MAST30026 Metric and Hilbert Spaces 2025

Tutorial Week 2

Topics: metrics, topologies, continuous functions.

2.1. Let X be a set and d the discrete metric on X, that is d(z1,z5) = 1 for all z; # x9; see
also Fxercise 1.5. Prove that the topology defined by d is the discrete topology.

Solution. By the definition of the discrete metric, we have By (z) = {x} for every element x
of X. If S is a subset of X, then

S =U{z} = UBi(2),
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and thus S is open. Therefore, every subset of X is open in (X,d); in other words, the
topology defined by d is the discrete topology. O

2.2. Is the word “finite” necessary in the statement of Proposition 2.107 If no, give a proof
of the statement without “finite”. If yes, give an example of a metric space (X,d) and an
infinite collection of open subsets of X whose intersection is not an open set.

Solution. The word “finite” is necessary. For a counterexample to the more general statement,
for each n € Z, take U, = (-1/n,1/n) as an open set in R with the Euclidean metric. I claim

that
U:= () U,={0}.
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This can be proved by contradiction: suppose v € U, u + 0. Let n € Z5; be such that n >
Then |u| > £, therefore u ¢ (-1/n,1/n) = U, contradiction.

Finally, U is not open: for any r € Ry, 5 € B,.(0) but § ¢ {0} = U, so B,(0) is not a subset
of U. O]

2.3. Find all topologies on the set {0,1} and determine which of them are metrisable.

Solution. Let T be a topology on {0,1}. Since @ and {0, 1} must belong to T, there are four
possibilities:

e T =P({0,1}). This is the discrete topology on {0,1}.

o T ={2,{1},{0,1}}. Since T is finite, it suffices to verify it is closed under binary
intersection and binary union. We can prove this by enumeration:

gn{l} =2, zn{0,1} =2, {1} n{0,1} = {1},
gu{l}={1}, zu{0,1} ={0,1}, {1}u{0,1} ={0,1}.

Therefore, T is a topology.
« T ={2,{0},{0,1}}. This can be proved to be a topology similarly.
« T ={2,{0,1}}. This is the trivial topology on {0,1}.

Now suppose d is a metric on {0,1}. Since d(0,1) >0, we can pick a positive real number r
smaller than d(0,1). It follows that

B.(0) ={0} and B,(1)={1},

and the metric topology defined by d is thus the discrete topology. Therefore, the only
metrisable topology on {0, 1} is the discrete topology. O
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2.4. Let X be a set and S a subset of P(X). Prove that the topology generated by S is
the intersection of all topologies 7 on X containing S, and is thus the coarsest among such
topologies.

Solution. Let Tg be the topology generated by S and 7/ the intersection of all topologies T
on X containing S.
We start with proving 7¢ is a topology:

« Both @ and X belong to all topologies containing S, and thus belong to the intersection
T3

o If {U;jeT{:iel} is a collection of members of T¢, then U; € T for every i € I and every
topology T containing S. It follows that U;.; U; € T for every topology T containing S,
and thus Use; U; € T4,

e IfUy,...,U, are members of T¢, then they belong to every topology 7 containing S. It
follows that N, U; € T for every topology 7 containing .S, and thus N, U; € 7.

It follows from the definition of Tg that S ¢ Tg, so Tg is finer than 73. However, for T
to be a topology, it has to be closed under arbitrary union and finite intersection, and thus
contains all members of 7g; in other words, 7§ has to be finer than 7g. Hence 7¢=7Ts. O

2.5. Let X and Y be two topological spaces, where the topology on X is the discrete topology.
Prove that every function from X to Y is continuous.

Solution. Consider a function f: X — Y. Since the topology on X is discrete, it follows that
f~1(U) is open for every open subset U of Y, and thus f is continuous. ]

2.6. Let A be a subset of a topological space X. Prove that
(a) AN A° =g;
(b) A= A°UdA;
(c) A°=ANO0A.
Solution. (a) AN A° = An(X~NA)nA° = (X~ A)n A° since A° ¢ A ¢ A. Suppose

xe (X NA)n A°. By Proposition 2.19 every open neighbourhood of x intersects X \ A
nontrivially; in particular A° intersects X \ A nontrivially, contradiction.

(b) Since A°c Ac Aand 9A=An (X \ A) c A, the inclusion A° UdA c A is clear.

In the other direction, let 2 € A and suppose x ¢ OA, which forces x ¢ (X \ A). By
Proposition 2.19 there exists an open neighbourhood U, of x such that U,n (X \ A) = &,
that is U, € A. Therefore x € A°.

(c) Since A° ¢ A and A°n0A =2 we have A° C AN OA.

From parts (a) and (b) we see that A is the disjoint union of A° and 9A; in addition
AcAso B
ANOACANOA= A O

2.7. Let f: X — Y be a function and 7x a topology on X. Define
Ty ={UeP(Y): f(U) € Tx).

(a) Prove that 7Ty is the finest topology on Y such that f is continuous. (This topology is
called the final topology induced by f.)
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(b) Let T be another topology on Y. Prove that f:(X,7x) — (Y,7T) is continuous if and
only if 7 is coarser than Ty .

Note: There is a “dual” setting where you start with a topology on Y and look for the
coarsest topology on Y such that f is continuous, see Exercise 1.23.

Solution.
(a) We start with proving that 7y is a topology:
e Since @ = f~1(@) and X = f~1(Y"), it follows that Ty contains @ and Y.
o If {U;: i€} is a collection of members of Ty, then
U = (Jus) e 7.
iel iel

e If Uy,...,U, are members of Ty, then
N/ = f‘1<QUi) € Tx.

If 7 is a topology on Y such that f is continuous, then f~1(U) € Tx for every member
U of T, so T c7Ty. Therefore, Ty is the finest topology such that f is continuous.

(b) The ‘only if’ part has been proven in part (a), so it suffices to prove the ‘if’ part.

Suppose T is coarser than Ty. If U is a member of T, then U € Ty, which implies that
f1(U) is open in X. It follows that f is continuous when the topology on Y is 7. [J

2.8. Prove that a function f: X — Y between metric spaces is continuous if and only if it
satisfies the usual e—0 definition: for every point x of X and every positive real number &,
there exists a positive real number § such that dx(z,y) < ¢ implies dy (f(z), f(z)) <e.

Solution. It follows from the definition of open balls that the condition ‘dx(z,y) < § implies
dy(f(:c),f(x)) < €’ means f(Bg(J?)) c Bg(f(x)). We will use the rephrased statement in
this proof.

Suppose f: X — Y is continuous. If x € X and ¢ is a positive real number, then the inverse
image of BE( f (a:)) in X is open, and thus contains Bs(x) for some positive real number 4. It
follows that f(Bs(z)) € B.(f(x)).

Conversely, suppose f satisfies the usual e- definition and consider an open subset U of Y.
If f(z)eU for some element x of X, then the openness of U implies the existence of positive
real number ¢ such that Bg( f (a:)) c U. Since f satisfies the usual e definition, there exists
a positive real number § such that f(B;(z)) < B.(f(x)) ¢ U, which implies Bs(z) ¢ f~1(U).

It follows that f~1(U) is open in X, and thus f is continuous. O
2.9.
(a) Let f: X — Y and g: Y — Z be functions, where X, Y, Z are sets, and let S ¢ Z.
Then

FHg71(9)) = (g0 H)'(S).

(b) Let f: X — Y and ¢g: Y — Z be continuous functions, where X, Y, Z are topological

spaces. Prove that go f: X — Z is continuous.
Solution.

(a) We have x € (go f)1(S) iff (go f)(x) € S iff g(f(x)) € S iff f(x) e g71(S) iff x €
FH(g71(9))-

(b) Let W ¢ Z be open. As g: Y — Z is continuous, g1 (W) cY is open. As f: X — Y
is continuous, (go f)"H (W) = f‘l(g‘l(W)) c X is open. So go f is continuous. O



