Tutorial Week 7

Topics: (Total) boundedness, uniform convergence

7.1. Prove that in any metric space (X,d), any totally bounded set S is bounded.

Solution. Take $\varepsilon = 1$ and let B_1, \ldots, B_N be a cover of S by open balls of radius 1. Each B_n is bounded, so by Exercise 1.73 the finite union $B_1 \cup \cdots \cup B_N$ is bounded, hence so is its subset S.

7.2. Find a bounded subset of a metric space that is not totally bounded.

Solution. Endow **N** with the discrete topology. The set **N** is bounded because $\mathbf{N} = \mathbf{B}_2(0)$. However, if n is an element of **N**, then $\mathbf{B}_1(n) = \{n\}$, so it is impossible to cover **N** by finitely many open balls of radius 1.

7.3. Let (X, d) be a metric space.

Prove that if A and B are bounded sets with $A \cap B \neq \emptyset$, then

$$\operatorname{diam}(A \cup B) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$$
.

What happens if $A \cap B = \emptyset$?

Solution. It suffices to show that for any $x, y \in A \cup B$ we have

$$d(x,y) \leq \operatorname{diam}(A) + \operatorname{diam}(B)$$
.

If $x, y \in A$, this is obvious as $d(x, y) \leq \text{diam}(A)$. Similarly if $x, y \in B$. It remains to see what happens if $x \in A$ and $y \in B$. Let $t \in A \cap B$. We have

$$d(x,y) \leq d(x,t) + d(t,y) \leq \operatorname{diam}(A) + \operatorname{diam}(B),$$

as desired.

7.4.

If $A \cap B = \emptyset$ we have no control over diam $(A \cup B)$, as one can see by taking $A = \{x\}$ and $B = \{y\}$. Then diam $(A \cup B) = d(x, y)$ can be arbitrary, while diam(A)+diam(B) = 0+0 = 0.

- (a) Prove that every subspace of a totally bounded space is totally bounded.
- (b) Suppose a metric space X has a totally bounded dense subset D. Prove that X is totally bounded.
- (c) Prove that a metric space X is totally bounded if and only if it is isometric to a subspace of a compact metric space. [**Hint**: Completion.]

Solution.

- (a) Let S be a subspace of a totally bounded space X. If (x_n) be a sequence in S, then it is also a sequence in X, so it has a Cauchy subsequence by Proposition 2.65. Now it again follows from Proposition 2.65 that S is totally bounded.
- (b) Let ε be a positive real number. Since D is totally bounded, there exists a natural number N and elements x_1, \ldots, x_N of D such that

$$D\subseteq \bigcup_{n=1}^N \mathbf{B}_{\varepsilon/2}(x_n).$$

Since X is the closure of D in X, it follows that

$$X \subseteq \bigcup_{n=1}^{N} \mathbf{B}_{\varepsilon/2}(x_n) \subseteq \bigcup_{n=1}^{N} \mathbf{B}_{\varepsilon}(x_n).$$

(c) Suppose a metric space X is totally bounded and let \widehat{X} be a completion of X with isometry $\iota \colon X \longrightarrow \widehat{X}$. By the definition of completion, we know that X is isometric to $\iota(X)$, so $\iota(X)$ is totally bounded by Proposition 2.64. It follows from part (b) that the completion \widehat{X} is totally bounded, and is therefore compact by the Heine–Borel theorem (Theorem 2.66). Hence X is isometric to the subspace $\iota(X)$ of the compact metric space \widehat{X} .

Conversely, suppose Y is a compact subspace, S is a subspace of Y, and $f: S \longrightarrow X$ is a bijective isometry. It follows from the Heine–Borel theorem (Theorem 2.66) that Y is totally bounded, and therefore S is totally bounded by part (a). Hence X = f(S) is totally bounded by Proposition 2.64.

7.5. We say that a topological space is *separable* if it contains a countable dense subset. (Easy examples are \mathbf{R} with countable dense subset \mathbf{Q} , or more generally \mathbf{R}^n with countable dense subset \mathbf{Q}^n .)

Prove that any totally bounded metric space X is separable.

Solution. For a fixed $n \in \mathbb{Z}_{\geq 1}$, cover X with a finite number of open balls of radius $\frac{1}{n}$ and let $D_n \subseteq X$ be the set of centres of these balls. Now let

$$D = \bigcup_{n=1}^{\infty} D_n.$$

This is a countable union of finite sets, hence countable.

Now take $x \in X$ and $\varepsilon > 0$. Let $n \in \mathbb{N}$ be such that $\frac{1}{n} < \varepsilon$. Since X is covered by the open balls of radius $\frac{1}{n}$ centred at elements of D_n , there exists $y \in D_n \subseteq D$ such that $x \in \mathbf{B}_{1/n}(y)$, that is $d(x,y) < \frac{1}{n} < \varepsilon$. So D is dense in X.

7.6. Given metric spaces X, Y, prove that a sequence (f_n) in B(X,Y) converges uniformly to $f \in B(X,Y)$ if and only if $(f_n) \longrightarrow f$ with respect to the uniform metric d_{∞} on B(X,Y).

Solution. Suppose (f_n) converges uniformly to f. Given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have

$$d_Y(f_n(x), f(x)) < \frac{\varepsilon}{2}$$
 for all $x \in X$.

So for all $n \ge N$ we have

$$d_{\infty}(f_n, f) = \sup_{x \in X} \{ d_Y(f_n(x), f(x)) \} \leqslant \frac{\varepsilon}{2} < \varepsilon,$$

in other words $(f_n) \longrightarrow f$ w.r.t. d_{∞} .

Conversely, suppose $(f_n) \longrightarrow f$. Given $\varepsilon > 0$, there exists $N \in \mathbb{N}$ such that for all $n \ge N$ we have

$$\sup_{x\in X}\{d_Y(f_n(x),f(x))\}=d_\infty(f_n,f)<\varepsilon,$$

hence for all $n \ge N$

$$d_Y(f_n(x), f(x)) < \varepsilon$$
 for all $x \in X$,

in other words (f_n) converges uniformly to f.

7.7. Give an example of a sequence of bounded continuous functions that converges pointwise to a discontinuous function.

[**Hint**: Consider the behaviour of x^n as $n \to \infty$.]

Solution. For $n \in \mathbb{N}$, take $f_n : [0,1] \longrightarrow \mathbb{R}$ given by $f_n(x) = x^n$, then the pointwise limit is

$$f: [0,1] \longrightarrow \mathbf{R}, \qquad f(x) = \begin{cases} 0 & \text{if } 0 \le x < 1 \\ 1 & \text{if } x = 1, \end{cases}$$

which is clearly not continuous.

On the other hand, each f_n is continuous, and also bounded since [0,1] is compact, so $f_n([0,1])$ is a compact subset of \mathbf{R} , in particular it is bounded.