Tutorial Week 4

Topics: Closed functions, compactness, sequences

- **4.1.** Let X, Y be topological spaces. Recall that a function $f: X \longrightarrow Y$ is said to be *closed* if for every closed subset $C \subseteq X$, the image f(C) is closed in Y.
 - (a) Prove that the composition of two closed maps is a closed map.
 - (b) Prove that a continuous bijection between topological spaces is a homeomorphism if and only if it is closed.
 - (c) Give an example of a bijection $f: X \longrightarrow Y$ between topological spaces such that f is continuous but not closed (and therefore f^{-1} is closed but not continuous).
- **4.2.** Let X, Y be topological spaces. Recall that a function $f: X \longrightarrow Y$ is said to be *open* if for every open set $U \subseteq X$, the image f(U) is open in Y.
 - (a) Give an example of a function that is open but not closed.
 - (b) Give an example of a function that is closed but not open.
- **4.3.** Let K and L be compact subsets of a topological space X. Prove that $K \cup L$ is compact.
- **4.4.** Prove that every finite topological space is compact.
- **4.5.** Prove that a discrete topological space X is compact if and only if X is finite.
- **4.6.** Let X be a compact topological space and let Y be a Hausdorff topological space. Prove that every continuous bijection from X to Y is a homeomorphism.
- **4.7.** Let (x_n) be a sequence in a metric space X, let $\varphi \colon \mathbf{N} \longrightarrow \mathbf{N}$ be an injective function, and consider the sequence $(y_n) = (x_{\varphi(n)})$ in X. Prove that if (x_n) converges to x, then so does (y_n) .

Does the converse hold?

- **4.8.** Give $\mathbb{N} \subseteq \mathbb{R}$ the subspace topology. Let X be a topological space and (x_n) a sequence in X. Prove that (x_n) is a continuous function $\mathbb{N} \longrightarrow X$.
- **4.9.** Let (X, d_X) and (Y, d_Y) be metric spaces and let d be the sup norm metric on $X \times Y$:

$$d((x_1, y_1), (x_2, y_2)) = \max(d_X(x_1, x_2), d_Y(y_1, y_2)).$$

Prove that $((x_n, y_n)) \longrightarrow (x, y) \in X \times Y$ if and only if $(x_n) \longrightarrow x \in X$ and $(y_n) \longrightarrow y \in Y$.