
MAST30026 Metric and Hilbert Spaces 2025

Tutorial Week 2

Topics: metrics, topologies, continuous functions.

2.1. Let X be a set and d the discrete metric on X, that is d(x1, x2) = 1 for all x1 ≠ x2; see
also Exercise 1.5. Prove that the topology defined by d is the discrete topology.

Solution. By the definition of the discrete metric, we have B1(x) = {x} for every element x
of X. If S is a subset of X, then

S = ⋃
x∈S

{x} = ⋃
x∈S

B1(x),

and thus S is open. Therefore, every subset of X is open in (X,d); in other words, the
topology defined by d is the discrete topology.

2.2. Is the word “finite” necessary in the statement of Proposition 2.10? If no, give a proof
of the statement without “finite”. If yes, give an example of a metric space (X,d) and an
infinite collection of open subsets of X whose intersection is not an open set.

Solution. The word “finite” is necessary. For a counterexample to the more general statement,
for each n ∈ Z⩾1 take Un = (−1/n,1/n) as an open set in R with the Euclidean metric. I claim
that

U ∶= ⋂
n∈Z⩾1

Un = {0}.

This can be proved by contradiction: suppose u ∈ U , u ≠ 0. Let n ∈ Z⩾1 be such that n ⩾ 1
∣u∣ .

Then ∣u∣ ⩾ 1
n , therefore u ∉ (−1/n,1/n) = Un, contradiction.

Finally, U is not open: for any r ∈R>0, r
2 ∈ Br(0) but r

2 ∉ {0} = U , so Br(0) is not a subset
of U .

2.3. Find all topologies on the set {0,1} and determine which of them are metrisable.

Solution. Let T be a topology on {0,1}. Since ∅ and {0,1} must belong to T , there are four
possibilities:

• T = P({0,1}). This is the discrete topology on {0,1}.

• T = {∅,{1},{0,1}}. Since T is finite, it suffices to verify it is closed under binary
intersection and binary union. We can prove this by enumeration:

∅ ∩ {1} = ∅, ∅ ∩ {0,1} = ∅, {1} ∩ {0,1} = {1},

∅ ∪ {1} = {1}, ∅ ∪ {0,1} = {0,1}, {1} ∪ {0,1} = {0,1}.

Therefore, T is a topology.

• T = {∅,{0},{0,1}}. This can be proved to be a topology similarly.

• T = {∅,{0,1}}. This is the trivial topology on {0,1}.

Now suppose d is a metric on {0,1}. Since d(0,1) > 0, we can pick a positive real number r
smaller than d(0,1). It follows that

Br(0) = {0} and Br(1) = {1},

and the metric topology defined by d is thus the discrete topology. Therefore, the only
metrisable topology on {0,1} is the discrete topology.
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2.4. Let X be a set and S a subset of P(X). Prove that the topology generated by S is
the intersection of all topologies T on X containing S, and is thus the coarsest among such
topologies.

Solution. Let TS be the topology generated by S and T ′S the intersection of all topologies T
on X containing S.

We start with proving T ′S is a topology:

• Both ∅ and X belong to all topologies containing S, and thus belong to the intersection
T ′S.

• If {Ui ∈ T
′

S ∶ i ∈ I} is a collection of members of T ′S, then Ui ∈ T for every i ∈ I and every
topology T containing S. It follows that ⋃i∈I Ui ∈ T for every topology T containing S,
and thus ⋃i∈I Ui ∈ T

′

S.

• If U1, . . . , Un are members of T ′S, then they belong to every topology T containing S. It
follows that ⋂n

i=1Ui ∈ T for every topology T containing S, and thus ⋂n
i=1Ui ∈ T

′

S.

It follows from the definition of TS that S ⊆ TS, so TS is finer than T ′S. However, for T ′S
to be a topology, it has to be closed under arbitrary union and finite intersection, and thus
contains all members of TS; in other words, T ′S has to be finer than TS. Hence T ′S = TS.

2.5. Let X and Y be two topological spaces, where the topology on X is the discrete topology.
Prove that every function from X to Y is continuous.

Solution. Consider a function f ∶X Ð→ Y . Since the topology on X is discrete, it follows that
f−1(U) is open for every open subset U of Y , and thus f is continuous.

2.6. Let A be a subset of a topological space X. Prove that

(a) ∂A ∩A○ = ∅;

(b) A = A○ ∪ ∂A;

(c) A○ = A ∖ ∂A.

Solution. (a) ∂A ∩ A○ = A ∩ (X ∖A) ∩ A○ = (X ∖A) ∩ A○ since A○ ⊆ A ⊆ A. Suppose
x ∈ (X ∖A) ∩A○. By Proposition 2.19 every open neighbourhood of x intersects X ∖A
nontrivially; in particular A○ intersects X ∖A nontrivially, contradiction.

(b) Since A○ ⊆ A ⊆ A and ∂A = A ∩ (X ∖A) ⊆ A, the inclusion A○ ∪ ∂A ⊆ A is clear.
In the other direction, let x ∈ A and suppose x ∉ ∂A, which forces x ∉ (X ∖A). By
Proposition 2.19 there exists an open neighbourhood Ux of x such that Ux∩(X ∖A) = ∅,
that is Ux ⊆ A. Therefore x ∈ A○.

(c) Since A○ ⊆ A and A○ ∩ ∂A = ∅ we have A○ ⊆ A ∖ ∂A.
From parts (a) and (b) we see that A is the disjoint union of A○ and ∂A; in addition
A ⊆ A so

A ∖ ∂A ⊆ A ∖ ∂A = A○.

2.7. Let f ∶X Ð→ Y be a function and TX a topology on X. Define

TY = {U ∈ P(Y ) ∶ f
−1(U) ∈ TX}.

(a) Prove that TY is the finest topology on Y such that f is continuous. (This topology is
called the final topology induced by f .)
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(b) Let T be another topology on Y . Prove that f ∶ (X,TX)Ð→ (Y,T ) is continuous if and
only if T is coarser than TY .

Note: There is a “dual” setting where you start with a topology on Y and look for the
coarsest topology on Y such that f is continuous, see Exercise 1.23.
Solution.

(a) We start with proving that TY is a topology:
• Since ∅ = f−1(∅) and X = f−1(Y ), it follows that TY contains ∅ and Y .
• If {Ui ∶ i ∈ I} is a collection of members of TY , then

⋃
i∈I

f−1(Ui) = f
−1(⋃

i∈I

Ui) ∈ TX .

• If U1, . . . , Un are members of TY , then
n

⋂
i=1

f−1(Ui) = f
−1(

n

⋂
i=1

Ui) ∈ TX .

If T is a topology on Y such that f is continuous, then f−1(U) ∈ TX for every member
U of T , so T ⊆ TY . Therefore, TY is the finest topology such that f is continuous.

(b) The ‘only if’ part has been proven in part (a), so it suffices to prove the ‘if’ part.
Suppose T is coarser than TY . If U is a member of T , then U ∈ TY , which implies that
f−1(U) is open in X. It follows that f is continuous when the topology on Y is T .

2.8. Prove that a function f ∶X Ð→ Y between metric spaces is continuous if and only if it
satisfies the usual ε–δ definition: for every point x of X and every positive real number ε,
there exists a positive real number δ such that dX(x, y) < δ implies dY (f(x), f(x)) < ε.
Solution. It follows from the definition of open balls that the condition ‘dX(x, y) < δ implies
dY (f(x), f(x)) < ε’ means f(Bδ(x)) ⊆ Bε(f(x)). We will use the rephrased statement in
this proof.

Suppose f ∶X Ð→ Y is continuous. If x ∈X and ε is a positive real number, then the inverse
image of Bε(f(x)) in X is open, and thus contains Bδ(x) for some positive real number δ. It
follows that f(Bδ(x)) ⊆ Bε(f(x)).

Conversely, suppose f satisfies the usual ε–δ definition and consider an open subset U of Y .
If f(x) ∈ U for some element x of X, then the openness of U implies the existence of positive
real number ε such that Bε(f(x)) ⊆ U . Since f satisfies the usual ε–δ definition, there exists
a positive real number δ such that f(Bδ(x)) ⊆ Bε(f(x)) ⊆ U , which implies Bδ(x) ⊆ f−1(U).
It follows that f−1(U) is open in X, and thus f is continuous.
2.9.

(a) Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be functions, where X, Y , Z are sets, and let S ⊆ Z.
Then

f−1(g−1(S)) = (g ○ f)−1(S).

(b) Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be continuous functions, where X, Y , Z are topological
spaces. Prove that g ○ f ∶ X Ð→ Z is continuous.

Solution.
(a) We have x ∈ (g ○ f)−1(S) iff (g ○ f)(x) ∈ S iff g(f(x)) ∈ S iff f(x) ∈ g−1(S) iff x ∈

f−1(g−1(S)).

(b) Let W ⊆ Z be open. As g ∶ Y Ð→ Z is continuous, g−1(W ) ⊆ Y is open. As f ∶ X Ð→ Y
is continuous, (g ○ f)−1(W ) = f−1(g−1(W )) ⊆X is open. So g ○ f is continuous.
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