Tutorial Week 9

Topics: Norms, inner products

9.1. Let V be an inner product space. Prove that for any $v \in V$ we have

$$||v|| = \sup_{\|w\|=1} |\langle v, w \rangle|.$$

Show that the supremum is in fact achieved by a well-chosen w.

9.2 (Pythagorean theorem). Let v_1, \ldots, v_n be pairwise orthogonal vectors in an inner product space V. Prove that

$$||v_1 + \cdots + v_n||^2 = ||v_1||^2 + \cdots + ||v_n||^2$$

- **9.3.** Let $(V, \|\cdot\|)$ be a normed space.
 - (a) Fix $u \in V$ and define $T_u : V \longrightarrow V$ by $T_u(v) = u + v$ for all $v \in V$. Prove that T_u is a bijective isometry.
 - (b) Fix $\alpha \in \mathbf{F}^{\times}$ and define $S_{\alpha} \colon V \longrightarrow V$ by $S_{\alpha}(v) = \alpha v$ for all $v \in V$. Prove that S_{α} is a homeomorphism.
 - (c) Let U_1, \ldots, U_n be nonempty open subsets of V. Let $\alpha_1, \ldots, \alpha_n \in \mathbf{F}$ such that at least one $\alpha_i \neq 0$. Let

$$U = \alpha_1 U_1 + \dots + \alpha_n U_n.$$

Prove that U is a nonempty open subset of V.

- **9.4.** Prove that the following norms on \mathbb{R}^n are not defined by inner products:
 - (a) the ℓ^1 -norm defined by

$$\|(x_1,\ldots,x_n)\|_1 = \sum_{i=1}^n |x_i|,$$

(b) the ℓ^{∞} -norm defined by

$$\|(x_1,\ldots,x_n)\|_{\infty} = \max\{|x_1|,\ldots,|x_n|\}.$$

9.5. Let $(V, \|\cdot\|)$ be a Banach space. Prove that if a series $\sum_{n=1}^{\infty} a_n$ in V converges absolutely, then

$$\left\| \sum_{n=1}^{\infty} a_n \right\| \leqslant \sum_{n=1}^{\infty} \|a_n\|.$$

(If V is not complete, the result still holds under the extra assumption that the series **converges** in V.)

9.6. Prove that every finite-dimensional normed vector space V is separable.

More precisely, fix a basis $\{v_1, \ldots, v_n\}$ of V and let

$$\mathbf{K} = \begin{cases} \mathbf{Q} & \text{if } \mathbf{F} = \mathbf{R} \\ \mathbf{Q}[i] & \text{if } \mathbf{F} = \mathbf{C} \end{cases} \quad \text{and } D = \mathrm{Span}_{\mathbf{K}} \{ v_1, \dots, v_n \}.$$

1

Prove that D is a dense countable subset of V.