Tutorial Week 2

Topics: metrics, topologies, continuous functions.

- **2.1.** Let X be a set and d the discrete metric on X, that is $d(x_1, x_2) = 1$ for all $x_1 \neq x_2$; see also Exercise 1.5. Prove that the topology defined by d is the discrete topology.
- **2.2.** Is the word "finite" necessary in the statement of Proposition 2.10? If no, give a proof of the statement without "finite". If yes, give an example of a metric space (X, d) and an infinite collection of open subsets of X whose intersection is not an open set.
- **2.3.** Find all topologies on the set $\{0,1\}$ and determine which of them are metrisable.
- **2.4.** Let X be a set and S a subset of $\mathcal{P}(X)$. Prove that the topology generated by S is the intersection of all topologies \mathcal{T} on X containing S, and is thus the coarsest among such topologies.
- **2.5.** Let X and Y be two topological spaces, where the topology on X is the discrete topology. Prove that every function from X to Y is continuous.
- **2.6.** Let A be a subset of a topological space X. Prove that
 - (a) $\partial A \cap A^{\circ} = \emptyset$;
 - (b) $\overline{A} = A^{\circ} \cup \partial A$;
 - (c) $A^{\circ} = A \setminus \partial A$.
- **2.7.** Let $f: X \longrightarrow Y$ be a function and \mathcal{T}_X a topology on X. Define

$$\mathcal{T}_Y = \{ U \in \mathcal{P}(Y) : f^{-1}(U) \in \mathcal{T}_X \}.$$

- (a) Prove that \mathcal{T}_Y is the finest topology on Y such that f is continuous. (This topology is called the *final topology* induced by f.)
- (b) Let \mathcal{T} be another topology on Y. Prove that $f:(X,\mathcal{T}_X) \longrightarrow (Y,\mathcal{T})$ is continuous if and only if \mathcal{T} is coarser than \mathcal{T}_Y .

Note: There is a "dual" setting where you start with a topology on Y and look for the coarsest topology on Y such that f is continuous, see Exercise 1.23.

2.8. Prove that a function $f: X \longrightarrow Y$ between metric spaces is continuous if and only if it satisfies the usual $\varepsilon - \delta$ definition: for every point x of X and every positive real number ε , there exists a positive real number δ such that $d_X(x,y) < \delta$ implies $d_Y(f(x), f(x)) < \varepsilon$.

2.9.

(a) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions, where X, Y, Z are sets, and let $S \subseteq Z$. Then

$$f^{-1}(g^{-1}(S)) = (g \circ f)^{-1}(S).$$

(b) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous functions, where X, Y, Z are topological spaces. Prove that $g \circ f: X \longrightarrow Z$ is continuous.