Tutorial Week 7

Topics: (Total) boundedness, uniform convergence

- **7.1.** Prove that in any metric space (X,d), any totally bounded set S is bounded.
- **7.2.** Find a bounded subset of a metric space that is not totally bounded.
- **7.3.** Let (X, d) be a metric space.

Prove that if A and B are bounded sets with $A \cap B \neq \emptyset$, then

$$\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$$
.

What happens if $A \cap B = \emptyset$?

7.4.

- (a) Prove that every subspace of a totally bounded space is totally bounded.
- (b) Suppose a metric space X has a totally bounded dense subset D. Prove that X is totally bounded.
- (c) Prove that a metric space X is totally bounded if and only if it is isometric to a subspace of a compact metric space. [**Hint**: Completion.]
- **7.5.** We say that a topological space is *separable* if it contains a countable dense subset. (Easy examples are \mathbf{R} with countable dense subset \mathbf{Q} , or more generally \mathbf{R}^n with countable dense subset \mathbf{Q}^n .)

Prove that any totally bounded metric space X is separable.

- **7.6.** Given metric spaces X, Y, prove that a sequence (f_n) in B(X,Y) converges uniformly to $f \in B(X,Y)$ if and only if $(f_n) \longrightarrow f$ with respect to the uniform metric d_{∞} on B(X,Y).
- **7.7.** Give an example of a sequence of bounded continuous functions that converges pointwise to a discontinuous function.

[**Hint**: Consider the behaviour of x^n as $n \to \infty$.]