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Tutorial Week 6

Topics: Contractions, Banach fixed point theorem

6.1. Prove that any contraction is uniformly continuous.

Solution. Suppose f: X — Y is a contraction with constant C'.
Let £ >0 and set 6 = =—, then for all 21, x5 € X such that dx(z1,x2) <0, we have

C+1°
C
dy(f(l'l),f(l'Q))ngx(iL'l,ﬂﬁg)SC(S: C+1€<€. ]
6.2. Consider the equation
2 -x-1=0. (1)

(a) Show that the equation must have at least one solution in the interval [1,2].

(b) Show that the function f: [1,2] — R given by

flz)=(Q+2)"
has image contained in [1,2] and is a contraction.

(c) Show that Equation (1) has a unique solution ¢ in the interval [1,2] and describe a
sequence of real numbers that converges to &.

Solution.

(a) We can use the Intermediate Value Theorem: at x =1, 23 —x—1=-1<0, while at x = 2,
23—z —1=5>0, so there must be at least one point = in [1,2] such that 23 -z -1 =0.

(b) Given z € [1,2] we have
1<z<2 = 2<1+2<3 = 1<28<(1+2)P<33<2,
since t — t1/3 is an increasing function.

The derivative of f is

1

1
1 2B -
(1+2) 3 (1+x)23

Wil

f'(x) =
We note that f'(x) >0 on [1,2] and

1 1 1
< < — <= < <
1\x:>2\1+35:>1+x\2:>(1+x)2/3\22/3\1,

so that .
/ <=,
O

Now let z,y be such that 1 < x <y <2 and apply the Mean Value Theorem to f on
[x,y] to deduce that there exists ¢ € (x,y) such that

f(y) - f(x)

LB - o) = 170 = F@) = @l =l < 5 =l

We conclude that f is a contraction.
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(c) Observe that 23 —x -1 =0 is equivalent to f(z) = x, so the solutions of Equation (1) are
precisely the fixed points of f. As f is a contraction and [1,2] is complete, the Banach
Fixed Point Theorem says that there is a unique fixed point £ in [1,2]. It also tells us
that we can start with any x; € [1,2], for instance z; = 1, and iteratively apply f to get
a sequence (x,) converging to &:

371:1, 1’2:f($1):21/3, $3:f($2):(1+21/3)1/3,... 0

6.3. Find a non-empty metric space X and a contraction f: X — X such that f has no
fixed points.

Solution. Let X = (0,00), which is given the Euclidean topology, and let f: X — X be the
function defined by f(z) = x/2. This is a contraction because if = and y are positive real

numbers then
ax(f(@).f()) = |5~

It has no fixed points because f(z) = implies x =0, but 0 ¢ (0, c0). O

1 1
= —|z—y|==d .

6.4. Recall Newton’s method for solving equations: given a differentiable function g and an

initial guess xg, iterate

9(xn)

g'(xn)’

The aim is to get a sequence (x,) that converges to a root of g.
Apply this to the function g(x) = 22 - 3:

n > 0.

Tn+l = Tp —

(a) Prove that f(z):=2 - g(z)/g'(x) defines a contraction from X = [\/3,00) to itself.

(b) Use the Banach Fixed Point Theorem to conclude that the Newton iteration converges
to /3 for any starting point xge X = [\/5, 00).

(¢c) What happens if we pick a starting point zg € (0,v/3)?
Solution.

(a) We have
3

1
f@»:i(x+;)
The derivative is

ro-3-2)

so if x € X then x> v/3 so 22 >3 so f/(x) > 0. In other words, f is non-decreasing on
X, so the minimal value is attained at z = v/3: f(\/§) = /3. Hence f maps X to X.

To see that f is a contraction, let x,y € X:

1 1
<o -yl = = d(x,y).
5 12—yl =5 d,y)

d(f(x), f(y)) = 1f (x) = f(y)] = %|$"y|’1"£%

(b) By the Banach Fixed Point Theorem, we can take any zy € X and repeatedly apply f
(precisely what the Newton’s method iteration is), and we get a sequence that converges
to the unique fixed point of f. But a fixed point of f gives a root of ¢ in X, which must

be /3.



MAST30026 Metric and Hilbert Spaces 2025

(¢) If z € (0,v/3), then
fzo) = % (x+ g) > /3.

To check the last inequality, we can apply the reasoning from (a): f’(z) <0 on (0,v/3)
so f is decreasing on (0,v/3), therefore f(z0) > f(v/3) = V/3.

At this point we can apply the previous part with starting point f(zo) € X and get the
same conclusion. O

6.5. Let A =(a;;) be an n x n real matrix with all |a;;| < 1.
Given a nonzero real eigenvalue A of A, consider the function fy: R® — R" given by

1
fr(v) = X Av.
(a) Prove that if |A\| > n then f) is a contraction for the sup metric d on R™:

d(x, y)—eglax}| x; = Yil, xz(xl xn)T,y:(yl yn)TeR”.

(b) Use the Banach Fixed Point Theorem to derive a contradiction, and thus conclude that
every real eigenvalue A of A satisfies |A| < n.

Solution.

(a) Since |a;j| <1 forall 4,5 =1,...,n, letting C':= max; ; |a;;| we have 0< C' < 1.
Suppose |[A| 2 n. If v and w are elements of R”, then

n

1
2, 5 i (v = wy)

d(fr(v), fr(w)) = Inax }|fA(U) = fa(w)i] = max

ERERR] le
_ N max Zam(vj w;) | < | | mZaXZ|azj||vj w|
7=1
a a
< X;\|a”| aXZ|UJ |== X;\|am| Z|UJ w;]
Al Al =
nmax; |a;;| nmax; |a;;|
DNIE g | = e TG g
< o jE%’"i(n} lv; — w| o (v, w)

< max|a;;| d(v,w) < Cd(v,w).

Hence f, is a contraction.

(b) Assume there is an eigenvalue satisfying |\ > n. R is complete with respect to the
sup metric (since when n = 1 the sup metric is the same as the Euclidean metric on
R). Therefore R™ is complete with respect to the sup metric by Exercise 1.63. Now it
follows from the Banach Fixed Point Theorem (Theorem 2.59) that there is a unique
element v of R" such that v = f\(v) = 1 Av, which is equivalent to Av = Av. Since the
zero vector satisfies this condition, this unique vector has to be the zero vector, so A
cannot be an eigenvalue of A, contradiction. ]



