Tutorial Week 12

Topics: adjoints.

12.1. Let $R: \ell^2 \longrightarrow \ell^2$ and $L: \ell^2 \longrightarrow \ell^2$ be the operators defined by

$$R(x_1, x_2, x_3, \dots) = (0, x_1, x_2, \dots)$$
 and $L(x_1, x_2, x_3, \dots) = (x_2, x_3, x_4, \dots)$

Find the adjoints of R and L and prove that neither R nor L is normal.

- **12.2.** Equip \mathbb{R}^n with the standard Euclidean inner product and let $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ be a linear transformation with standard matrix representation A.
 - (a) Prove that the adjoint $f^* \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n$ has standard matrix representation A^T , the transpose of A.
 - (b) Prove that f is self-adjoint if and only if A is symmetric.
- **12.3.** Let $f \in L(H)$ with H a Hilbert space. Then the maps

$$p = f^* \circ f$$
 and $s = f + f^*$

are self-adjoint.

- **12.4.** Let H be a Hilbert space and let $f \in L(H)$ be a self-adjoint operator.
 - (a) Prove that $\langle f(x), x \rangle \in \mathbf{R}$ for all $x \in H$.
 - (b) Prove that all eigenvalues of f are real.
- **12.5.** The composition of two self-adjoint maps on a Hilbert space is self-adjoint if and only if the maps commute.
- **12.6.** Let $(u_i)_{i \in I}$ be an orthonormal basis of an inner product space V and let $v \in V$. Prove that v = 0 if and only if $\langle v, u_i \rangle = 0$ for every index $i \in I$.
- 12.7. Consider the Hilbert space ℓ^2 of square-summable complex sequences $(a_1, a_2, ...)$. Let (λ_n) be a bounded sequence of complex numbers and define $T : \ell^2 \longrightarrow \ell^2$ by

$$T(a_1, a_2, \dots) = (\lambda_1 a_2, \lambda_2 a_4, \dots, \lambda_n a_{2n}, \dots).$$

- (a) Show that T is a continuous linear operator.
- (b) Compute the norm ||T||.
- (c) Find the adjoint operator T^* .