Tutorial Week 5

Topics: Sequences, completeness, uniform continuity

- **5.1.** Let d_1 and d_2 be equivalent metrics (they define the same topology) on a set X. Prove that a sequence converges to a point x in (X, d_1) if and only if it converges to x in (X, d_2) .
- **5.2.** Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be uniformly continuous functions between metric spaces. Prove that $g \circ f: X \longrightarrow Z$ is uniformly continuous.
- **5.3.** Let $f: X \to Y$ be a uniformly continuous function between two metric spaces and suppose $(x_n) \sim (x'_n)$ are equivalent sequences in X. Prove that $(f(x_n)) \sim (f(x'_n))$ as sequences in Y.

Does the conclusion hold if f is only assumed to be continuous?

- **5.4.** Let X be a complete metric space and let $S \subseteq X$. Prove that the closure \overline{S} (with the metric induced from $\overline{S} \subseteq X$) is a completion of S (with the metric induced from $S \subseteq X$).
- **5.5.** Let (X, d_X) and (Y, d_Y) be metric spaces and $f: X \longrightarrow Y$ a surjective continuous function. Suppose that X is complete and for all $x_1, x_2 \in X$ we have

$$d_X(x_1, x_2) \leq d_Y(f(x_1), f(x_2)).$$

Prove that Y is complete.

In particular, isometries preserve completeness.

5.6. Let (X, d) be a metric space and let $S \subseteq X$ be a nonempty subset. Define $d_S \colon X \longrightarrow \mathbf{R}_{\geq 0}$ by

$$d_S(x) = \inf_{s \in S} d(x, s).$$

(a) Prove that d_S is uniformly continuous.

[**Hint**: Show that $|d_S(x) - d_S(y)| \le d(x, y)$ for all $x, y \in X$.]

- (b) Prove that $d_S(x) = 0$ if and only if $x \in \overline{S}$.
- (c) Prove that if $U \subseteq X$ is an open neighbourhood of x, then $d_{X \setminus U}(x) > 0$.