
sequence (fn) converges pointwise to f on X if and only if

for every x ∈X and every ε > 0, there exists N ∈N such that:
if n ⩾ N, then ∣fn(x) − f(x)∣ < ε.

Note that N may well depend on both ε and x.
On the other hand, we say that the sequence (fn) converges uniformly to f on X if and

only if

for every ε > 0, there exists N ∈N such that:
for every x ∈X, if n ⩾ N, then ∣fn(x) − f(x)∣ < ε.

In this case N depends only on ε (and thus is uniform over x ∈X).

Example A.12. For n ⩾ 1, consider fn ∶ RÐ→R given by

fn(x) =
1

n(1 + x2) .

The sequence (fn) converges uniformly on R to the constant function zero.
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Solution. The key point is to note that 1 + x2 ⩾ 1 for all x ∈ R, hence 0 ⩽ 1/(1 + x2) ⩽ 1
for all x ∈R. Therefore, given ε > 0, we let N ∈N satisfy N > 1/ε (independent of x) and
get, for all n ⩾ N :

∣fn(x) − 0∣ = ∣
1

n(1 + x2)∣ ⩽
1

n
⩽ 1

N
< ε.

Example A.13. For n ⩾ 1, consider fn ∶ RÐ→R given by

fn(x) =
x2 + nx

n
.

The sequence (fn) converges pointwise, but not uniformly on R to the function

f ∶ RÐ→R, f(x) = x.

Solution. We have
∣fn(x) − f(x)∣ = ∣

x2 + nx
n

− x∣ = x2

n
.

For a fixed x ∈R, we can take N > x2/ε to get pointwise convergence at x. But to do so
uniformly over x ∈R we would need N to satisfy N > x2/ε for all x ∈R, which is clearly
impossible.

We will discuss uniform convergence at length and in greater generality. Its main attraction
over pointwise convergence is that a uniform limit function retains many nice properties of
the functions in the sequence (continuity, boundedness, and so on).
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B.1. Zorn’s Lemma
A partially ordered set (poset for short) is a set X together with a partial order ⩽, that is a
relation satisfying

• x ⩽ x for all x ∈X;

• if x ⩽ y and y ⩽ x then x = y;

• if x ⩽ y and y ⩽ z then x ⩽ z.

A poset X such that for any x, y ∈ X we have x ⩽ y or y ⩽ x is called a totally ordered set,
and ⩽ is called a total order.

A chain in a poset (X,⩽) is a subset C ⊆X that is totally ordered with respect to ⩽.
If S ⊆ X is a subset of a poset, then an upper bound for S is an element u ∈ X such that

s ⩽ u for all s ∈ S.
A maximal element of a poset X is an element m of X such that there does not exist any

x ∈X such that x ≠m and m ⩽ x. In other words, for any x ∈X, either x =m, or x ⩽m, or x
and m are not comparable with respect to the partial order ⩽.

The following result is used to deduce the existence of maximal elements in infinite posets:

Lemma B.1 (Zorn’s Lemma). Let X be a nonempty poset such that every nonempty chain
C in X has an upper bound in X. Then X has a maximal element.

B.2. Bilinear maps
If U,V,W are vector spaces over F, a bilinear map β ∶ U × V Ð→W is a function such that

β(au1 + bu2, v) = aβ(u1, v) + bβ(u2, v)
β(u, av1 + bv2) = aβ(u, v1) + bβ(u, v2)

for all u,u1, u2 ∈ U , v, v1, v2 ∈ V , a, b ∈ F.
Note that such β induces maps

βU ∶ U Ð→ Hom(V,W ), uz→ (v z→ β(u, v))
βV ∶ V Ð→ Hom(U,W ), v z→ (uz→ β(u, v)).

It is easy to check that these maps are themselves linear.

B.3. Dual vector space
Let V be a finite dimensional vector space over F. Define

V ∨ = Hom(V,F).

This is a vector space over F, called the dual vector space to V . Its elements are sometimes
called (linear) functionals and denoted with Greek letters such as ϕ.
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Proposition B.2. Suppose B = {v1, . . . , vn} is a basis for V . Define v∨1 , . . . , v
∨
n ∈ Fun(V,F)

by
v∨i (a1v1 + ⋅ ⋅ ⋅ + anvn) = ai for i = 1, . . . , n.

Then v∨i ∈ V ∨ for i = 1, . . . , n and the set B∨ = {v∨1 , . . . , v∨n} is a basis for V ∨. (It is called the
dual basis to B.)

Proof. We check that v∨i is a linear transformation.
Given v,w ∈ V , we express them in the basis B:

v = a1v1 + ⋅ ⋅ ⋅ + anvn
w = b1v1 + ⋅ ⋅ ⋅ + bnvn,

then
v∨i (v +w) = v∨i (a1v1 + ⋅ ⋅ ⋅ + anvn + b1v1 + ⋅ ⋅ ⋅ + bnvn) = ai + bi = v∨i (v) + v∨i (w).

Similarly, if λ ∈ F we have

v∨i (λv) = v∨i (λa1v1 + ⋅ ⋅ ⋅ + λanvn) = λai = λv∨i (v).

So v∨i ∈ V ∨ for any i = 1, . . . , n.
Next we show that the set B∨ is linearly independent. Suppose we have

λ1v
∨
1 + ⋅ ⋅ ⋅ + λnv

∨
n = 0.

In particular, we can apply this to the basis vector vi ∈ B for any i = 1, . . . , n and get

λi = 0.

So all the coefficients in the above linear relation must be zero, therefore B∨ is linearly
independent.

Finally, we show that the set B∨ spans V ∨. Let ϕ ∈ V ∨; let v ∈ V and express v in the basis
B:

v = a1v1 + ⋅ ⋅ ⋅ + anvn.
Then, since ϕ is a linear transformation, we have

ϕ(v) = a1ϕ(v1) + ⋅ ⋅ ⋅ + anϕ(vn)
= λ1v

∨
1 (v) + ⋅ ⋅ ⋅ + λnv

∨
n(v),

where we let λ1 = ϕ(v1), . . . , λn = ϕ(vn). This shows that ϕ is in the span of the set B∨.

Note that a bilinear map β ∶ V ×W Ð→ F induces linear maps

βW ∶ W Ð→ V ∨, w z→ (w∨ ∶ v z→ β(v,w))
βV ∶ V Ð→W ∨, v z→ (v∨ ∶ w z→ β(v,w)).

For instance, we can take W = V ∨ and define β ∶ V × V ∨ Ð→ F by

β(v,ϕ) = ϕ(v).

The corresponding linear maps are βV ∨ = idV ∨ ∶ V ∨ Ð→ V ∨, and βV ∶ V Ð→ (V ∨)
∨ given by

βV (v)(ϕ) = β(v,ϕ) = ϕ(v).

Proposition B.3. If V is finite-dimensional, then βV ∶ V Ð→ (V ∨)
∨ is invertible.
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Proof. Let B = {v1, . . . , vn} be a basis for V and let B∨ = {v∨1 , . . . , v∨n} be the dual basis for
V ∨ as in Proposition B.2.

To show that βV is injective, suppose u, v ∈ V are such that βV (u) = βV (v), in other words

ϕ(u) = ϕ(v) for all ϕ ∈ V ∨.
Write

u = a1v1 + ⋅ ⋅ ⋅ + anvn
v = b1v1 + ⋅ ⋅ ⋅ + bnvn

then, for i = 1, . . . , n, we have
ai = v∨i (u) = v∨i (v) = bi

Therefore u = v.
We now prove that βV is surjective. (Note that we could get away with simply saying

that Proposition B.2 tells us that V and V ∨, and therefore also (V ∨)∨, have the same
dimension n; so βV , being injective, is also surjective.)

Let T ∶ V ∨ Ð→ F be a linear transformation. Define v ∈ V by

v = T(v∨1 )v1 + ⋅ ⋅ ⋅ + T (v∨n)vn.
I claim that βV (v) = T . For any ϕ ∈ V ∨ we have

βV (v)(ϕ) = ϕ(v) = T (v∨1 )ϕ(v1) + ⋅ ⋅ ⋅ + T (v∨n)ϕ(vn)
= T (ϕ(v1)v∨1 + ⋅ ⋅ ⋅ + ϕ(vn)v∨n)
= T (ϕ),

where we expressed ϕ in terms of the dual basis v∨1 , . . . , v
∨
n from Proposition B.2.

Proposition B.4. Consider a linear transformation T ∶ V Ð→ W , where W is another
finite-dimensional vector space over F. Define T ∨ ∶ W ∨ Ð→ V ∨ by

T ∨(ϕ) = ϕ ○ T.
Then T ∨ is a linear transformation, called the dual linear transformation to T .
Proof. It is clear that ϕ ○ T ∶ V Ð→ F is linear, being the composition of two linear transfor-
mations.

To show that T ∨ ∶ W ∨ Ð→ V ∨ is linear, take ϕ1, ϕ2 ∈W ∨. For any v ∈ V we have

T ∨(ϕ1 + ϕ2)(v) = (ϕ1 + ϕ2)(T (v)) = ϕ1(T (v)) + ϕ2(T (v)) = T ∨(ϕ1)(v) + T ∨(ϕ2)(v).
Similarly, if ϕ ∈W ∨ and λ ∈ F, then for any v ∈ V we have

T ∨(λϕ)(v) = (λϕ)(T (v)) = λϕ(T (v)) = λT ∨(ϕ)(v).

B.4. A diversion: Topological groups
A topological group is a topological space G that is also a group and such that the multiplication
map

G ×GÐ→ G, (g, h) z→ gh

and the inverse map
GÐ→ G, g z→ g−1

are both continuous.
Obviously, this makes the inverse map into a homeomorphism.
Note that some authors require topological groups G to be Hausdorff. We do not.
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B. Appendix: Miscellaneous

Example B.5. Any group G endowed with the discrete topology (or with the trivial
topology) is a topological group.

Example B.6. Consider R with the Euclidean topology, under the addition operation
on R.

More generally, V =Rn with the Euclidean topology, under addition of vectors.

Example B.7 (The circle group). Let

S1 = {z ∈C ∶ ∣z∣ = 1}.

Give this the subspace topology coming from the usual topology on C, and let the group
operation be complex multiplication.

Example B.8 (The general linear groups). Let n ∈ Z⩾1 and

GLn(R) = {M ∈Mn×n(R) ∶ M is invertible }.

Give Mn×n(R) ≡Rn2 the Euclidean topology and GLn(R) the subspace topology.
Matrix multiplication is continuous in the matrix entries. (One should also check that

matrix inversion is continuous.)

Proposition B.9. Let G be a topological group and g ∈ G. The left translation map Lg ∶ GÐ→
G given by Lg(x) = gx is a homeomorphism. So is the right translation map Rg.

Proof. The map Lg is the composition of the continuous map GÐ→ G×G given by xz→ (g, x)
and the multiplication map of G, hence is continuous. It is clear that Lg−1 is the inverse of
Lg, and that it is also continuous.

Corollary B.10. Any topological group G is a homogeneous topological space, that is: for
every x, y ∈ G there exists a homeomorphism f ∶ GÐ→ G such that f(x) = y.

Proof. Let f = Lyx−1 .

A topological group homomorphism f ∶ GÐ→H is a group homomorphism that is continuous
with respect to the topologies on G and H.

Example B.11. We know that the inverse map GÐ→ G, g z→ g−1 is continuous (in fact,
a homeomorphism). But it is a group homomorphism (and hence a topological group
homomorphism) if and only if G is abelian.

On the other hand, for any topological group G and any g ∈ G, conjugation by g
given by cg ∶ GÐ→ G, cg(x) = g−1xg is a topological group isomorphism, that is a group
isomorphism that is also a homeomorphism. (This follows simply from cg = Rg ○Lg−1 .)

Example B.12. The map exp ∶ RÐ→R× is a topological group homomorphism, where
R has the Euclidean topology and the addition operation, and R× has the subspace
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topology and the multiplication operation.

Example B.13. The determinant map det ∶ GLn(R) Ð→ R× is a topological group
homomorphism.

Proposition B.14. Let G be a topological group and H a subgroup. Then the closure H is a
subgroup of G. Moreover, if H is normal, then so is H.

Proof. Clearly the identity element e ∈H ⊆H.
In the rest of the proof, we will repeatedly use Proposition 2.20: if A ⊆ X, then x ∈ A if

and only if every open neighbourhood of x intersects A nontrivially.
Suppose g ∈H; we want to show that g−1 ∈H. Let U ⊆ G be an open neighbourhood of g−1.

Then (since inversion is a homeomorphism) U−1 is an open neighbourhood of g ∈ H, so let
h ∈ U−1∩H. Then h−1 ∈ U ∩H−1 = U ∩H since H is a subgroup; we conclude that U intersects
H nontrivially, so g−1 ∈H.

Now suppose g1, g2 ∈ H; we want to show that g1g2 ∈ H. Let U ⊆ G be an open neigh-
bourhood of g1g2. Then m−1(U) ⊆ G × G is an open neighbourhood of (g1, g2) (since the
multiplication map m is continuous), therefore it contains an open rectangle U1×U2 that is an
open neighbourhood of (g1, g2). There exist h1 ∈ U1 ∩H and h2 ∈ U2 ∩H. Let U ′ =m(U1, U2),
then g1g2 ∈ U ′ ⊆ U . Moreover, (h1, h2) ∈ (U1 ×U2) ∩ (H ×H), therefore h1h2 ∈ U ′ ∩H ⊆ U ∩H.
We conclude that the latter intersection is nonempty, so that g1g2 ∈H.

So H is a subgroup of G.
Assume finally that H is a normal subgroup. Let g ∈ G and x ∈H; we want to show that

gxg−1 ∈H. Let U be an open neighbourhood of gxg−1. Then g−1Ug is an open neighbourhood
of x ∈H, so there exists h ∈H such that h ∈ g−1Ug ∩H. Then ghg−1 ∈ U ∩ gHg−1 = U ∩H.

There is much more to say about topological groups (quotients, action on a topological
space, structure, representations, etc.) And there are topological rings, topological fields,
topological vector spaces. We will see an important class of the latter in the next chapter,
but for now we leave this topic and the generality of topological spaces, and return to the
case of metric spaces.
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