
MAST30026 Metric and Hilbert Spaces 2025

MAST30026 Assignment 2
Due Friday 19 September at 20:00 on Canvas and Gradescope

Some guidelines:

• Your answers to this assignment can be handwritten (on physical paper and scanned,
or on a tablet or other device), or typeset using a system that can produce professional-
quality mathematical documents (e.g. LATEX or Typst, but not Microsoft Word).
If you are writing by hand, make sure that your writing can appear clearly enough on
the document you upload to Gradescope. This is usually achieved by writing legibly
with a very readable writing implement.

• Please indicate clearly which question you are writing about at the top of each page.
(Ideally, start a new question on a new page.)
When you upload your document to Gradescope, please mark which pages correspond
to which questions.

• The quality of the exposition will be assessed alongside the correctness of the approach.
There is no need to include your preparatory scratch work (do this on separate paper)
but make sure that the solution you submit is a complete explanation.
“Completeness” of the explanation is somewhat subjective, but: results from the lectures,
tutorials, exercises can be used (without having to re-prove them). Make sure you say
clearly what result(s) you are using, though.

• It is acceptable for students to discuss the questions on the assignments and strategies
for solving them. However, each student must write down their solutions in their own
words and notation (and make sure that they understand what they are writing).

• As a large language model, I do not have an opinion about your use of generative AI to
complete this assignment.
Actually. . . I do have an opinion.
Whatever resource you tap into, use it in a smart way: know its limitations, and do
the work of really understanding what it is that you are submitting. This is true of
your mate who is smart but tends to make arithmetic mistakes, of your favourite linear
algebra or analysis book that uses completely different notation to ours, or of the chatbot
that sounds impressive but hallucinates references or gives you a proof that relies on
lots of results we have not seen in the subject (and that’s the best case scenario). Do
your job: be paranoid, double-check everything, take it apart and put it back together
until it makes sense to you.

• Assignments are a valuable learning tool in this subject, so strive to maximise their
impact on your understanding of the material.

• It is possible that not all questions will have the same weight in the assessment.

• No Chegg or anything similar. At all. Please.

This assignment consists of 6 questions. Please scan your answer pages and
upload them to GradeScope in the correct order.
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2.1.

(a) Suppose X is a Hausdorff topological space and give Y ⊂ X the subspace topology.
Prove that Y is Hausdorff.

(b) Suppose X1 and X2 are Hausdorff topological spaces. Prove that X1 ×X2 is Hausdorff.

(c) Let X be a Hausdorff topological space and let K be a compact subset of X. Let
` ∈ X ∖K. Prove that there exist open sets U,V in X such that K ⊆ U , ` ∈ V , and
U ∩ V = ∅.

(d) Let X be a Hausdorff topological space and let K,L be compact subsets of X such that
K ∩ L = ∅. Prove that there exist open sets U,V in X such that K ⊆ U , L ⊆ V , and
U ∩ V = ∅.
[Hint: Use (c).]

Solution.

(a) Let y1 ≠ y2 ∈ Y . Then y1 ≠ y2 ∈ X and X is Hausdorff so there exist open subsets U1

and U2 in X such that y1 ∈ U1, y2 ∈ U2, and U1 ∩U2 = ∅. Let V1 = U1 ∩ Y , V2 = U2 ∩ Y ,
then V1 and V2 are open in Y such that y1 ∈ V1, y2 ∈ V2, and V1 ∩ V2 ⊆ U1 ∩U2 = ∅.

(b) Let (y1, y2) ≠ (z1, z2) ∈X1 ×X2. Either y1 ≠ z1 or y1 = z1.
• If y1 = z1 then y2 ≠ z2 ∈X2. Since X2 is Hausdorff, there exist open subsets U and

V of X1 with y2 ∈ U , z2 ∈ V , and U ∩ V = ∅. Then X1 × U and X1 × V are open
subsets of X1 ×X2 such that (y1, y2) ∈X1 ×U , (z1, z2) ∈X1 × V , and

(X1 ×U) ∩ (X1 × V ) =X1 × (U ∩ V ) =X1 × ∅ = ∅.

• If y1 ≠ z1 ∈X1, we proceed in the same manner but within X1 instead of X2.

(c) For k ∈K, we have k ≠ ` and X is Hausdorff so there exist open subsets Uk and Vk of
X such that k ∈ Uk, ` ∈ Vk, and Uk ∩ Vk = ∅. This gives us an open cover of K:

K ⊆ ⋃
k∈K

Uk.

Since K is compact, this has a finite subcover

K ⊆
n

⋃
i=1

Uki =∶ U.

Letting
V ∶=

n

⋂
i=1

Vki ,

we get open subsets U and V of X with the desired property.

(d) Fix ` ∈ L. By part (c), there exist open subsets U` and V` of X such that K ⊆ U`, ` ∈ V`,
and U` ∩ V` = ∅. This gives us an open cover of L:

L ⊆ ⋃
`∈L

V`.

Since L is compact, this has a finite subcover

L ⊆
m

⋃
j=1

V`j =∶ V.
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Letting
U ∶=

m

⋂
j=1

U`j ,

we get open subsets U and V of X with the desired property.
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2.2. Let X,Y be topological spaces.

(a) Let f ∶ X Ð→ Y be a continuous function and let S ⊆X be given the subspace topology.
Let g ∶= f ∣S ∶ S Ð→ Y be the restriction of f to S. Prove that g is a continuous function.

(b) Let f ∶ X Ð→ Y be a function. Let {Ui ∶ i ∈ I} be an open cover of X. For every i ∈ I,
let fi ∶= f ∣Ui

∶ Ui Ð→ Y be the restriction of f to Ui.
Prove that f is continuous if and only if fi is continuous for every i ∈ I.

(c) Suppose you are given an open cover {Ui ∶ i ∈ I} of X and, for each i ∈ I, a continuous
function fi ∶ Ui Ð→ Y , such that for all i, j ∈ I we have

fi(x) = fj(x) for all x ∈ Ui ∩Uj.

Prove that there exists a unique continuous function f ∶ X Ð→ Y such that for every
i ∈ I, f ∣Ui

= fi.

Solution.

(a) Let V be an open subset of Y , then f−1(V ) is an open subset of X (since f is continuous).
Therefore (by the definition of the subspace topology on S) we have g−1(V ) = f−1(V )∩S
is an open subset of S. We conclude that g ∶ S Ð→ Y is continuous.

(b) By part (a), if f is continuous then for every i ∈ I the restriction fi ∶ Ui Ð→ Y is
continuous.
Conversely, suppose fi is continuous for every i ∈ I. I claim that for every subset V ⊆ Y
we have

f−1(V ) = ⋃
i∈I

f−1i (V ).

Assuming this for now, if V ⊆ Y is open, then f−1i (V ) ⊆ X is open, so their union
f−1(V ) ⊆X is also open and we are done.
For the proof of the claim:

• If x ∈ f−1(V ) then f(x) ∈ V . Let i ∈ I be such that x ∈ Ui, then fi(x) = f(x) ∈ V ,
so x ∈ f−1i (V ), so x ∈ ⋃i∈I f

−1
i (V ).

• If x ∈ ⋃i∈I f
−1
i (V ) then there exists i ∈ I such that x ∈ f−1i (V ), so fi(x) ∈ V , so

f(x) ∈ V , so x ∈ f−1(V ).

(c) Given x ∈X, let i ∈ I be such that x ∈ Ui. Set

f(x) ∶= fi(x).

To check that this is well-defined, suppose j ∈ I is such that x ∈ Uj, then x ∈ Ui ∩Uj so
fi(x) = fj(x).
For each i ∈ I: we have f(x) = fi(x) for all x ∈ Ui, in other words f ∣Ui

= fi. Therefore f
is continuous by the result of part (b).
Finally, we prove the uniqueness of the function f . Suppose g ∶ X Ð→ Y is a function
such that g∣Ui

= fi for all i ∈ I. Let x ∈X, then there exists i ∈ I such that x ∈ Ui, so that

g(x) = g∣Ui
(x) = fi(x) = f(x).

We conclude that g = f .
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2.3.

(a) Let X be a disconnected topological space and let U,V be non-empty open subsets of
X such that X = U ∪ V and U ∩ V = ∅.
Prove that if C ⊆X is connected, then C ⊆ U or C ⊆ V .

(b) Let X be a topological space and C ⊆X a connected subset. Suppose that B satisfies
C ⊆ B ⊆ C. Prove that B is connected.
[Hint: Use (a).]

(c) Let X be an infinite set with the cofinite topology. Prove that X is connected.

(d) Suppose X,Y are connected topological spaces and A ⊊X, B ⊊ Y . Prove that the set
(X × Y ) ∖ (A ×B) is connected.
[Hint: Use Exercise 1.44.]

Solution.

(a) Consider U ′ ∶= C ∩U and V ′ ∶= C ∩ V . There are open subsets of C, they are disjoint
and their union is C. If both are non-empty, then C is disconnected, contradiction. So
either U ′ = ∅, in which case C ⊆ V , or V ′ = ∅, in which case C ⊆ U .

(b) Suppose B is disconnected and let U , V be open subsets of X such that

U ∩B ≠ ∅, V ∩B ≠ ∅,B ⊆ U ∪ V,U ∩B ∩ V = ∅.

By part (a), C ⊆ U ∩B or C ⊆ V ∩B. If C ⊆ U ∩B then B ⊆ C ⊆ U . But U ∩ V = ∅, so
V ∩B = ∅, contradiction. The other case is similar.
(Alternative proof) C ⊆ B ⊆ C implies that C is dense in the subspace B of X, so B
is connected by Exercise 1.43.

(c) Let f ∶ X Ð→ {0,1} be a continuous function. Let U = f−1(0) and V = f−1(1), then
U ∩ V = ∅, and U,V are open. But in the cofinite topology the intersection of two open
sets is empty only if one of the two sets is empty, which in our case implies that the
function f must be constant.

(d) Let
Z ∶= (X × Y ) ∖ (A ×B) = {z = (x, y) ∈X × Y ∶ x ∉ A or y ∉ B}.

Fix x0 ∉ A and y0 ∉ B. Then the set

C ∶= {x0} × Y ∪X × {y0}

is connected, since {x0} × Y is homeomorphic to Y (hence connected), X × {y0} is
homeomorphic to X (hence connected), and the two sets intersect, hence their union C
is connected by Tutorial Question 3.6.
For each z = (x, y) ∈ Z, let

Cz ∶=

⎧⎪⎪
⎨
⎪⎪⎩

{x} × Y if x ∉ A
X × {y} otherwise.

Then Cz is connected and

Cz ∩C =

⎧⎪⎪
⎨
⎪⎪⎩

(x, y0) if x ∉ A
(x0, y) otherwise
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is non-empty. By Exercise 1.44, the union

C ∪ ⋃
z∈Z

Cz = Z

is connected.
(Alternative proof) Let f ∶ (X × Y ) ∖ (A ×B) Ð→ {0,1} be a continuous function.
Fix x0 ∈X ∖A and y0 ∈ Y ∖B.
Let (x, y) be an element of (X × Y ) ∖ (A ×B). It follows that either x ∉ A or y ∉ B.
If x ∉ A, then {x} × Y is a subset of (X × Y ) ∖ (A ×B), but it is connected since it is
homeomorphic to Y , so the restriction of f to {x} × Y is constant. Similarly, X × {y0}
is a connected subset of (X × Y ) ∖ (A ×B), so

f(x, y) = f(x, y0) = f(x0, y0).

If y ∉ B, then one can show in a similar way that f(x, y) = f(x0, y) = f(x0, y0).
Hence f is constant, which implies that (X × Y ) ∖ (A ×B) is connected.
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2.4. Let X be a topological space.

(a) Prove that, if X is Hausdorff and K and L are compact subsets of X, then K ∩ L is
compact.

(b) Give an example of a topological space X and a subset K of X such that K is compact
but K is not closed in X.

(c) Let Y = {0,1} with the trivial (aka indiscrete) topology, and let X = Y ×R, where R is
given its usual (Euclidean) topology.
Keep in mind the projection map π ∶ X = Y ×RÐ→R and make good use of it in the
following.

i. What do the open sets of X look like?
ii. Prove that the topological space X is not Hausdorff.
iii. Define the following two subsets of X:

K = ({0} × [0,2)) ∪ ({1} × [2,3])

L = ({0} × (1,3]) ∪ ({1} × [0,1]).

Prove that K is compact (and convince yourself that your proof can be adapted
to show that L is compact).

iv. Prove that K ∩L is not compact.

Solution.

(a) Since X is Hausdorff and K,L are compact subsets, we know that K and L are closed
subsets of X (by Proposition 2.37). Therefore K ∩ L is a closed subset of X, hence
K ∩L =K ∩ (K ∩L) is a closed subset of K (by the definition of the induced topology
on K). But K is compact, so K ∩L is compact by Proposition 2.38.

(b) Let X = {0,1} with the topology {∅,{0},X} and let K = {0}. Then K is a finite
topological space, hence compact by Tutorial Question 4.4, but it is not closed since its
complement {1} is not open.

(c)
i. The open subsets of X are ∅ and the sets of the form Y ×U where U ⊆R is open.
ii. Consider the points (0,0) ≠ (1,0) of X. By part (a), any open neighbourhood

of (0,0) is of the form Y × U , where U is a neighbourhood of 0 in R. But
then (1,0) ∈ Y × U . Since every open neighbourhood of (0,0) is also an open
neighbourhood of (1,0), it is impossible to separate these two points by opens.
Hence X is not Hausdorff.

iii. By part (a), any open cover of K is of the form

K ⊆ ⋃
i∈I

(Y ×Ui) = Y × (⋃
i∈I

Ui) , Ui ⊆R open.

Then we get an open cover of

[0,3] = π(K) ⊆ ⋃
i∈I

Ui.
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(Here we used the fact that the projection map π is open, see Exercise 1.25.)
Since [0,3] is compact, this open cover has a finite subcover:

[0,3] = π(K) ⊆
n

⋃
j=1

Uij

for some n ∈ N and i1, . . . , in ∈ I. This gives us a finite subcover of the original
cover of K:

K ⊆
n

⋃
j=1

(Y ×Uij) = Y × (
n

⋃
j=1

Uij) .

So K is compact.
(Alternative proof:) We are going to show that the restriction

π ∶ K Ð→ [0,3]

of the projection Y × [0,3] Ð→ [0,3] is a homeomorphism, which immediately
implies that K is compact since [0,3] is. As a restriction of a continous function,
π is automatically continous, and it is obviously bijective, so Exercise 1.25 implies
that it suffices to show that π is open.
By part i, the open subsets of X are ∅ and the sets of the form Y ×U where U ⊆R
is open. The image of ∅ is still ∅, which is open in [0,3]. If U ⊆R is open, then

(Y ×U) ∩K = ({0} × (U ∩ [0,2))) ∪ ({1} × (U ∩ [2,3])).

It follows that

π((Y ×U) ∩K) = (U ∩ [0,2)) ∪ (U ∩ [2,3]) = U ∩ [0,3],

which is open in [0,3]. Hence π is open.
iv. We have K ∩ L = {0} × (1,2). Via the projection π ∶ Y × R Ð→ R, K ∩ L is

homeomorphic to (1,2) ⊆R. Since (1,2) is not compact (it is not a closed subset
of the Hausdorff space R), we conclude that K ∩L is not compact.
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2.5. Let (X,d) be a metric space and define d′ ∶ X ×X Ð→R by

d′(x, y) ∶=min{1, d(x, y)}.

Note that d′(x, y) ⩽ 1 for all x, y ∈X.

(a) Prove that d′ is a metric on X.

(b) Prove that d and d′ are topologically equivalent.

(c) Give an example to show that (X,d) and (X,d′) are not necessarily isometric.

(d) Prove that any sequence (xn) is Cauchy in (X,d) if and only if it is Cauchy in (X,d′).

(e) Let x ∈X. Prove that any sequence (xn) converges to x with respect to d if and only if
it converges to x with respect to d′.

(f) Deduce that (X,d) is complete if and only if (X,d′) is complete.

Solution.

(a) The symmetry and non-degeneracy of d′ are immediate from the symmetry and non-
degeneracy of d. For the triangle inequality we have for all x, y, z ∈X:

d′(x, y) + d′(y, z) =min{1, d(x, y)} +min{1, d(y, z)}

=min{2,1 + d(x, y),1 + d(y, z), d(x, y) + d(y, z)}

⩾min{2,1,1, d(x, z)}

=min{1, d(x, z)}

= d′(x, z).

(b) We write B for open balls with respect to d and B′ for open balls with respect to d′,
that is

Br(x) = {y ∈X ∶ d(x, y) < r}

B′r(x) = {y ∈X ∶ d
′(x, y) < r}.

For any x ∈X, if r ⩽ 1 then B′r(x) = Br(x). If r > 1 then B′r(x) = B
′

1(x) = B1(x). Since
the topology on a metric space is generated by open balls, we conclude that d and d′

give the same topology on X.

(c) Let X =R and let d be the Euclidean metric. If f is an isometric bijection from (X,d)
to (X,d′), then

1 ⩾ d′(f(0), f(2)) = d(0,2) = 2,

contradiction.

(d) Suppose (xn) is Cauchy with respect to d and let ε > 0. Let N ∈ N be such that
d(xn, xm) < ε for all n,m ⩾ N . Then for all n,m ⩾ N we have

d′(xn, xm) ⩽ d(xn, xm) < ε,

so (xn) is Cauchy with respect to d′.
Conversely, suppose (xn) is Cauchy with respect to d′ and let ε > 0. Let ε′ =min{1, ε} > 0.
Let N ∈N be such that d′(xn, xm) < ε′. Then from the definition of d′ we have

d(xn, xm) = d
′(xn, xm) < ε

′ ⩽ ε,

so (xn) is Cauchy with respect to d.
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(e) This is similar to the previous part. Suppose (xn) Ð→ x with respect to d and let ε > 0.
Let N ∈N be such that d(xn, x) < ε for all n ⩾ N , then

d′(xn, x) ⩽ d(xn, x) < ε,

so (xn) Ð→ x with respect to d′.
Conversely, suppose (xn) Ð→ x with respect to d′ and let ε > 0. Let ε′ =min{1, ε}. Let
N ∈N be such that d′(xn, x) < ε′, then

d(xn, x) = d
′(xn, x) < ε

′ ⩽ ε,

so (xn) Ð→ x with respect to d.

(f) Follows immediately from the last two parts: if (X,d) is complete, let (xn) be Cauchy
with respect to d′, then (xn) is Cauchy with respect to d, so (xn) converges to some
x ∈X with respect to d, so (xn) converges to x with respect to d′; therefore (X,d′) is
complete. The converse is similar.
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2.6.

(a) Let (X,d) be a metric space such that d(x, y) ⩽ 1 for all x, y ∈X. Prove that if (X̂, d̂)
is a completion of (X,d), then d̂(x̂, ŷ) ⩽ 1 for all x̂, ŷ ∈ X̂.

(b) For each n ∈N, let (Xn, dn) be a metric space such that dn(x, y) ⩽ 1 for all x, y ∈Xn.
Consider the product

X ∶=
∞

∏
n=0

Xn.

Define d ∶ X ×X Ð→R by
d(x, y) ∶=

∞

∑
n=0

dn(xn, yn)

2n
.

i. Prove that (X,d) is a metric space.
ii. For every n, fix a completion (X̂n, d̂n) of (Xn, dn) with isometry ιn ∶ Xn Ð→ X̂n.

Define
X̃ ∶=

∞

∏
n=0

X̂n

endowed with a metric d̃ defined in the same way as above:

d̃(x, y) ∶=
∞

∑
n=0

d̂n(xn, yn)

2n
.

Check that the function ι ∶ X Ð→ X̃ given by

ι ∶=
∞

∏
n=0

ιn

is an isometry, and prove that (X̃, d̃) is a completion of (X,d).

Solution.

(a) Let x̂, ŷ ∈ X̂. We prove that for any ε > 0 we have d̂(x̂, ŷ) < 1 + ε.
Since ι(X) is dense in X̂, given ε > 0 there exist x, y ∈X such that d̂(x̂, ι(x)) < ε/2 and
d̂(ŷ, ι(y)) < ε/2. Then by the triangle inequality we have

d̂(x̂, ŷ) ⩽ d̂(ι(x), ι(y)) + d̂(x̂, ι(x)) + d̂(ŷ, ι(y)) < d(x, y) + ε ⩽ 1 + ε.

(b) i. The infinite series defining d(x, y) converges absolutely since it is bounded above
by the geometric series ∑1/2n.
The symmetry of d follows immediately from the definition of d and the symmetry
of dn for all n. The non-degeneracy is also fairly immediate: if x ≠ y then there
exists n ∈N such that xn ≠ yn, so dn(xn, yn) > 0, hence d(x, y) > 0.
For the triangle inequality we have

d(x, y) + d(y, z) =
∞

∑
n=0

dn(xn, yn) + dn(yn, zn)

2n
⩾
∞

∑
n=0

dn(xn, zn)

2n
= d(x, z).
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ii. It is easy to see that ι is an isometry since each ιn is an isometry:

d̃(ι(x), ι(y)) =
∞

∑
n=0

d̂n(ιn(xn), ιn(yn))

2n
=
∞

∑
n=0

dn(xn, yn)

2n
= d(x, y).

Next we prove that X̃ is complete. Let (xm)m = (x1, x2, . . . ) be a Cauchy sequence
of elements in X̃. Fix n ∈N and consider the sequence (xm

n )m.
We claim that this sequence is Cauchy in X̂n. Indeed, given any ε > 0 there exists
N such that d̃(xm1 , xm2) < ε/2n for all m1,m2 > N . In particular dn(xm1

n , xm2
n )/2n <

ε/2n for all m1,m2 > N .
As X̂n is complete, there exists some xn ∈ X̂n such that (xm

n ) Ð→ xn as mÐ→∞.
We claim that (xm) Ð→ x ∶= (x1, x2, . . . ) ∈ X̃. Given any ε > 0, fix an integer
M > 2 + log2(1/ε). Let Nn be such that d̂n(xm

n , xn) < 2nε/2(M − 1) for all m > Nn,
and set N ∶=max{N1, . . . ,NM−1}. Then for all m > N ,

d̃(xm, x) =
∞

∑
n=0

d̂n(xm
n , xn)

2n

⩽
M−1

∑
n=0

d̂n(xm
n , xn)

2n
+
∞

∑
n=M

1

2n

⩽
M−1

∑
n=0

ε

2(M − 1)
+
1

2
⋅

1

2M−2

<
ε

2
+
1

2
⋅
1

1/ε

= ε.

It remains to show that ι(X) is dense in X̃. Let x ∶= (x1, x2, . . . ) ∈ X. For all n,
there exists a sequence (y1n, y2n, . . . ) in Xn such that (ιn(ymn )) Ð→ xn as mÐ→∞.
Then by setting xm

n ∶= ιn(y
m
n ) (and hence xm = ι(ym)), we can use exactly the same

argument as above to deduce that (xm) Ð→ x in X̃, where xm is in the image of
the embedding ι ∶ X Ð→ X̃ for all m.
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