MAST30026 Metric and Hilbert Spaces 2025

Tutorial Week 5

Topics: Sequences, completeness, uniform continuity

5.1. Let d; and ds be equivalent metrics (they define the same topology) on a set X. Prove
that a sequence converges to a point x in (X,d;) if and only if it converges to = in (X, dy).

Solution. Since d; and ds are interchangeable, it suffices to prove the ‘only if’ part. Let
(z,) be a sequence converging to = in (X,d;). By Proposition 2.15, the identity function
idyx: X — X defined by idx(x) = x is continuous as a function from (X, d;) to (X,ds). The
result then follows from Theorem 2.44. ]

5.2. Let f: X — Y and g: Y — Z be uniformly continuous functions between metric
spaces. Prove that go f: X — Z is uniformly continuous.

Solution. Let ¢ be a positive real number. The uniform continuity of f and g implies that
there exists a positive real number ¢ such that dy (y1,y2) < d implies dz(g(yl), g(yg)) <e, and
there exists a positive real number  such that dx (z1,22) < v implies dy (f(21), f(22)) < 6.
Hence dy(x1,x2) <y implies dZ((g o f)(x1),(go f)(:cg)) < e, and therefore g o f is uniformly
continuous. [

5.3. Let f: X — Y be a uniformly continuous function between two metric spaces and
suppose (z,,) ~ (z!) are equivalent sequences in X. Prove that ( f (a:n)) ~ ( f (x;)) as sequences
inY.

Does the conclusion hold if f is only assumed to be continuous?

Solution. Let € >0. As f is uniformly continuous, there exists ¢ > 0 such that for all x,z" € X,
if dx(z,2") < ¢ then dy(f(z),f(z")) <e. As (x,) ~ (x!), there exists N € N such that
dx(zn,x!) <0 for all n > N. Hence for all n> N we have dy (f(z,), f(z)) <e.

The result does not hold in general for continuous functions; for instance one can take
f: Rog — Rg given by f(z) = ¢, and (1/n) ~ (1/n?) but (f(1/n)) = (n), (f(1/n?)) = (n?)
and (n) ¢ (n?). O

5.4. Let X be a complete metric space and let S ¢ X. Prove that the closure S (with the
metric induced from S ¢ X) is a completion of S (with the metric induced from S ¢ X).

Solution. Of course, S is complete: if (z,,) is a Cauchy sequence in S, then it is a Cauchy
sequence in X, so (z,) — x € X since X is complete. But S is closed, so (x,) —> z € S.
We let ¢ S — S be the inclusion map: ¢(s) = s for all s € S. It is injective and an isometry
(as dg and dg are both induced from dy).
Finally, S is dense in S: by Proposition 2.42, for every = € S there exists a sequence (s,) in
S such that (s,) — x. O

5.5. Let (X,dx) and (Y,dy) be metric spaces and f: X — Y a surjective continuous
function. Suppose that X is complete and for all z1, x5 € X we have

dx (21, 22) <dy(f(21), f(22)).

Prove that Y is complete.
In particular, isometries preserve completeness.
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Solution. Let (y,) be a Cauchy sequence in Y. For each n € N, let =, € f~!(y,). I claim that
(z,) is a Cauchy sequence in X. Fix ¢ >0. Let N € N be such that for all m,n > N we have
dy (Ym, yn) < €. Then for all m,n > N we have

dx (T, Tn) < dY(f(xm)a f(xn» = dy (Ym,Yn) <&,

so () is indeed Cauchy in X.
Since X is complete, we have (x,) — x € X, so that by the continuity of f we conclude

that (y,) = (f(2,)) — f(z) €Y. O
5.6. Let (X, d) be a metric space and let S ¢ X be a nonempty subset. Define dg: X — Ryq
by

ds(x) = }srelsf* d(z,s).
(a) Prove that dg is uniformly continuous.
[Hint: Show that |dg(z) - ds(y)| < d(z,y) for all x,y e X ]
(b) Prove that dg(z) = 0 if and only if z € S.
(c) Prove that if U ¢ X is an open neighbourhood of x, then dx.y(z) > 0.
Solution.

(a) We start with the hint. Let x,y € X. For all s € S we have
ds(z) <d(x,s) <d(z,y) +d(y,s),

hence
ds(r) <d(x,y) +ds(y).

We can swap the roles of x and y to get

ds(y) <d(y,x) +ds(x),

and the two inequalities together give

|ds () - ds(y)| < d(z,y).
Uniform continuity is now clear: for any € > 0 we take § = ¢ and use the above inequality.

(b) If ds(x) =0 then infd(x,s) =0 so for any € > 0 there exists s € S such that d(z,s) <e.
In particular, for n € N we can set € = 1/n and get s, € S such that d(z,s,) <e. This
gives us a sequence (s,) in S that converges to x, so x € S.

Conversely, if 2 € S then there exists a sequence (s,) in S that converges to . Given
e >0, there exists N € N such that d(z, sy) < &, therefore infd(z, s) = 0.

(c) If dx.y(z) =0 then by part (b) we have x € X \ U = X \ U, the latter equality due to
U being open. But then z € U n (X \ U), contradiction. O



