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Tutorial Week 3

Topics: Closure, interior, denseness, product, Hausdorff, equivalent metrics, disconnectedness

3.1. Let A and B be subsets of a topological space X.

(a) Suppose A ⊆ B. Prove that A ⊆ B and A○ ⊆ B○.

(b) Prove that A ∪B = A ∪B and (A ∩B)○ = A○ ∩B○.

(c) Prove that A ∩B ⊆ A ∩B. Find an example in which A ∩B ≠ A ∩B.

(d) Prove that (A ∪B)○ ⊇ A○ ∪B○. Find an example in which (A ∪B)○ ≠ A○ ∪B○.

[Hint: For (c) and (d), think of some subsets of R.]

Solution.

(a) Since A ⊆ B ⊆ B and A is the smallest closed subset of X containing A, it follows that
A ⊆ B.
Since A○ ⊆ A ⊆ B and B○ is the largest open subset of B, it follows that A○ ⊆ B○.

(b) Since A ∪B ⊆ A ∪B, it follows that A ∪B ⊆ A ∪B.
For the other inclusion, A ⊆ A ∪B ⊆ A ∪B implies A ⊆ A ∪B, and similarly we have
B ⊆ A ∪B. Hence A ∪B ⊆ A ∪B.
Since A○ ∩B○ ⊆ A ∩B, it follows that A○ ∩B○ ⊆ (A ∩B)○.
For the other inclusion, (A ∩B)○ ⊆ A ∩B ⊆ A implies (A ∩B)○ ⊆ A○, and similarly we
have (A ∩B)○ ⊆ B○. Hence (A ∩B)○ ⊆ A○ ∩B○.

(c) Both A and B contain A ∩B, so A ∩B ⊆ A ∩B.
For the example, let A = Q, B = R ∖Q, and X = R. It follows that A = B = X (see
Example 2.23), so X = A ∩B, but A ∩B = A ∩B = ∅.

(d) Since A ∪B contains both A and B, it follows from part (a) that (A ∪B)○ ⊇ A○ and
(A ∪B)○ ⊇ B○, and hence (A ∪B)○ ⊇ A○ ∪B○.
For the example, let A =Q, B =R ∖Q, and X =R. It follows that (A ∪B)○ =X○ =X,
but A○ ∪B○ = ∅ because A○ = B○ = ∅.

3.2. A subset D ⊆X of a topological space X is dense in X if and only if D ∩U ≠ ∅ for all
nonempty open sets U in X.

Solution. Suppose D is dense, so D = X, and let U be nonempty open. If D ∩ U = ∅ then
D ⊆X ∖U . But X ∖U is a closed subset of X containing D, so by the minimality property
of D we have D ⊆X ∖U . As U ≠ ∅, this means D ≠X, contradiction.

Conversely, suppose D∩U is nonempty for any nonempty open U . If D ≠X then U ∶=X∖D
is a nonempty open subset of X, so D ∩ (X ∖D) ≠ ∅. But this is absurd since D ⊆D.

3.3. Let X be a topological space. The intersection of two dense open sets U1 and U2 is dense
and open.
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Solution. Let U12 = U1 ∩U2. We know already that U12 is open.
To show that U12 is dense, we use Tutorial Question 3.2 and show that U12 ∩U ≠ ∅ for all

nonempty open U :
U12 ∩U = (U1 ∩U2) ∩U = U1 ∩(U2 ∩U).

Since U2 is dense and open, U2 ∩U is nonempty and open. Since U1 is dense, U1 ∩ (U2 ∩U) is
nonempty. So U12 ∩U ≠ ∅, hence U12 is dense.

3.4. Let (X,d) be a metric space and let A ⊆X.

(a) Prove that the set A is open if and only if it is the union of a collection of open balls.

(b) Conclude that the set of all open balls in X generates the metric topology of X.

Solution. (a) In one direction, if A is a union of a collection of open balls, then A is open
by Example 2.8 and Proposition 2.9.
In the other direction, suppose A is open. Let a ∈ A, then there exists an open ball
Br(a)(a) ⊆ A. Then

A = ⋃
a∈A

Br(a)(a).

(b) Follows immediately from the definition of the topology generated by a set.

3.5. Let (X,d) be a metric space.

(a) Prove that the metric topology on (X,d) is generated by open balls of radii smaller
than 1.

(b) Define d′ ∶ X ×X Ð→R⩾0 by

d′(x, y) =min{d(x, y),1}.

Prove that d′ is a metric.

(c) Prove that d and d′ are equivalent (that is, they give rise to the same topology on X).

Solution.

(a) Since the metric topology on (X,d) is generated by open balls of arbitrary radii, it
suffices to prove that every open ball is in the topology generated by open balls of radii
smaller than 1. Let x be a point in X and let r be an arbitrary positive real number. If
y ∈ Br(x), then d(x, y) < r, so Br−d(x,y)(y) ⊆ Br(x) by the triangle inequality. It follows
that

Br(x) = ⋃
y∈Br(x)

Br−d(x,y)(y) = ⋃
y∈Br(x)

Br(y)(y),

where r(y) = min{r − d(x, y),1}. Hence Br(x) is in the topology generated by open
balls of radii smaller than 1.

(b) It is clear that d′(y, x) = d′(x, y) and that d′(x, y) = 0 if and only if d(x, y) = 0 if and
only if x = y.
For the triangle inequality: d′(x, y) ⩽ 1 so if at least one of d′(x, t), d′(t, y) is 1, the
triangle inequality holds. So we may assume that d′(x, t) = d(x, t) and d′(t, y) = d(t, y).
Then

d′(x, y) ⩽ d(x, y) ⩽ d(x, t) + d(t, y) = d′(x, t) + d′(t, y).
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(c) It follows from the definition of d that Bd
r(x) = B

d′
r (x) for every point x in X and every

positive real number r smaller than 1. It then follows from part (a) that the metric
topologies induced by d and d′ are generated by the same collection of open balls, so
the two metric topologies are the same. Hence d and d′ are equivalent.

3.6. Let C1 and C2 be two connected subsets of a topological space X such that C1 ∩C2 ≠ ∅.
Prove that C1 ∪C2 is connected.

Solution. Let f ∶ C1∪C2 Ð→ {0,1} be a continuous function, where {0,1} is given the discrete
topology. Since C1∩C2 is non-empty, we can pick an element x of C1∩C2. By Proposition 2.31,
the restrictions of f to C1 and C2 are both constant. Hence we have f(x) = f(y) for every
element y of C1 ∪C2; in other words, f is a constant function on C1 ∪C2. By Proposition 2.31,
this implies C1 ∪C2 is connected.

3.7. Let X be a topological space and define x ∼ x′ if there exists a connected subset C ⊆X
such that x,x′ ∈ C. Prove that this is an equivalence relation on the set X.

(The equivalence classes are called the connected components of X).

Solution.

(a) x ∼ x: for any x ∈X, the set C = {x} is connected and contains x, so x ∼ x.

(b) if x ∼ x′ then x′ ∼ x: clear from the definition, which does not distinguish x and x′.

(c) if x ∼ x′ and x′ ∼ x′′ then x ∼ x′′: since x ∼ x′ there exists a connected set C1 such that
x,x′ ∈ C1; since x′ ∼ x′′ there exists a connected set C2 such that x′, x′′ ∈ C2; by Tutorial
Question 3.6, since C1 and C2 are connected and x′ ∈ C1 ∩ C2, the union C1 ∪ C2 is
connected, and it contains both x and x′′, so that x ∼ x′′.

3.8. Let X, Y1, and Y2 be topological spaces, and π1 ∶ Y1 × Y2 Ð→ Y1 and π2 ∶ Y1 × Y2 Ð→ Y2

be the projections. Prove that a function f ∶X Ð→ Y1 × Y2 is continuous if and only if both
π1 ○ f and π2 ○ f are continuous.

Solution. Suppose f is continuous. By Proposition 2.18, both π1 and π2 are continuous. It
then follows from Tutorial Question 2.9 that π1 ○ f and π2 ○ f are continuous.

Conversely, suppose π1 ○ f and π2 ○ f are both continuous. If U1 and U2 are open subsets of
Y1 and Y2 respectively, then f−1(U1 ×U2) = (π1 ○ f)−1(U1) ∩ (π2 ○ f)−1(U2) because

x ∈ f−1(U1 ×U2) ⇐⇒ ((π1 ○ f)(x), (π2 ○ f)(x)) ∈ U1 ×U2

⇐⇒ (π1 ○ f)(x) ∈ U1 and (π2 ○ f)(x) ∈ U2

⇐⇒ x ∈ (π1 ○ f)
−1(U1) and x ∈ (π2 ○ f)

−1(U2)

⇐⇒ x ∈ (π1 ○ f)
−1(U1) ∩ (π2 ○ f)

−1(U2).

Since π1 ○ f and π2 ○ f are both continuous, it follows that (π1 ○ f)−1(U1) and (π2 ○ f)−1(U2)

are both open in X; hence f−1(U1 × U2) is open. The topology on Y1 × Y2 is generated by
rectangles, so it follows from Exercise 1.22 that f is continuous.

3.9. Given a set X, define the diagonal function

∆ ∶ X Ð→X ×X, xz→ (x,x).

(a) Prove that two subsets A and B of X are disjoint if and only if ∆(X) and A ×B are
disjoint.
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(b) If X is a topological space, prove that ∆ is continuous.

(c) Prove that a topological space X is Hausdorff if and only if ∆(X) is closed in X ×X.

Solution. (a) This follows from

x ∈ A ∩B ⇐⇒ x ∈ A and x ∈ B ⇐⇒ (x,x) ∈∆(X) ∩ (A ×B).

(b) Let idX ∶X Ð→ X denote the identity function of X, defined by idX(x) = x. This
function is continuous by Exercise 1.21.
Let π1, π2 ∶ X ×X Ð→X be the projections. Since π1 ○∆ = π2 ○∆ = idX , it follows from
Tutorial Question 3.8 that ∆ is continuous.

(c) Suppose X is Hausdorff. We will prove that (X × X) ∖ ∆(X) is open. If (x, y) ∈
(X ×X) ∖∆(X), then x ≠ y, so there exist disjoint open neighbourhoods U of x and V
of y. It follows from part (a) that U × V does not intersect ∆(X), and is thus a subset
of (X ×X) ∖∆(X). This implies (X ×X) ∖∆(X) is open, and hence ∆(X) is closed.
Conversely, suppose ∆(X) is closed; in other words, (X ×X) ∖∆(X) is open. Let x
and y be two distinct points in X. Since (x, y) ∈ (X ×X) ∖∆(X), it follows that there
exist open neighbourhoods U of x and V of y such that U ×V ⊆ (X ×X)∖∆(X), which
implies U and V are disjoint by part (a). Hence X is Hausdorff.

4


