Tutorial Week 2

Topics: metrics, topologies, continuous functions.

2.1. Let X be a set and d the discrete metric on X, that is $d(x_1, x_2) = 1$ for all $x_1 \neq x_2$; see also Exercise 1.5. Prove that the topology defined by d is the discrete topology.

Solution. By the definition of the discrete metric, we have $\mathbf{B}_1(x) = \{x\}$ for every element x of X. If S is a subset of X, then

$$S = \bigcup_{x \in S} \{x\} = \bigcup_{x \in S} \mathbf{B}_1(x),$$

and thus S is open. Therefore, every subset of X is open in (X, d); in other words, the topology defined by d is the discrete topology.

2.2. Is the word "finite" necessary in the statement of Proposition 2.10? If no, give a proof of the statement without "finite". If yes, give an example of a metric space (X, d) and an infinite collection of open subsets of X whose intersection is not an open set.

Solution. The word "finite" is necessary. For a counterexample to the more general statement, for each $n \in \mathbb{Z}_{\geq 1}$ take $U_n = (-1/n, 1/n)$ as an open set in \mathbb{R} with the Euclidean metric. I claim that

$$U \coloneqq \bigcap_{n \in \mathbf{Z}_{\geqslant 1}} U_n = \{0\}.$$

This can be proved by contradiction: suppose $u \in U$, $u \neq 0$. Let $n \in \mathbb{Z}_{\geqslant 1}$ be such that $n \geqslant \frac{1}{|u|}$. Then $|u| \geqslant \frac{1}{n}$, therefore $u \notin (-1/n, 1/n) = U_n$, contradiction.

Finally, U is not open: for any $r \in \mathbf{R}_{>0}$, $\frac{r}{2} \in \mathbf{B}_r(0)$ but $\frac{r}{2} \notin \{0\} = U$, so $\mathbf{B}_r(0)$ is not a subset of U.

2.3. Find all topologies on the set $\{0,1\}$ and determine which of them are metrisable.

Solution. Let \mathcal{T} be a topology on $\{0,1\}$. Since \emptyset and $\{0,1\}$ must belong to \mathcal{T} , there are four possibilities:

- $\mathcal{T} = \mathcal{P}(\{0,1\})$. This is the discrete topology on $\{0,1\}$.
- $\mathcal{T} = \{\emptyset, \{1\}, \{0,1\}\}$. Since \mathcal{T} is finite, it suffices to verify it is closed under binary intersection and binary union. We can prove this by enumeration:

$$\varnothing \cap \{1\} = \varnothing,$$
 $\varnothing \cap \{0,1\} = \varnothing,$ $\{1\} \cap \{0,1\} = \{1\},$ $\varnothing \cup \{1\} = \{1\},$ $\{1\} \cup \{0,1\} = \{0,1\}.$

Therefore, \mathcal{T} is a topology.

- $\mathcal{T} = \{\emptyset, \{0\}, \{0, 1\}\}$. This can be proved to be a topology similarly.
- $\mathcal{T} = \{\emptyset, \{0, 1\}\}$. This is the trivial topology on $\{0, 1\}$.

Now suppose d is a metric on $\{0,1\}$. Since d(0,1) > 0, we can pick a positive real number r smaller than d(0,1). It follows that

$$\mathbf{B}_r(0) = \{0\}$$
 and $\mathbf{B}_r(1) = \{1\},$

and the metric topology defined by d is thus the discrete topology. Therefore, the only metrisable topology on $\{0,1\}$ is the discrete topology.

2.4. Let X be a set and S a subset of $\mathcal{P}(X)$. Prove that the topology generated by S is the intersection of all topologies \mathcal{T} on X containing S, and is thus the coarsest among such topologies.

Solution. Let \mathcal{T}_S be the topology generated by S and \mathcal{T}'_S the intersection of all topologies \mathcal{T} on X containing S.

We start with proving \mathcal{T}'_S is a topology:

- Both \varnothing and X belong to all topologies containing S, and thus belong to the intersection \mathcal{T}'_S .
- If $\{U_i \in \mathcal{T}'_S : i \in I\}$ is a collection of members of \mathcal{T}'_S , then $U_i \in \mathcal{T}$ for every $i \in I$ and every topology \mathcal{T} containing S. It follows that $\bigcup_{i \in I} U_i \in \mathcal{T}$ for every topology \mathcal{T} containing S, and thus $\bigcup_{i \in I} U_i \in \mathcal{T}'_S$.
- If U_1, \ldots, U_n are members of \mathcal{T}'_S , then they belong to every topology \mathcal{T} containing S. It follows that $\bigcap_{i=1}^n U_i \in \mathcal{T}$ for every topology \mathcal{T} containing S, and thus $\bigcap_{i=1}^n U_i \in \mathcal{T}'_S$.

It follows from the definition of \mathcal{T}_S that $S \subseteq \mathcal{T}_S$, so \mathcal{T}_S is finer than \mathcal{T}'_S . However, for \mathcal{T}'_S to be a topology, it has to be closed under arbitrary union and finite intersection, and thus contains all members of \mathcal{T}_S ; in other words, \mathcal{T}'_S has to be finer than \mathcal{T}_S . Hence $\mathcal{T}'_S = \mathcal{T}_S$.

2.5. Let X and Y be two topological spaces, where the topology on X is the discrete topology. Prove that every function from X to Y is continuous.

Solution. Consider a function $f: X \longrightarrow Y$. Since the topology on X is discrete, it follows that $f^{-1}(U)$ is open for every open subset U of Y, and thus f is continuous.

- **2.6.** Let A be a subset of a topological space X. Prove that
 - (a) $\partial A \cap A^{\circ} = \emptyset$;
 - (b) $\overline{A} = A^{\circ} \cup \partial A$;
 - (c) $A^{\circ} = A \setminus \partial A$.
- Solution. (a) $\partial A \cap A^{\circ} = \overline{A} \cap \overline{(X \setminus A)} \cap A^{\circ} = \overline{(X \setminus A)} \cap A^{\circ}$ since $A^{\circ} \subseteq A \subseteq \overline{A}$. Suppose $x \in \overline{(X \setminus A)} \cap A^{\circ}$. By Proposition 2.19 every open neighbourhood of x intersects $X \setminus A$ nontrivially; in particular A° intersects $X \setminus A$ nontrivially, contradiction.
 - (b) Since $A^{\circ} \subseteq A \subseteq \overline{A}$ and $\partial A = \overline{A} \cap \overline{(X \setminus A)} \subseteq \overline{A}$, the inclusion $A^{\circ} \cup \partial A \subseteq \overline{A}$ is clear. In the other direction, let $x \in \overline{A}$ and suppose $x \notin \partial A$, which forces $x \notin \overline{(X \setminus A)}$. By Proposition 2.19 there exists an open neighbourhood U_x of x such that $U_x \cap (X \setminus A) = \emptyset$, that is $U_x \subseteq A$. Therefore $x \in A^{\circ}$.
 - (c) Since $A^{\circ} \subseteq A$ and $A^{\circ} \cap \partial A = \emptyset$ we have $A^{\circ} \subseteq A \setminus \partial A$. From parts (a) and (b) we see that \overline{A} is the disjoint union of A° and ∂A ; in addition $A \subseteq \overline{A}$ so

$$A \setminus \partial A \subseteq \overline{A} \setminus \partial A = A^{\circ}.$$

2.7. Let $f: X \longrightarrow Y$ be a function and \mathcal{T}_X a topology on X. Define

$$\mathcal{T}_Y = \{ U \in \mathcal{P}(Y) : f^{-1}(U) \in \mathcal{T}_X \}.$$

(a) Prove that \mathcal{T}_Y is the finest topology on Y such that f is continuous. (This topology is called the *final topology* induced by f.)

(b) Let \mathcal{T} be another topology on Y. Prove that $f:(X,\mathcal{T}_X) \longrightarrow (Y,\mathcal{T})$ is continuous if and only if \mathcal{T} is coarser than \mathcal{T}_Y .

Note: There is a "dual" setting where you start with a topology on Y and look for the coarsest topology on Y such that f is continuous, see Exercise 1.23. Solution.

- (a) We start with proving that \mathcal{T}_Y is a topology:
 - Since $\emptyset = f^{-1}(\emptyset)$ and $X = f^{-1}(Y)$, it follows that \mathcal{T}_Y contains \emptyset and Y.
 - If $\{U_i : i \in I\}$ is a collection of members of \mathcal{T}_Y , then

$$\bigcup_{i\in I} f^{-1}(U_i) = f^{-1}(\bigcup_{i\in I} U_i) \in \mathcal{T}_X.$$

• If U_1, \ldots, U_n are members of \mathcal{T}_Y , then

$$\bigcap_{i=1}^n f^{-1}(U_i) = f^{-1}\Big(\bigcap_{i=1}^n U_i\Big) \in \mathcal{T}_X.$$

If \mathcal{T} is a topology on Y such that f is continuous, then $f^{-1}(U) \in \mathcal{T}_X$ for every member U of \mathcal{T} , so $\mathcal{T} \subseteq \mathcal{T}_Y$. Therefore, \mathcal{T}_Y is the finest topology such that f is continuous.

- (b) The 'only if' part has been proven in part (a), so it suffices to prove the 'if' part. Suppose \mathcal{T} is coarser than \mathcal{T}_Y . If U is a member of \mathcal{T} , then $U \in \mathcal{T}_Y$, which implies that $f^{-1}(U)$ is open in X. It follows that f is continuous when the topology on Y is \mathcal{T} . \square
- **2.8.** Prove that a function $f: X \longrightarrow Y$ between metric spaces is continuous if and only if it satisfies the usual ε - δ definition: for every point x of X and every positive real number ε , there exists a positive real number δ such that $d_X(x,y) < \delta$ implies $d_Y(f(x), f(x)) < \varepsilon$.

Solution. It follows from the definition of open balls that the condition $d_X(x,y) < \delta$ implies $d_Y(f(x), f(x)) < \varepsilon$ means $f(\mathbf{B}_{\delta}(x)) \subseteq \mathbf{B}_{\varepsilon}(f(x))$. We will use the rephrased statement in this proof.

Suppose $f: X \longrightarrow Y$ is continuous. If $x \in X$ and ε is a positive real number, then the inverse image of $\mathbf{B}_{\varepsilon}(f(x))$ in X is open, and thus contains $\mathbf{B}_{\delta}(x)$ for some positive real number δ . It follows that $f(\mathbf{B}_{\delta}(x)) \subseteq \mathbf{B}_{\varepsilon}(f(x))$.

Conversely, suppose f satisfies the usual ε - δ definition and consider an open subset U of Y. If $f(x) \in U$ for some element x of X, then the openness of U implies the existence of positive real number ε such that $\mathbf{B}_{\varepsilon}(f(x)) \subseteq U$. Since f satisfies the usual ε - δ definition, there exists a positive real number δ such that $f(\mathbf{B}_{\delta}(x)) \subseteq \mathbf{B}_{\varepsilon}(f(x)) \subseteq U$, which implies $\mathbf{B}_{\delta}(x) \subseteq f^{-1}(U)$. It follows that $f^{-1}(U)$ is open in X, and thus f is continuous. \square

(a) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be functions, where X, Y, Z are sets, and let $S \subseteq Z$. Then

$$f^{-1}(g^{-1}(S)) = (g \circ f)^{-1}(S).$$

(b) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be continuous functions, where X, Y, Z are topological spaces. Prove that $g \circ f: X \longrightarrow Z$ is continuous.

Solution.

- (a) We have $x \in (g \circ f)^{-1}(S)$ iff $(g \circ f)(x) \in S$ iff $g(f(x)) \in S$ iff $f(x) \in g^{-1}(S)$ iff $x \in f^{-1}(g^{-1}(S))$.
- (b) Let $W \subseteq Z$ be open. As $g: Y \longrightarrow Z$ is continuous, $g^{-1}(W) \subseteq Y$ is open. As $f: X \longrightarrow Y$ is continuous, $(g \circ f)^{-1}(W) = f^{-1}(g^{-1}(W)) \subseteq X$ is open. So $g \circ f$ is continuous.