Tutorial Week 8

Topics: Pointwise and uniform convergence, approximation, Baire.

8.1. For each $n \in \mathbb{N}$, consider the function $f_n : [0,1] \longrightarrow \mathbb{R}$ given by

$$f_n(x) = \frac{x^2}{1 + nx}.$$

- (a) Prove that f_n is bounded, for all $n \in \mathbb{N}$.
- (b) Find the pointwise limit f of the sequence (f_n) .
- (c) For any $n \in \mathbb{N}$, compute the uniform distance $d_{\infty}(f_n, f)$.
- (d) Does the sequence (f_n) converge uniformly to f?

Solution.

(a) Fix $n \in \mathbb{N}$. If $x \in [0, 1]$ then $0 \le x^2 \le 1$ and $1 + n \ge 1 + nx \ge 1$, so $1/(1+n) \le 1/(1+nx) \le 1$, so

$$0 \leqslant \frac{x^2}{1 + nx} \leqslant 1.$$

Thus f_n is bounded.

(b) For x = 0 the sequence $(f_n(x)) = (f_n(0))$ is the constant sequence 0, so f(0) = 0.

For $0 < x \le 1$ we have

$$\lim_{n \to \infty} \frac{x^2}{1 + nx} = x^2 \lim_{n \to \infty} \frac{1}{1 + nx} = 0,$$

so
$$f(x) = 0$$
.

We conclude that the pointwise limit is the constant function f = 0 on [0,1].

(c) We have

$$d_{\infty}(f_n, f) = \sup_{x \in [0,1]} \frac{x^2}{1 + nx}.$$

Since f_n is continuous on a compact interval, it attains its extremal values in [0,1]; in particular its global maximum is at x = 0 or at x = 1 or at a stationary point in (0,1).

The derivative is

$$f'_n(x) = \frac{x(2+nx)}{(1+nx)^2},$$

so the stationary points are 0 and -2/n, neither of which lies in (0,1). Moreover $f_n(0) = 0$ and $f_n(1) = 1/(1+n)$, so we conclude that

$$d_{\infty}(f_n,f)=\frac{1}{1+n}.$$

- (d) We have $(d_{\infty}(f_n), f) \longrightarrow 0$ as $n \longrightarrow \infty$, so the convergence is uniform.
- **8.2.** Let $f_0 : \mathbf{R} \longrightarrow \mathbf{R}$ be the function defined by

$$f_0(x) = \begin{cases} 1+x & \text{if } -1 \le x \le 0, \\ 1-x & \text{if } 0 < x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

For each positive integer n, define $f_n : \mathbf{R} \longrightarrow \mathbf{R}$ by

$$f_n(x) = f_0(x - n).$$

1

- (a) Prove that f_n is bounded, for all $n \in \mathbb{N}$.
- (b) Find the pointwise limit f of the sequence (f_n) .
- (c) For any $n \in \mathbb{N}$, compute the uniform distance $d_{\infty}(f_n, f)$.
- (d) Does the sequence (f_n) converge uniformly to f?

Solution.

- (a) It is straightforward to see that $f_n(\mathbf{R}) = [0, 1]$ for every natural number n. Thus f_n is bounded.
- (b) Fix a real number x and let N be the smallest positive integer such that x < N. It follows from the definition of f_n that $f_n(x) = 0$ if n > N. Hence $(f(x)) \longrightarrow 0$ as $n \longrightarrow \infty$ and therefore f is the constant function sending every real number to 0.
- (c) We have

$$d_{\infty}(f_n, f) = \sup_{x \in \mathbf{R}} \{ d_{\mathbf{R}}(f(x), 0) \} = d_{\mathbf{R}}(f_n(n), 0) = 1.$$

- (d) Since $d_{\infty}(f_n, f)$ does not converge to 0, the sequence (f_n) does not converge to f uniformly.
- **8.3.** Let $X = [0,1] \times [0,1]$ be the unit square with the induced topology from \mathbb{R}^2 .

Find a subalgebra \mathcal{A} of $C_0(X, \mathbf{R})$ that is dense. (Obviously, try to make \mathcal{A} as small as you can.)

Solution. Let $\mathcal{A} = \mathbf{R}[x, y]$, that is, the algebra of real polynomial functions in two variables x and y (which can be thought of as coordinate projection maps) mapping $X \longrightarrow \mathbf{R}$. By the Stone-Weierstrass theorem (Theorem 2.77), it suffices to prove that \mathcal{A} separates points and is non-vanishing.

Given any two distinct points $(x_1, y_1) \neq (x_2, y_2) \in X$, set $f(x, y) = (x - x_1)^2 + (y - y_1)^2$. Then $f(x_1, y_1) = 0 \neq f(x_2, y_2)$, so \mathcal{A} separates points.

Clearly f(x,y) = 1 does not vanish at any point in X, so A is non-vanishing.

8.4.

(a) Suppose $f \in C_0([0,1], \mathbf{R})$ has the property that

$$\int_0^1 f(x) \, x^n \, dx = 0 \qquad \text{for all } n = 0, 1, 2, \dots$$

Prove that f is the constant function 0 on [0,1].

(b) Give an explicit **discontinuous** function $f: [0,1] \longrightarrow \mathbf{R}$ that satisfies the equation in part (a) but is (obviously) not the constant function 0 on [0,1].

Solution.

(a) Let M be an upper bound for |f| on [0,1]. If M=0, we are done. So we may assume now that M>0.

Let $\varepsilon > 0$. By the Weierstrass Approximation Theorem there exists $p \in \mathcal{A}$ such that

$$|f(x) - p(x)| < \frac{\varepsilon}{M}$$
 for all $x \in [0, 1]$.

Writing $p(x) = \sum_{n=0}^{d} a_n x^n$ with $a_n \in \mathbf{R}$, we have by the linearity of the integral and by the hypothesis in the question:

$$\int_0^1 f(x)p(x) dx = \sum_{n=0}^d a_n \int_0^1 f(x) x^n dx = 0.$$

Then

$$\left| \int_0^1 f(x)^2 dx \right| = \left| \int_0^1 f(x) (f(x) - p(x)) dx \right|$$

$$\leq \int_0^1 |f(x)| |f(x) - p(x)| dx \leq M \frac{\varepsilon}{M} = \varepsilon.$$

Since this holds for all $\varepsilon > 0$, we conclude that the integral of the non-negative continuous function $f(x)^2$ on [0,1] is zero, hence $f(x)^2$ is the constant function 0 on [0,1], hence so is f(x).

(b) There are many options here, but we can take for instance

$$f(x) = \begin{cases} 0 & \text{if } x \neq \frac{1}{2} \\ 1 & \text{if } x = \frac{1}{2}. \end{cases} \square$$

8.5. Let (X,d) be a nonempty complete metric space. If

$$X = \bigcup_{n \in \mathbb{N}} C_n$$
 with each C_n a closed subset of X,

then there exists $n \in \mathbb{N}$ such that $C_n^{\circ} \neq \emptyset$.

[Hint: Use the Baire Category Theorem, Theorem 2.79.]

Solution. We proceed by contradiction.

Suppose $C_n^{\circ} = \emptyset$ for all $n \in \mathbb{N}$. Let $U_n = X \setminus C_n$, then U_n is open and dense in X. By Theorem 2.79,

$$\bigcap_{n \in \mathbf{N}} U_n \quad \text{is dense in } X,$$

in particular it is nonempty. Taking complements, we deduce that $\bigcup_{n \in \mathbb{N}} C_n \neq X$, contradiction.