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Tutorial Week 6

Topics: Contractions, Banach fixed point theorem

6.1. Prove that any contraction is uniformly continuous.

Solution. Suppose f ∶ X Ð→ Y is a contraction with constant C.
Let ε > 0 and set δ = ε

C+1 , then for all x1, x2 ∈X such that dX(x1, x2) < δ, we have

dY (f(x1), f(x2)) ⩽ CdX(x1, x2) ⩽ Cδ = C

C + 1 ε < ε.

6.2. Consider the equation
x3 − x − 1 = 0. (1)

(a) Show that the equation must have at least one solution in the interval [1,2].

(b) Show that the function f ∶ [1,2] Ð→R given by

f(x) = (1 + x)1/3

has image contained in [1,2] and is a contraction.

(c) Show that Equation (1) has a unique solution ξ in the interval [1,2] and describe a
sequence of real numbers that converges to ξ.

Solution.

(a) We can use the Intermediate Value Theorem: at x = 1, x3 −x− 1 = −1 < 0, while at x = 2,
x3 − x − 1 = 5 > 0, so there must be at least one point x in [1,2] such that x3 − x − 1 = 0.

(b) Given x ∈ [1,2] we have

1 ⩽ x ⩽ 2 ⇒ 2 ⩽ 1 + x ⩽ 3 ⇒ 1 ⩽ 21/3 ⩽ (1 + x)1/3 ⩽ 31/3 ⩽ 2,

since tz→ t1/3 is an increasing function.
The derivative of f is

f ′(x) = 1

3
(1 + x)−2/3 = 1

3

1

(1 + x)2/3 .

We note that f ′(x) > 0 on [1,2] and

1 ⩽ x⇒ 2 ⩽ 1 + x⇒ 1

1 + x ⩽
1

2
⇒ 1

(1 + x)2/3 ⩽
1

22/3
⩽ 1,

so that
f ′(x) ⩽ 1

3
.

Now let x, y be such that 1 ⩽ x < y ⩽ 2 and apply the Mean Value Theorem to f on
[x, y] to deduce that there exists c ∈ (x, y) such that

f(y) − f(x)
y − x = f ′(c) ⇒ ∣f(y) − f(x)∣ = ∣f ′(c)∣ ∣y − x∣ ⩽ 1

3
∣y − x∣.

We conclude that f is a contraction.
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(c) Observe that x3 −x−1 = 0 is equivalent to f(x) = x, so the solutions of Equation (1) are
precisely the fixed points of f . As f is a contraction and [1,2] is complete, the Banach
Fixed Point Theorem says that there is a unique fixed point ξ in [1,2]. It also tells us
that we can start with any x1 ∈ [1,2], for instance x1 = 1, and iteratively apply f to get
a sequence (xn) converging to ξ:

x1 = 1, x2 = f(x1) = 21/3, x3 = f(x2) = (1 + 21/3)
1/3

, . . .

6.3. Find a non-empty metric space X and a contraction f ∶ X Ð→ X such that f has no
fixed points.

Solution. Let X = (0,∞), which is given the Euclidean topology, and let f ∶ X Ð→X be the
function defined by f(x) = x/2. This is a contraction because if x and y are positive real
numbers then

dX(f(x), f(y)) = ∣
x − y
2
∣ = 1

2
∣x − y∣ = 1

2
dX(x, y).

It has no fixed points because f(x) = x implies x = 0, but 0 ∉ (0,∞).

6.4. Recall Newton’s method for solving equations: given a differentiable function g and an
initial guess x0, iterate

xn+1 = xn −
g(xn)
g′(xn)

, n ⩾ 0.

The aim is to get a sequence (xn) that converges to a root of g.
Apply this to the function g(x) = x2 − 3:

(a) Prove that f(x) ∶= x − g(x)/g′(x) defines a contraction from X = [
√
3,∞) to itself.

(b) Use the Banach Fixed Point Theorem to conclude that the Newton iteration converges
to
√
3 for any starting point x0 ∈X = [

√
3,∞).

(c) What happens if we pick a starting point x0 ∈ (0,
√
3)?

Solution.

(a) We have
f(x) = 1

2
(x + 3

x
) .

The derivative is
f ′(x) = 1

2
(1 − 3

x2
) ,

so if x ∈ X then x ⩾
√
3 so x2 ⩾ 3 so f ′(x) ⩾ 0. In other words, f is non-decreasing on

X, so the minimal value is attained at x =
√
3: f(

√
3) =
√
3. Hence f maps X to X.

To see that f is a contraction, let x, y ∈X:

d(f(x), f(y)) = ∣f(x) − f(y)∣ = 1

2
∣x − y∣ ∣1 − 3

xy
∣ ⩽ 1

2
∣x − y∣ = 1

2
d(x, y).

(b) By the Banach Fixed Point Theorem, we can take any x0 ∈X and repeatedly apply f
(precisely what the Newton’s method iteration is), and we get a sequence that converges
to the unique fixed point of f . But a fixed point of f gives a root of g in X, which must
be
√
3.
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(c) If x0 ∈ (0,
√
3), then

f(x0) =
1

2
(x + 3

x
) >
√
3.

To check the last inequality, we can apply the reasoning from (a): f ′(x) < 0 on (0,
√
3)

so f is decreasing on (0,
√
3), therefore f(x0) > f(

√
3) =
√
3.

At this point we can apply the previous part with starting point f(x0) ∈X and get the
same conclusion.

6.5. Let A = (aij) be an n × n real matrix with all ∣aij ∣ < 1.
Given a nonzero real eigenvalue λ of A, consider the function fλ ∶ Rn Ð→Rn given by

fλ(v) =
1

λ
Av.

(a) Prove that if ∣λ∣ ⩾ n then fλ is a contraction for the sup metric d on Rn:

d(x, y) = max
i∈{1,...,n}

∣xi − yi∣, x = (x1 . . . xn)
T
, y = (y1 . . . yn)

T ∈Rn.

(b) Use the Banach Fixed Point Theorem to derive a contradiction, and thus conclude that
every real eigenvalue λ of A satisfies ∣λ∣ < n.

Solution.

(a) Since ∣aij ∣ < 1 for all i, j = 1, . . . , n, letting C ∶=maxi,j ∣aij ∣ we have 0 ⩽ C < 1.
Suppose ∣λ∣ ⩾ n. If v and w are elements of Rn, then

d(fλ(v), fλ(w)) = max
i∈{1,...,n}

∣fλ(v)i − fλ(w)i∣ =max
i
∣

n

∑
j=1

1

λ
aij(vj −wj) ∣

= 1

∣λ∣ max
i
∣

n

∑
j=1

aij(vj −wj) ∣ ⩽
1

∣λ∣ max
i

n

∑
j=1

∣aij ∣ ∣vj −wj ∣

< maxi ∣aij ∣
∣λ∣ max

i

n

∑
j=1

∣vj −wj ∣ =
maxi ∣aij ∣
∣λ∣

n

∑
j=1

∣vj −wj ∣

⩽ nmaxi ∣aij ∣
∣λ∣ max

j∈{1,...,n}
∣vj −wj ∣ =

nmaxi ∣aij ∣
∣λ∣ d(v,w)

⩽max
i
∣aij ∣d(v,w) ⩽ C d(v,w).

Hence fλ is a contraction.

(b) Assume there is an eigenvalue satisfying ∣λ∣ ⩾ n. R is complete with respect to the
sup metric (since when n = 1 the sup metric is the same as the Euclidean metric on
R). Therefore Rn is complete with respect to the sup metric by Exercise 1.63. Now it
follows from the Banach Fixed Point Theorem (Theorem 2.59) that there is a unique
element v of Rn such that v = fλ(v) = 1

λ Av, which is equivalent to Av = λv. Since the
zero vector satisfies this condition, this unique vector has to be the zero vector, so λ
cannot be an eigenvalue of A, contradiction.
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