Tutorial Week 8

Topics: Pointwise and uniform convergence, approximation, Baire.

8.1. For each $n \in \mathbb{N}$, consider the function $f_n : [0,1] \longrightarrow \mathbb{R}$ given by

$$f_n(x) = \frac{x^2}{1 + nx}.$$

- (a) Prove that f_n is bounded, for all $n \in \mathbb{N}$.
- (b) Find the pointwise limit f of the sequence (f_n) .
- (c) For any $n \in \mathbb{N}$, compute the uniform distance $d_{\infty}(f_n, f)$.
- (d) Does the sequence (f_n) converge uniformly to f?
- **8.2.** Let $f_0 \colon \mathbf{R} \longrightarrow \mathbf{R}$ be the function defined by

$$f_0(x) = \begin{cases} 1+x & \text{if } -1 \le x \le 0, \\ 1-x & \text{if } 0 < x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

For each positive integer n, define $f_n \colon \mathbf{R} \longrightarrow \mathbf{R}$ by

$$f_n(x) = f_0(x - n).$$

- (a) Prove that f_n is bounded, for all $n \in \mathbb{N}$.
- (b) Find the pointwise limit f of the sequence (f_n) .
- (c) For any $n \in \mathbb{N}$, compute the uniform distance $d_{\infty}(f_n, f)$.
- (d) Does the sequence (f_n) converge uniformly to f?
- **8.3.** Let $X = [0,1] \times [0,1]$ be the unit square with the induced topology from \mathbb{R}^2 . Find a subalgebra \mathcal{A} of $C_0(X, \mathbb{R})$ that is dense. (Obviously, try to make \mathcal{A} as small as you can.)

8.4.

(a) Suppose $f \in C_0([0,1], \mathbf{R})$ has the property that

$$\int_0^1 f(x) \, x^n \, dx = 0 \qquad \text{for all } n = 0, 1, 2, \dots$$

Prove that f is the constant function 0 on [0,1].

- (b) Give an explicit **discontinuous** function $f: [0,1] \longrightarrow \mathbf{R}$ that satisfies the equation in part (a) but is (obviously) not the constant function 0 on [0,1].
- **8.5.** Let (X,d) be a nonempty complete metric space. If

$$X = \bigcup_{n \in \mathbb{N}} C_n$$
 with each C_n a closed subset of X,

then there exists $n \in \mathbb{N}$ such that $C_n^{\circ} \neq \emptyset$.

[Hint: Use the Baire Category Theorem, Theorem 2.79.]