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Tutorial Week 5

Topics: Sequences, completeness, uniform continuity

5.1. Let d1 and d2 be equivalent metrics (they define the same topology) on a set X. Prove
that a sequence converges to a point x in (X,d1) if and only if it converges to x in (X,d2).

Solution. Since d1 and d2 are interchangeable, it suffices to prove the ‘only if’ part. Let
(xn) be a sequence converging to x in (X,d1). By Proposition 2.15, the identity function
idX ∶ X Ð→X defined by idX(x) = x is continuous as a function from (X,d1) to (X,d2). The
result then follows from Theorem 2.44.

5.2. Let f ∶ X Ð→ Y and g ∶ Y Ð→ Z be uniformly continuous functions between metric
spaces. Prove that g ○ f ∶ X Ð→ Z is uniformly continuous.

Solution. Let ε be a positive real number. The uniform continuity of f and g implies that
there exists a positive real number δ such that dY (y1, y2) < δ implies dZ(g(y1), g(y2)) < ε, and
there exists a positive real number γ such that dX(x1, x2) < γ implies dY (f(x1), f(x2)) < δ.
Hence dX(x1, x2) < γ implies dZ((g ○ f)(x1), (g ○ f)(x2)) < ε, and therefore g ○ f is uniformly
continuous.

5.3. Let f ∶ X Ð→ Y be a uniformly continuous function between two metric spaces and
suppose (xn) ∼ (x′n) are equivalent sequences in X. Prove that (f(xn)) ∼ (f(x′n)) as sequences
in Y .

Does the conclusion hold if f is only assumed to be continuous?

Solution. Let ε > 0. As f is uniformly continuous, there exists δ > 0 such that for all x,x′ ∈X,
if dX(x,x′) < δ then dY (f(x), f(x′)) < ε. As (xn) ∼ (x′n), there exists N ∈ N such that
dX(xn, x′n) < δ for all n ⩾ N . Hence for all n ⩾ N we have dY (f(xn), f(x′n)) < ε.

The result does not hold in general for continuous functions; for instance one can take
f ∶ R>0 Ð→R>0 given by f(x) = 1

x , and (1/n) ∼ (1/n2
) but (f(1/n)) = (n), (f(1/n2

)) = (n2
)

and (n) /∼ (n2
).

5.4. Let X be a complete metric space and let S ⊆ X. Prove that the closure S (with the
metric induced from S ⊆X) is a completion of S (with the metric induced from S ⊆X).

Solution. Of course, S is complete: if (xn) is a Cauchy sequence in S, then it is a Cauchy
sequence in X, so (xn) Ð→ x ∈X since X is complete. But S is closed, so (xn) Ð→ x ∈ S.

We let ι ∶ S Ð→ S be the inclusion map: ι(s) = s for all s ∈ S. It is injective and an isometry
(as dS and dS are both induced from dX).

Finally, S is dense in S: by Proposition 2.42, for every x ∈ S there exists a sequence (sn) in
S such that (sn) Ð→ x.

5.5. Let (X,dX) and (Y, dY ) be metric spaces and f ∶ X Ð→ Y a surjective continuous
function. Suppose that X is complete and for all x1, x2 ∈X we have

dX(x1, x2) ⩽ dY (f(x1), f(x2)).

Prove that Y is complete.
In particular, isometries preserve completeness.
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Solution. Let (yn) be a Cauchy sequence in Y . For each n ∈N, let xn ∈ f−1(yn). I claim that
(xn) is a Cauchy sequence in X. Fix ε > 0. Let N ∈N be such that for all m,n ⩾ N we have
dY (ym, yn) < ε. Then for all m,n ⩾ N we have

dX(xm, xn) ⩽ dY (f(xm), f(xn)) = dY (ym, yn) < ε,

so (xn) is indeed Cauchy in X.
Since X is complete, we have (xn) Ð→ x ∈X, so that by the continuity of f we conclude

that (yn) = (f(xn)) Ð→ f(x) ∈ Y .

5.6. Let (X,d) be a metric space and let S ⊆X be a nonempty subset. Define dS ∶ X Ð→R⩾0
by

dS(x) = inf
s∈S

d(x, s).

(a) Prove that dS is uniformly continuous.
[Hint: Show that ∣dS(x) − dS(y)∣ ⩽ d(x, y) for all x, y ∈X.]

(b) Prove that dS(x) = 0 if and only if x ∈ S.

(c) Prove that if U ⊆X is an open neighbourhood of x, then dX∖U(x) > 0.

Solution.

(a) We start with the hint. Let x, y ∈X. For all s ∈ S we have

dS(x) ⩽ d(x, s) ⩽ d(x, y) + d(y, s),

hence
dS(x) ⩽ d(x, y) + dS(y).

We can swap the roles of x and y to get

dS(y) ⩽ d(y, x) + dS(x),

and the two inequalities together give

∣dS(x) − dS(y)∣ ⩽ d(x, y).

Uniform continuity is now clear: for any ε > 0 we take δ = ε and use the above inequality.

(b) If dS(x) = 0 then inf d(x, s) = 0 so for any ε > 0 there exists s ∈ S such that d(x, s) < ε.
In particular, for n ∈N we can set ε = 1/n and get sn ∈ S such that d(x, sn) < ε. This
gives us a sequence (sn) in S that converges to x, so x ∈ S.
Conversely, if x ∈ S then there exists a sequence (sn) in S that converges to x. Given
ε > 0, there exists N ∈N such that d(x, sN) < ε, therefore inf d(x, s) = 0.

(c) If dX∖U(x) = 0 then by part (b) we have x ∈X ∖U =X ∖U , the latter equality due to
U being open. But then x ∈ U ∩ (X ∖U), contradiction.
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