Tutorial Week 6

Topics: Contractions, Banach fixed point theorem

6.1. Prove that any contraction is uniformly continuous.

Solution. Suppose $f: X \longrightarrow Y$ is a contraction with constant C.

Let $\varepsilon > 0$ and set $\delta = \frac{\varepsilon}{C+1}$, then for all $x_1, x_2 \in X$ such that $d_X(x_1, x_2) < \delta$, we have

$$d_Y(f(x_1), f(x_2)) \le Cd_X(x_1, x_2) \le C\delta = \frac{C}{C+1} \varepsilon < \varepsilon.$$

6.2. Consider the equation

$$x^3 - x - 1 = 0. (1)$$

- (a) Show that the equation must have at least one solution in the interval [1,2].
- (b) Show that the function $f: [1,2] \longrightarrow \mathbf{R}$ given by

$$f(x) = (1+x)^{1/3}$$

has image contained in [1,2] and is a contraction.

(c) Show that Equation (1) has a unique solution ξ in the interval [1,2] and describe a sequence of real numbers that converges to ξ .

Solution.

- (a) We can use the Intermediate Value Theorem: at x = 1, $x^3 x 1 = -1 < 0$, while at x = 2, $x^3 x 1 = 5 > 0$, so there must be at least one point x in [1, 2] such that $x^3 x 1 = 0$.
- (b) Given $x \in [1, 2]$ we have

$$1 \le x \le 2 \implies 2 \le 1 + x \le 3 \implies 1 \le 2^{1/3} \le (1+x)^{1/3} \le 3^{1/3} \le 2$$

since $t \mapsto t^{1/3}$ is an increasing function.

The derivative of f is

$$f'(x) = \frac{1}{3} (1+x)^{-2/3} = \frac{1}{3} \frac{1}{(1+x)^{2/3}}.$$

We note that f'(x) > 0 on [1, 2] and

$$1 \leqslant x \Rightarrow 2 \leqslant 1 + x \Rightarrow \frac{1}{1+x} \leqslant \frac{1}{2} \Rightarrow \frac{1}{(1+x)^{2/3}} \leqslant \frac{1}{2^{2/3}} \leqslant 1,$$

so that

$$f'(x) \leqslant \frac{1}{3}.$$

Now let x, y be such that $1 \le x < y \le 2$ and apply the Mean Value Theorem to f on [x, y] to deduce that there exists $c \in (x, y)$ such that

$$\frac{f(y) - f(x)}{y - x} = f'(c) \Rightarrow |f(y) - f(x)| = |f'(c)| |y - x| \le \frac{1}{3} |y - x|.$$

We conclude that f is a contraction.

(c) Observe that $x^3 - x - 1 = 0$ is equivalent to f(x) = x, so the solutions of Equation (1) are precisely the fixed points of f. As f is a contraction and [1,2] is complete, the Banach Fixed Point Theorem says that there is a unique fixed point ξ in [1,2]. It also tells us that we can start with any $x_1 \in [1,2]$, for instance $x_1 = 1$, and iteratively apply f to get a sequence (x_n) converging to ξ :

$$x_1 = 1,$$
 $x_2 = f(x_1) = 2^{1/3},$ $x_3 = f(x_2) = (1 + 2^{1/3})^{1/3}, \dots$

6.3. Find a non-empty metric space X and a contraction $f: X \longrightarrow X$ such that f has no fixed points.

Solution. Let $X = (0, \infty)$, which is given the Euclidean topology, and let $f: X \longrightarrow X$ be the function defined by f(x) = x/2. This is a contraction because if x and y are positive real numbers then

$$d_X(f(x), f(y)) = \left|\frac{x-y}{2}\right| = \frac{1}{2}|x-y| = \frac{1}{2}d_X(x,y).$$

It has no fixed points because f(x) = x implies x = 0, but $0 \notin (0, \infty)$.

6.4. Recall Newton's method for solving equations: given a differentiable function g and an initial guess x_0 , iterate

$$x_{n+1} = x_n - \frac{g(x_n)}{g'(x_n)}, \quad n \ge 0.$$

The aim is to get a sequence (x_n) that converges to a root of g. Apply this to the function $g(x) = x^2 - 3$:

- (a) Prove that f(x) := x g(x)/g'(x) defines a contraction from $X = [\sqrt{3}, \infty)$ to itself.
- (b) Use the Banach Fixed Point Theorem to conclude that the Newton iteration converges to $\sqrt{3}$ for any starting point $x_0 \in X = [\sqrt{3}, \infty)$.
- (c) What happens if we pick a starting point $x_0 \in (0, \sqrt{3})$?

Solution.

(a) We have

$$f(x) = \frac{1}{2} \left(x + \frac{3}{x} \right).$$

The derivative is

$$f'(x) = \frac{1}{2} \left(1 - \frac{3}{x^2} \right),$$

so if $x \in X$ then $x \ge \sqrt{3}$ so $x^2 \ge 3$ so $f'(x) \ge 0$. In other words, f is non-decreasing on X, so the minimal value is attained at $x = \sqrt{3}$: $f(\sqrt{3}) = \sqrt{3}$. Hence f maps X to X.

To see that f is a contraction, let $x, y \in X$:

$$d(f(x), f(y)) = |f(x) - f(y)| = \frac{1}{2}|x - y| \left| 1 - \frac{3}{xy} \right| \le \frac{1}{2}|x - y| = \frac{1}{2}d(x, y).$$

(b) By the Banach Fixed Point Theorem, we can take any $x_0 \in X$ and repeatedly apply f (precisely what the Newton's method iteration is), and we get a sequence that converges to the unique fixed point of f. But a fixed point of f gives a root of g in X, which must be $\sqrt{3}$.

(c) If $x_0 \in (0, \sqrt{3})$, then

$$f(x_0) = \frac{1}{2} \left(x + \frac{3}{x} \right) > \sqrt{3}.$$

To check the last inequality, we can apply the reasoning from (a): f'(x) < 0 on $(0, \sqrt{3})$ so f is decreasing on $(0, \sqrt{3})$, therefore $f(x_0) > f(\sqrt{3}) = \sqrt{3}$.

At this point we can apply the previous part with starting point $f(x_0) \in X$ and get the same conclusion.

6.5. Let $A = (a_{ij})$ be an $n \times n$ real matrix with all $|a_{ij}| < 1$.

Given a nonzero real eigenvalue λ of A, consider the function $f_{\lambda} \colon \mathbf{R}^n \longrightarrow \mathbf{R}^n$ given by

$$f_{\lambda}(v) = \frac{1}{\lambda} A v.$$

(a) Prove that if $|\lambda| \ge n$ then f_{λ} is a contraction for the sup metric d on \mathbb{R}^n :

$$d(x,y) = \max_{i \in \{1,\ldots,n\}} |x_i - y_i|, \qquad x = \begin{pmatrix} x_1 & \ldots & x_n \end{pmatrix}^\mathsf{T}, y = \begin{pmatrix} y_1 & \ldots & y_n \end{pmatrix}^\mathsf{T} \in \mathbf{R}^n.$$

(b) Use the Banach Fixed Point Theorem to derive a contradiction, and thus conclude that every real eigenvalue λ of A satisfies $|\lambda| < n$.

Solution.

(a) Since $|a_{ij}| < 1$ for all i, j = 1, ..., n, letting $C := \max_{i,j} |a_{ij}|$ we have $0 \le C < 1$. Suppose $|\lambda| \ge n$. If v and w are elements of \mathbf{R}^n , then

$$d(f_{\lambda}(v), f_{\lambda}(w)) = \max_{i \in \{1, \dots, n\}} |f_{\lambda}(v)_{i} - f_{\lambda}(w)_{i}| = \max_{i} \left| \sum_{j=1}^{n} \frac{1}{\lambda} a_{ij} (v_{j} - w_{j}) \right|$$

$$= \frac{1}{|\lambda|} \max_{i} \left| \sum_{j=1}^{n} a_{ij} (v_{j} - w_{j}) \right| \leq \frac{1}{|\lambda|} \max_{i} \sum_{j=1}^{n} |a_{ij}| |v_{j} - w_{j}|$$

$$< \frac{\max_{i} |a_{ij}|}{|\lambda|} \max_{i} \sum_{j=1}^{n} |v_{j} - w_{j}| = \frac{\max_{i} |a_{ij}|}{|\lambda|} \sum_{j=1}^{n} |v_{j} - w_{j}|$$

$$\leq \frac{n \max_{i} |a_{ij}|}{|\lambda|} \max_{j \in \{1, \dots, n\}} |v_{j} - w_{j}| = \frac{n \max_{i} |a_{ij}|}{|\lambda|} d(v, w)$$

$$\leq \max_{i} |a_{ij}| d(v, w) \leq C d(v, w).$$

Hence f_{λ} is a contraction.

(b) Assume there is an eigenvalue satisfying $|\lambda| \ge n$. **R** is complete with respect to the sup metric (since when n = 1 the sup metric is the same as the Euclidean metric on **R**). Therefore \mathbf{R}^n is complete with respect to the sup metric by Exercise 1.63. Now it follows from the Banach Fixed Point Theorem (Theorem 2.59) that there is a unique element v of \mathbf{R}^n such that $v = f_{\lambda}(v) = \frac{1}{\lambda} Av$, which is equivalent to $Av = \lambda v$. Since the zero vector satisfies this condition, this unique vector has to be the zero vector, so λ cannot be an eigenvalue of A, contradiction.