
MAST30026 Metric and Hilbert Spaces 2025

Tutorial Week 8
Topics: Pointwise and uniform convergence, approximation, Baire.

8.1. For each n ∈N, consider the function fn ∶ [0,1] Ð→R given by

fn(x) =
x2

1 + nx.

(a) Prove that fn is bounded, for all n ∈N.

(b) Find the pointwise limit f of the sequence (fn).

(c) For any n ∈N, compute the uniform distance d∞(fn, f).

(d) Does the sequence (fn) converge uniformly to f?

Solution.

(a) Fix n ∈N. If x ∈ [0,1] then 0 ⩽ x2 ⩽ 1 and 1+n ⩾ 1+nx ⩾ 1, so 1/(1+n) ⩽ 1/(1+nx) ⩽ 1,
so

0 ⩽ x2

1 + nx ⩽ 1.

Thus fn is bounded.

(b) For x = 0 the sequence (fn(x)) = (fn(0)) is the constant sequence 0, so f(0) = 0.
For 0 < x ⩽ 1 we have

lim
nÐ→∞

x2

1 + nx = x
2 lim
nÐ→∞

1

1 + nx = 0,

so f(x) = 0.
We conclude that the pointwise limit is the constant function f = 0 on [0,1].

(c) We have

d∞(fn, f) = sup
x∈[0,1]

x2

1 + nx.

Since fn is continuous on a compact interval, it attains its extremal values in [0,1]; in
particular its global maximum is at x = 0 or at x = 1 or at a stationary point in (0,1).
The derivative is

f ′n(x) =
x(2 + nx)
(1 + nx)2 ,

so the stationary points are 0 and −2/n, neither of which lies in (0,1). Moreover
fn(0) = 0 and fn(1) = 1/(1 + n), so we conclude that

d∞(fn, f) =
1

1 + n.

(d) We have (d∞(fn), f) Ð→ 0 as nÐ→∞, so the convergence is uniform.

8.2. Let f0 ∶ RÐ→R be the function defined by

f0(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 + x if −1 ⩽ x ⩽ 0,
1 − x if 0 < x ⩽ 1,
0 otherwise.

For each positive integer n, define fn ∶ RÐ→R by

fn(x) = f0(x − n).
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(a) Prove that fn is bounded, for all n ∈N.

(b) Find the pointwise limit f of the sequence (fn).

(c) For any n ∈N, compute the uniform distance d∞(fn, f).

(d) Does the sequence (fn) converge uniformly to f?

Solution.

(a) It is straightforward to see that fn(R) = [0,1] for every natural number n. Thus fn is
bounded.

(b) Fix a real number x and let N be the smallest positive integer such that x < N . It
follows from the definition of fn that fn(x) = 0 if n > N . Hence (f(x)) Ð→ 0 as nÐ→∞
and therefore f is the constant function sending every real number to 0.

(c) We have
d∞(fn, f) = sup

x∈R
{dR(f(x),0)} = dR(fn(n),0) = 1.

(d) Since d∞(fn, f) does not converge to 0, the sequence (fn) does not converge to f
uniformly.

8.3. Let X = [0,1] × [0,1] be the unit square with the induced topology from R2.
Find a subalgebra A of C0(X,R) that is dense. (Obviously, try to make A as small as you

can.)

Solution. Let A =R[x, y], that is, the algebra of real polynomial functions in two variables x
and y (which can be thought of as coordinate projection maps) mapping X Ð→R. By the
Stone–Weierstrass theorem ( Theorem 2.77), it suffices to prove that A separates points and
is non-vanishing.

Given any two distinct points (x1, y1) ≠ (x2, y2) ∈X, set f(x, y) = (x−x1)2+(y−y1)2. Then
f(x1, y1) = 0 ≠ f(x2, y2), so A separates points.

Clearly f(x, y) = 1 does not vanish at any point in X, so A is non-vanishing.

8.4.

(a) Suppose f ∈ C0([0,1],R) has the property that

∫
1

0
f(x)xn dx = 0 for all n = 0,1,2, . . . .

Prove that f is the constant function 0 on [0,1].

(b) Give an explicit discontinuous function f ∶ [0,1] Ð→R that satisfies the equation in
part (a) but is (obviously) not the constant function 0 on [0,1].

Solution.

(a) Let M be an upper bound for ∣f ∣ on [0,1]. If M = 0, we are done. So we may assume
now that M > 0.
Let ε > 0. By the Weierstrass Approximation Theorem there exists p ∈ A such that

∣f(x) − p(x)∣ < ε

M
for all x ∈ [0,1].
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Writing p(x) = ∑d
n=0 anxn with an ∈R, we have by the linearity of the integral and by

the hypothesis in the question:

∫
1

0
f(x)p(x)dx =

d

∑
n=0

an∫
1

0
f(x)xn dx = 0.

Then

∣∫
1

0
f(x)2 dx∣ = ∣∫

1

0
f(x)(f(x) − p(x))dx∣

⩽ ∫
1

0
∣f(x)∣ ∣f(x) − p(x)∣dx ⩽M ε

M
= ε.

Since this holds for all ε > 0, we conclude that the integral of the non-negative continuous
function f(x)2 on [0,1] is zero, hence f(x)2 is the constant function 0 on [0,1], hence
so is f(x).

(b) There are many options here, but we can take for instance

f(x) =
⎧⎪⎪⎨⎪⎪⎩

0 if x ≠ 1
2

1 if x = 1
2 .

8.5. Let (X,d) be a nonempty complete metric space. If

X = ⋃
n∈N

Cn with each Cn a closed subset of X,

then there exists n ∈N such that C○n ≠ ∅.
[Hint: Use the Baire Category Theorem, Theorem 2.79.]

Solution. We proceed by contradiction.
Suppose C○n = ∅ for all n ∈ N. Let Un = X ∖ Cn, then Un is open and dense in X. By

Theorem 2.79,
⋂
n∈N

Un is dense in X,

in particular it is nonempty. Taking complements, we deduce that ⋃n∈NCn ≠X, contradiction.
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