Tutorial Week 10

Topics: bounded linear transformations, convexity, sequence spaces.

10.1. Let $X = C_0([0,1], \mathbf{R})$ be the Banach space of continuous functions

$$f: [0,1] \longrightarrow \mathbf{R}$$

with the supremum norm, as described in Proposition 3.13.

Define $\phi: X \longrightarrow \mathbf{R}$ by $\phi(f) = f(0)$ for all $f \in X$.

Prove that ϕ is a bounded linear map.

- **10.2.** Let V, W be normed spaces over \mathbf{F} . Let C be a convex subset of V and D a convex subset of W. Prove that $C \times D$ is a convex subset of $V \times W$.
- **10.3** (Minkowski's Inequality for ℓ^{∞}). Prove that if $u, v \in \ell^{\infty}$, then

$$||u + v||_{\ell^{\infty}} \le ||u||_{\ell^{\infty}} + ||v||_{\ell^{\infty}}.$$

In particular, $u + v \in \ell^{\infty}$.

10.4 (Hölder's Inequality for ℓ^1 and ℓ^{∞}). Prove that if $u = (u_n) \in \ell^{\infty}$ and $v = (v_n) \in \ell^1$, then

$$\sum_{n=1}^{\infty} |u_n v_n| \le ||u||_{\ell^{\infty}} ||v||_{\ell^1}.$$

10.5. Suppose $1 \le p \le q$. Prove that

$$\ell^p \subset \ell^q$$
.

Show that if p < q then the inclusion is strict: $\ell^p \subseteq \ell^q$.

10.6.

(a) Prove that the function $f: \ell^1 \longrightarrow \mathbf{F}$ defined by

$$f((a_n)) = \sum_{n=1}^{\infty} a_n.$$

is continuous.

(b) Prove that the following subset is a closed subspace of ℓ^1 :

$$S = \{ (a_n) \in \ell^1 : \sum_{n=1}^{\infty} a_n = 0 \}.$$

10.7. Consider the left shift map $L \colon \mathbf{F}^{\mathbf{N}} \longrightarrow \mathbf{F}^{\mathbf{N}}$ given by $L((a_n)) = (a_{n+1})$, that is

$$L(a_1, a_2, a_3, \dots) = (a_2, a_3, \dots).$$

- (a) Prove that L is a surjective linear map. What is the kernel of L?
- (b) Prove that for all $1 \le p \le \infty$, the restriction of L to ℓ^p is a surjective continuous map onto ℓ^p .
- (c) Define the right shift map $R \colon \mathbf{F}^{\mathbf{N}} \longrightarrow \mathbf{F}^{\mathbf{N}}$ and prove that it is an injective linear map, the restriction of which is an isometry for any ℓ^p with $1 \le p \le \infty$.
- (d) Check that $L \circ R = \mathrm{id}_{\mathbf{F}^{\mathbf{N}}} \neq R \circ L$.