Tutorial Week 4

Topics: Closed functions, compactness, sequences

- **4.1.** Let X, Y be topological spaces. Recall that a function $f: X \longrightarrow Y$ is said to be *closed* if for every closed subset $C \subseteq X$, the image f(C) is closed in Y.
 - (a) Prove that the composition of two closed maps is a closed map.
 - (b) Prove that a continuous bijection between topological spaces is a homeomorphism if and only if it is closed.
 - (c) Give an example of a bijection $f: X \longrightarrow Y$ between topological spaces such that f is continuous but not closed (and therefore f^{-1} is closed but not continuous).

Solution.

- (a) Let $f: X \longrightarrow Y$ and $g: Y \longrightarrow Z$ be the two closed maps. Suppose F is a closed subset of X. Since f is a closed map, it follows that f(F) is a closed subset. Since g is a closed map, we see that $g(f(F)) = (g \circ f)(F)$ is a closed subset. Hence $g \circ f$ is a closed map.
- (b) Let $f: X \longrightarrow Y$ be a continuous bijection between topological spaces and let $g: Y \longrightarrow X$ be its inverse.
 - Suppose f is a homeomorphism. If F is a closed subset of X, then $f(F) = g^{-1}(F)$ is closed by continuity of g. Hence f is a closed map.
 - Conversely, suppose f is a closed map. If F is a closed subset of X, then $g^{-1}(F) = f(F)$ is closed. It then follows from Exercise 1.17 that g is continuous, and therefore f is a homeomorphism.
- (c) Let $X = \{0,1\}$ with the discrete topology, let $Y = \{0,1\}$ with the trivial (indiscrete) topology, and let f be the identity map. The claims follow easily.
- **4.2.** Let X, Y be topological spaces. Recall that a function $f: X \longrightarrow Y$ is said to be *open* if for every open set $U \subseteq X$, the image f(U) is open in Y.
 - (a) Give an example of a function that is open but not closed.
 - (b) Give an example of a function that is closed but not open.

Solution.

- (a) Let $X = \{0, 1\}$ with the discrete topology, and $Y = \{0, 1\}$ with the topology generated by $\{0\}$. Then as a subset of Y, $\{0\}$ is open but not closed.
 - Therefore the function $f: X \longrightarrow Y$ with f(0) = f(1) = 0 is open but not closed.
- (b) With the same X and Y as in part (a), note that as a subset of Y, $\{1\}$ is closed but not open.
 - Therefore the function $g: X \longrightarrow Y$ with g(0) = g(1) = 1 is open but not closed.
- **4.3.** Let K and L be compact subsets of a topological space X. Prove that $K \cup L$ is compact.

Solution. Consider an arbitrary open cover of $K \cup L$:

$$K \cup L \subseteq \bigcup_{i \in I} U_i$$
.

This is also an open cover of K, so there is a finite subcover that still covers K:

$$K \subseteq \bigcup_{n=1}^{N} U_{i_n}, \quad i_n \in I.$$

Similarly, we get a finite subcover that covers L:

$$L \subseteq \bigcup_{m=1}^{M} U_{j_m}, \qquad j_m \in I.$$

Letting $S = \{i_1, \dots, i_N\} \cup \{j_1, \dots, j_M\}$, we get a finite subcover that covers $K \cup L$:

$$K \cup L \subseteq \bigcup_{s \in S} U_s. \qquad \Box$$

4.4. Prove that every finite topological space is compact.

Solution. Let X be a finite topological space and consider an open cover $\{U_i : i \in I\}$ of X. For every point x in X, pick a member U_x of $\{U_i : i \in I\}$ such that $x \in U_x$. Now $\{U_x : x \in X\}$ is a finite sub-cover of $\{U_i : i \in I\}$. Hence X is compact.

4.5. Prove that a discrete topological space X is compact if and only if X is finite.

Solution. If X is finite, then X is compact by Tutorial Question 4.4.

Conversely, suppose X is compact and consider the open cover $\{\{x\}: x \in X\}$. Its only subcover is itself (any proper subcollection will miss some points of X), but by compactness it admits a finite subcover, so the cover itself must have been finite, hence X is finite. \square

4.6. Let X be a compact topological space and let Y be a Hausdorff topological space. Prove that every continuous bijection from X to Y is a homeomorphism.

Solution. Let $f: X \longrightarrow Y$ be a continuous bijection. We will prove f is a closed map; it will then follow from part (b) of Tutorial Question 4.1 that f is a homeomorphism.

If F is a closed subset of X, then it is compact by Proposition 2.38. It follows from Proposition 2.39 that f(F) is compact, which implies it is a closed subset by Proposition 2.37. Hence f is a closed map.

4.7. Let (x_n) be a sequence in a metric space X, let $\varphi \colon \mathbf{N} \longrightarrow \mathbf{N}$ be an injective function, and consider the sequence $(y_n) = (x_{\varphi(n)})$ in X. Prove that if (x_n) converges to x, then so does (y_n) .

Does the converse hold?

Solution. Suppose $(x_n) \to x$. Given $\varepsilon > 0$, let $N \in \mathbb{N}$ be such that $x_n \in \mathbf{B}_{\varepsilon}(x)$ for all $n \ge N$. Since $\varphi \colon \mathbb{N} \to \mathbb{N}$ is injective, the inverse image $\varphi^{-1}(\{1, \ldots, N-1\})$ is a finite set, so it has a maximal element M. (If the set is empty, just take M = 0.) For all $n \ge M + 1$, we have $\varphi(n) \ge N$, so $y_n = x_{\varphi(n)} \in \mathbf{B}_{\varepsilon}(x)$.

The converse certainly does not hold. For instance, take $(x_n) = (1, 0, 1, 0, 1, 0, ...)$ and $\varphi(n) = 2n$, then the sequence $(y_n) = (0, 0, 0, ...)$ converges to 0 but (x_n) does not converge. \square

4.8. Give $\mathbb{N} \subseteq \mathbb{R}$ the subspace topology. Let X be a topological space and (x_n) a sequence in X. Prove that (x_n) is a continuous function $\mathbb{N} \longrightarrow X$.

Solution. First note that the subspace topology on $\mathbb{N} \subseteq \mathbb{R}$ is the discrete topology: for any $n \in \mathbb{N}$, we have $\{n\} = (n-1, n+1) \cap \mathbb{N}$, so $\{n\}$ is open in \mathbb{N} . Therefore every subset of \mathbb{N} is open, hence every function $\mathbb{N} \longrightarrow X$ is continuous.

4.9. Let (X, d_X) and (Y, d_Y) be metric spaces and let d be the sup norm metric on $X \times Y$:

$$d((x_1, y_1), (x_2, y_2)) = \max(d_X(x_1, x_2), d_Y(y_1, y_2)).$$

Prove that $((x_n, y_n)) \longrightarrow (x, y) \in X \times Y$ if and only if $(x_n) \longrightarrow x \in X$ and $(y_n) \longrightarrow y \in Y$.

Solution. Suppose $(x_n) \longrightarrow x$ and $(y_n) \longrightarrow y$. Let $\varepsilon > 0$, $N_x \in \mathbb{N}$ such that $x_n \in \mathbb{B}_{\varepsilon}(x)$ for all $n \ge N_x$, and $N_y \in \mathbb{N}$ such that $y_n \in \mathbb{B}_{\varepsilon}(y)$ for all $n \ge N_y$. Set $N = \max\{N_x, N_y\}$, then

$$d((x_n, y_n), (x, y)) = \max\{d_X(x_n, x), d_Y(y_n, y)\} < \varepsilon$$
 for all $n \ge N$.

Conversely, suppose $((x_n, y_n)) \longrightarrow (x, y)$. Given $\varepsilon > 0$ there exists $N \in \mathbb{N}$ such that $(x_n, y_n) \in \mathbf{B}_{\varepsilon}((x, y))$ for all $n \ge N$, so

$$\max\{d_X(x_n,x),d_Y(y_n,y)\} = d((x_n,y_n),(x,y)) < \varepsilon,$$

and hence both $d_X(x_n, x)$ and $d_Y(y_n, y)$ are bounded by ε for all $n \ge N$. (Alternative solution): Define a function $f: \mathbb{N}^* \longrightarrow X \times Y$ by

$$f(n) = \begin{cases} (x_n, y_n) & \text{if } n \in \mathbf{N}, \\ (x, y) & \text{otherwise.} \end{cases}$$

Let $\pi_X \colon X \times Y \longrightarrow X$ and $\pi_Y \colon X \times Y \longrightarrow Y$ be the projections. The result follows from the following:

- f is continuous if and only if π_X and π_Y are both continuous (see Tutorial Question 3.8).
- f is continuous if and only if (x_n, y_n) converges to (x, y) (part (c) of Exercise 1.56).
- $\pi_X \circ f$ is continuous if and only if x_n converges to x (part (c) of Exercise 1.56).
- $\pi_Y \circ f$ is continuous if and only if y_n converges to y (part (c) of Exercise 1.56).