MAST30026 Metric and Hilbert Spaces 2025

Tutorial Week 4

Topics: Closed functions, compactness, sequences

4.1. Let X, Y be topological spaces. Recall that a function f: X — Y is said to be closed if
for every closed subset C' ¢ X, the image f(C') is closed in Y.

(a) Prove that the composition of two closed maps is a closed map.

(b) Prove that a continuous bijection between topological spaces is a homeomorphism if
and only if it is closed.

(c) Give an example of a bijection f: X — Y between topological spaces such that f is
continuous but not closed (and therefore f~! is closed but not continuous).

Solution.

(a) Let f: X — Y and ¢g: Y — Z be the two closed maps. Suppose F' is a closed subset
of X. Since f is a closed map, it follows that f(F) is a closed subset. Since g is a closed
map, we see that g(f(F")) = (go f)(F) is a closed subset. Hence go f is a closed map.

(b) Let f: X — Y be a continuous bijection between topological spaces and let g: ¥ — X
be its inverse.

Suppose f is a homeomorphism. If F'is a closed subset of X, then f(F') =g '(F) is
closed by continuity of g. Hence f is a closed map.

Conversely, suppose f is a closed map. If F' is a closed subset of X, then g-'(F') = f(F)
is closed. It then follows from Fxercise 1.17 that ¢ is continuous, and therefore f is a
homeomorphism.

(c) Let X ={0,1} with the discrete topology, let Y = {0,1} with the trivial (indiscrete)
topology, and let f be the identity map. The claims follow easily. ]

4.2. Let X,Y be topological spaces. Recall that a function f: X — Y is said to be open if
for every open set U € X, the image f(U) is open in Y.

(a) Give an example of a function that is open but not closed.

(b) Give an example of a function that is closed but not open.

Solution.

(a) Let X ={0,1} with the discrete topology, and Y = {0, 1} with the topology generated
by {0}. Then as a subset of Y, {0} is open but not closed.
Therefore the function f: X — Y with f(0) = f(1) =0 is open but not closed.

(b) With the same X and Y as in part (a), note that as a subset of Y, {1} is closed but
not open.

Therefore the function g: X — Y with g(0) = g(1) =1 is open but not closed. O

4.3. Let K and L be compact subsets of a topological space X. Prove that K u L is compact.
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Solution. Consider an arbitrary open cover of K u L:

KULQUUZ‘.

iel

This is also an open cover of K, so there is a finite subcover that still covers K:
N
Kc U Uin7 in€l.
n=1
Similarly, we get a finite subcover that covers L:
M
Lc U U Gm jm el.
m=1

Letting S = {i1,...,in} U{J1,...,Jm}, we get a finite subcover that covers K u L:

KuLc|JU.. O
seS

4.4. Prove that every finite topological space is compact.

Solution. Let X be a finite topological space and consider an open cover {U;: i € I} of X.
For every point x in X, pick a member U, of {U;: i € I'} such that x € U,. Now {U,: x € X}
is a finite sub-cover of {U;: i € I'}. Hence X is compact. O

4.5. Prove that a discrete topological space X is compact if and only if X is finite.

Solution. If X is finite, then X is compact by Tutorial Question 4.4.

Conversely, suppose X is compact and consider the open cover {{x} reX } Its only
subcover is itself (any proper subcollection will miss some points of X ), but by compactness
it admits a finite subcover, so the cover itself must have been finite, hence X is finite. O

4.6. Let X be a compact topological space and let Y be a Hausdorff topological space. Prove
that every continuous bijection from X to Y is a homeomorphism.

Solution. Let f: X — Y be a continuous bijection. We will prove f is a closed map; it will
then follow from part (b) of Tutorial Question 4.1 that f is a homeomorphism.

If F'is a closed subset of X, then it is compact by Proposition 2.38. It follows from
Proposition 2.39 that f(F") is compact, which implies it is a closed subset by Proposition 2.37.
Hence f is a closed map. O

4.7. Let (z,) be a sequence in a metric space X, let ¢: N — N be an injective function,
and consider the sequence (y,) = (Z,(,)) in X. Prove that if (z,) converges to z, then so

does (y,).
Does the converse hold?

Solution. Suppose (x,) — x. Given € >0, let N € N be such that x, € B.(z) for all n > N.
Since ¢: N — N is injective, the inverse image 90*1({1, N - 1}) is a finite set, so it
has a maximal element M. (If the set is empty, just take M =0.) For all n > M + 1, we have
©(n) > N, 50 Yy, = Tyn) € Bo(2).
The converse certainly does not hold. For instance, take (x,) = (1,0,1,0,1,0,...) and
©(n) = 2n, then the sequence (y,,) = (0,0,0,...) converges to 0 but (x,) does not converge. [

4.8. Give N c R the subspace topology. Let X be a topological space and (x,) a sequence in
X. Prove that (z,) is a continuous function N — X.
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Solution. First note that the subspace topology on N ¢ R is the discrete topology: for any
neN, we have {n} =(n-1,n+1)nN, so {n} is open in N. Therefore every subset of N is
open, hence every function N — X is continuous. O

4.9. Let (X,dy) and (Y, dy) be metric spaces and let d be the sup norm metric on X x Y:

d((21, 1), (22,92)) = max (dx (z1,22), dy (Y1, 92) ).
Prove that ((z,,¥s)) — (2,y) € X x Y if and only if (z,) — z € X and (y,) — yeY.

Solution. Suppose (x,) — x and (y,) — y. Let € >0, N, € N such that z,, e B.(z) for all
n > N,, and N, € N such that y, € B.(y) for all n > N,. Set N = max{N,, N,}, then

d((n,yn), (2,y)) = max{dx (vy, ), dy (yn,y)} <& forall n>N.

Conversely, suppose ((xn,yn)) — (x,y). Given € > 0 there exists N € N such that
(T, Yn) € Bo((7,y)) for all n > N, so

maX{dx(.CL'n,l‘), dY(ymy)} = d((xna yn)7 (3:7 y)) <e,

and hence both dx(z,,z) and dy(y,,y) are bounded by ¢ for all n > N.
(Alternative solution): Define a function f: N* — X x Y by

f(n) = {(xn,yn) if neN,

(r,y)  otherwise.

Let mx: X xY — X and my: X xY — Y be the projections. The result follows from the
following;:

 f is continuous if and only if 7x and 7y are both continuous (see Tutorial Question 3.8).
e f is continuous if and only if (z,,y,) converges to (x,y) (part (c) of Exercise 1.56).
e 7x o f is continuous if and only if z,, converges to x (part (c) of Exercise 1.56).

e Ty o f is continuous if and only if y, converges to y (part (c) of Exercise 1.56). O



