Tutorial Week 3

Topics: Closure, interior, denseness, product, Hausdorff, equivalent metrics, disconnectedness

- **3.1.** Let A and B be subsets of a topological space X.
 - (a) Suppose $A\subseteq B$. Prove that $\overline{A}\subseteq \overline{B}$ and $A^{\circ}\subseteq B^{\circ}.$
 - (b) Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$ and $(A \cap B)^{\circ} = A^{\circ} \cap B^{\circ}$.
 - (c) Prove that $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$. Find an example in which $\overline{A \cap B} \neq \overline{A} \cap \overline{B}$.
 - (d) Prove that $(A \cup B)^{\circ} \supseteq A^{\circ} \cup B^{\circ}$. Find an example in which $(A \cup B)^{\circ} \neq A^{\circ} \cup B^{\circ}$.

[Hint: For (c) and (d), think of some subsets of R.]

- **3.2.** A subset $D \subseteq X$ of a topological space X is dense in X if and only if $D \cap U \neq \emptyset$ for all nonempty open sets U in X.
- **3.3.** Let X be a topological space. The intersection of two dense open sets U_1 and U_2 is dense and open.
- **3.4.** Let (X, d) be a metric space and let $A \subseteq X$.
 - (a) Prove that the set A is open if and only if it is the union of a collection of open balls.
 - (b) Conclude that the set of all open balls in X generates the metric topology of X.
- **3.5.** Let (X, d) be a metric space.
 - (a) Prove that the metric topology on (X, d) is generated by open balls of radii smaller than 1.
 - (b) Define $d': X \times X \longrightarrow \mathbf{R}_{\geq 0}$ by

$$d'(x,y) = \min \{d(x,y), 1\}.$$

Prove that d' is a metric.

- (c) Prove that d and d' are equivalent (that is, they give rise to the same topology on X).
- **3.6.** Let C_1 and C_2 be two connected subsets of a topological space X such that $C_1 \cap C_2 \neq \emptyset$. Prove that $C_1 \cup C_2$ is connected.
- **3.7.** Let X be a topological space and define $x \sim x'$ if there exists a connected subset $C \subseteq X$ such that $x, x' \in C$. Prove that this is an equivalence relation on the set X.

(The equivalence classes are called the *connected components* of X).

- **3.8.** Let X, Y_1 , and Y_2 be topological spaces, and $\pi_1: Y_1 \times Y_2 \longrightarrow Y_1$ and $\pi_2: Y_1 \times Y_2 \longrightarrow Y_2$ be the projections. Prove that a function $f: X \longrightarrow Y_1 \times Y_2$ is continuous if and only if both $\pi_1 \circ f$ and $\pi_2 \circ f$ are continuous.
- **3.9.** Given a set X, define the diagonal function

$$\Delta \colon X \longrightarrow X \times X, \qquad x \longmapsto (x, x).$$

- (a) Prove that two subsets A and B of X are disjoint if and only if $\Delta(X)$ and $A \times B$ are disjoint.
- (b) If X is a topological space, prove that Δ is continuous.
- (c) Prove that a topological space X is Hausdorff if and only if $\Delta(X)$ is closed in $X \times X$.